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1 Introduction

Conventional approaches to sampling sig-
nals or images follow Shannons celebrated
theorem: the sampling rate must be at least
twice the maximum frequency present in
the signal (the Nyquist rate). In fact, this
principle underlies nearly all signal acquisi-
tion protocols used in consumer audio and
visual electronics, medical imaging devices,
radio receivers, and so on. However, it has
been proved that this theorem can be sub-
stituted when the problem deals with sparse
signals. Consider the signal below:

Figure 1

Due to Shannons theorem, we need an
extremely high sampling rate although the
shape of this signal is simple and most val-
ues of the samples are zero. However, re-
cent breakthroughs in compressed sensing
have shown that merely M samples (M ¿
required number of sampling points accord-
ing to Shannons theory) can reconstruct
the origin signal successfully. Compressive
Sampling (CS), also known as Compressed
Sensing, is a generalization of conventional
point sampling where observations are in-
ner products between an unknown signal
and a set of user-defined test vectors. Re-
cent theoretical results show that, for cer-
tain ensembles of test vectors, CS projec-
tions provide an effective method of encod-
ing the salient information in any sparse
(or nearly sparse) signal. Further, these
projection samples can be used to obtain
a consistent estimate of the unknown sig-
nal even in the presence of noise. These
results are remarkable because the number
of samples required for low-distortion re-
construction is on the order of the number
of relevant signal coefficients, which is of-
ten far fewer than the ambient dimension

in which the signal is observed. This huge
reduction in sampling makes CS a practi-
cal and viable option in many resource con-
strained applications. The whole process is
illustrated by figure 2 and figure 3:

Figure 2

Figure 3

1.1 Sensing of signals

Next we will discuss some main character-
istics of compressive sensing in detail.

1.1.1 Sparsity

Definition: If Xi is all zero but K entries,
the vector is called k-sparse.

Consider a general linear measurement
process that computes M < N inner prod-
ucts between x and a collection of vectors
{φj}M

j=1 j=1 as in yi =< x, φj > Arrange
the measurements yj in an M × 1 vector y
and the measurement vectors φT

j as rows in
an M ×N matrix φ .It can be proved that
when data is sparse, we can directly acquire
a condensed representation with no/little
information loss through dimensionality re-
duction: y = φ ∗x,where k < M ¿ N , to a
more precise degree, M =O(K logN).

Figure 4: Compressive Data Acquisition.
If x is an N × 1 sparse signal with only K
nonzero entries, then it can be projected
by an M ×N matrix, to form an M × 1
vector. In addition, M is a little larger
than K and much smaller than N. It
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means although x seems to need a lot of
samples, its sparsity indicate that it can be
measured just with M measurements. P.S.
a random projection will work quite well.

Further studies have extended y = φx
to non-sparse signals. Suppose the observed
signal x is not sparse, but instead a suitably
transformed version of it is. That is, if T is
a transformation matrix then α = Ψ−1x is
sparse. The CS observations can be written
as y = φΨα .This property highlights the
universality of compressive sensing.

Figure 5: Assuming that x is not sparse
itself, but it can still be represented by a
sparse signal in certain basis, compressive

sensing work appropriately as well.

1.1.2 Incoherence

Suppose we are given a pair (φ, Ψ) of or-
thobases of Rn .The first basis φ is used for
sensing the object and the second is used
to represent f. The restriction to pairs of
orthobases is not essential and will merely
simplify our treatment.

Definition: the coherence between the
sensing basis φ and the representation basis
Ψ is

µ(Φ, Ψ) =
√

n ·max1≤k,j≤n|<ϕk, ψj > |
The coherence measures the largest correla-
tion between any two elements of Ψ and Φ ;
If Φ and Ψ contain correlated elements, the
coherence is large. Otherwise, it is small.
As for how large and how small, it follows
from linear algebra that (Ψ, φ) ∈ [1,

√
n].

Compressive sampling is mainly concerned
with low coherence pairs, the reason for
which we will explain below.

Due to the theorem presented by E. Cands
and J. Romberg, if we fix f ∈ Rn and sup-
pose that the coefficient sequence x of f in

the basis Ψ is S-sparse. Select m measure-
ments in the φ domain uniformly at ran-
dom. Then if

m ≥ C · µ2(Φ, Ψ) · S · logn
for some positive constant C, the solu-

tion to reconstruct x is exact with over-
whelming probability. Considering what we
have said above, it is apparently that the
smaller the coherence, the fewer samples
are needed, hence our emphasis on low co-
herence systems in the previous section.

Random matrices are largely incoherent
with any fixed basis Ψ. Select an orthoba-
sis φ uniformly at random, which can be
done by orthonormalizing n vectors sam-
pled independently and uniformly on the
unit sphere. Then with high probability,
the coherence between φ and Ψ is about√

2logn. By extension, random waveforms
with independent identically distributed en-
tries, e.g., Gaussian or 1 binary entries, will
also exhibit a very low coherence with any
fixed representation φ. If sensing with inco-
herent systems is good, then efficient mech-
anisms ought to acquire correlations with
random waveforms, e.g., white noise.

1.2 Reconstruction of signals

Sparse Recovery It is necessary to in-
troduce Restricted Isometry Property
in advance, known as RIP.

Let δk be the smallest number such that:
(1− δk)||X||22 ≥ ||φx||22 ≥ (1 + δk)||X||22
for all k-sparse vectors x/inRn where

φ = [φ1 . . . φn] ∈ Rm×n

The theorem presented by E. J. Cands
tells us that:

If δ2k <
√

2 − 1 ,then for all k-sparse
vectors x such that φx = b, the solution of
(l1) is equal to the solution of (l0).

Here,l1 = min||x||1 : φx = b, x ∈ Rn

l0 = min||x||0 : φx = b, x ∈ Rn

The same compressed data could be gen-
erated by many n-dimensional vectors, but
we have to find the sparsest one, i.e. the
vector whose number of nonzero data is small-
est. This might seem to require that any
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reconstruction algorithm must exhaustively
search over all sparse vectors. However,
this procedure is impossible, just to pro-
vide a way to measure whether the vector
we find is appropriate or not. But fortu-
nately, applying the RIP we have just dis-
cussed above, we can use the l1 norm as
a proxy for sparsity instead of l0 norm so
that the process is much more tractable.
Given a vector of (noise-free) observations
y = θx, the unknown k-sparse signal x can
recovered exactly as the unique solution to

min||x||1 subject to y = φx
which is known as l1 minimization.
Of course, there are other effective re-

covery techniques for CS, such as matching
pursuit, iterative thresh holding and total
variation minimization, but the coverage of
them is beyond this article. Let us look
at the l1 minimization from a geometrical
point of view. The line denotes all the x
vectors which satisfy the equation φx = b,
so that they all have the possibility to be re-
constructed. The diamond represents ||x||1,
all the points on the edge of this diamond
have an equal ||x||1, and the points in the
inner space of this diamond have a smaller
||x||1,and vice versa.

Figure 6: This picture obeys RIP, meaning
that finding x0 equals to finding the vector
which obeys l1 minimization. So that it is

good for applying l1 minimization to
reconstruct x, since the line has only one
point of intersection with the diamond,

which determines the uniqueness of

reconstruction. The other vectors on the
line all have a larger l1.

Figure 7: This picture does not obey RIP.
It is bad for applying l1 minimization to

reconstruct x, since the line has more than
one point of intersection with the

diamond. Some other vectors rather than
x0 on the line lie in the inner space of the
diamond, which have a smaller l1. So that
l1 minimization will find x1 in stead of x0.

In addition, RIP also acts as a stable
embedding, which means that if x1 is close
to x2 in Rn , then when they are projected
by φ ,φx1 is close to φx2 as well. It can be
proved by the inequation:

(1− δ2k) ≥ ||φx1−φx2 ||22
||x1−x2||22

≥ (1 + δ2k)
Further more, if δ2k is less than 0.41,

then tractable recovery, robust recovery and
stable recovery are ensured.

Compressed sensing remains quite effec-
tive even when the samples are corrupted
by additive noise, which is important from
a practical point of view since any real sys-
tem will be subjected to measurement in-
accuracies. We present noisy measurement
as:

y = φ′α0 + e , ||e||2 ≥ ε
A variety of reconstruction methods have

been proposed to recover (an approxima-
tion of) x when observations are corrupted
by noise. The fundamental solution is to
relax the recovery program, i.e. solve

min||α||l1 subject to ||φ′α− y|| ≥ ε
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Out of doubt, since we have relaxed the
condition, there exist some errors generated
by this relaxation. However, the recovery
error obeys:

||α0 − α∗||2 ≥
√

N
M · ε + ||α0−α0,k||l1√

K

The first part of the right is called mea-
surement error, for it correlates to the num-
ber of measurements M. Moreover, we can
see easily that the larger M is, which means
we acquire more samples, the smaller the
error becomes. The second part is called
approximation and α0,K stands for best
K-term approximation.

1.3 Reconstruction algorithm

1.3.1 BP

One of the simplest solutions to pursue a
accurate recovery of a sparse signal is a
linear program called basis pursuit which
relies on conventional linear programming
techniques. The computational complexity
of this algorithm is polynomial in N while
the number of measurements generally re-
quired for adequate reconstruction is given
by M=cK for c¿1. The constant, c, refers
to an oversampling factor whose value is in-
versely dependent on sparsity.

1.3.2 OMP

A compressed sensing solver that seeks to
compute the minimum l0 norm solution is
the Orthogonal Matching Pursuit (OMP)
algorithm. This algorithm attempts to de-
termine which columns of the pseudo ran-
dom matrix ΦM×N are most correlated to
the measurement matrix Y. The column with
the largest correlation is likely the largest
coefficient of S. During an iteration, the col-
umn of ΦM×N with the largest correlation
to Y is found and its contribution to Y is
subtracted. The resulting coefficient of S is
determined and the process repeats until Y
disappears or has a value smaller than some
threshold of acceptable error. This algo-
rithm should only need to iterate K times
to successfully reconstruct S. It has been

shown that with M ≥ cKlnN
k it is pos-

sible to reconstruct every K sparse with
a probability exceeding 1 − e−MN . There
has been some critique that OMP cannot
produce accurate results except in the sim-
plest (noiseless) circumstances. This leads
to reason that the effectiveness of the algo-
rithm may degrade swiftly in the presence
of noise.

1.3.3 TMP

Consider x0 in the wavelet basis:

x0 =
∑
k

βj0,kφj0,k +
j1∑

j=j0

∑
k

αj,kψj,k

where j0 is some specified coarse scale, j1
is the finest scale,φj0,k are male wavelets
at coarse scale and ψj0,k are fine scale fe-
male wavelets. Let α = (αj,k : j0 ≤ j ≤
j1, 0 ≤ k ≤ 2j) denote the grouping to-
gether of all wavelet coefficients, and let
β = (βj0,k : 0 ≤ k ≤ 2j0) denote the male
coefficients. Notice the multiscale nesting
structure of the wavelet atoms the sup-
port of each ψj,k contains the supports of
ψj+1,2k−1 and ψj+1,2k induces a binary
tree structure in the wavelet coefficients.
TMP is an adaptation of the Matching Pur-
suit algorithms to achieve faster reconstruc-
tion for piecewise smooth signals, which ex-
ploits the tree structure of the wavelet co-
efficients.

2 Application: Exploiting
CS in WSNs

2.1 Introduction of WSN

Due to recent technological advances, the
manufacturing of small and low cost sen-
sors became technically and economically
feasible. The sensing electronics measure
ambient conditions related to the environ-
ment surrounding the sensor and transform
them into an electric signal. Processing
such a signal reveals some properties about
objects located and/or events happening in
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the vicinity of the sensor. A large num-
ber of these disposable sensors can be net-
worked in many applications that require
unattended operations, which later devel-
ops to the wireless sensor networks. Nowa-
days, wireless sensor networks (WSNs) have
been used for numerous applications includ-
ing military surveillance, facility monitor-
ing and environmental monitoring. Typ-
ically WSNs have a large number of sen-
sor nodes with the ability to communicate
among themselves and also to an external
sink or a base-station. The sensors could be
scattered randomly in harsh environments
such as a battlefield or placed at specified
locations. The sensors coordinate among
themselves to form a communication net-
work such as a single multi-hop network
or a hierarchical organization with several
clusters and cluster heads. The sensors pe-
riodically sense the data, process it and trans-
mit it to the base station.

2.2 CS for WSNs

A typical wireless sensor network, consists
of a large number of wireless sensor nodes,
spatially distributed over a region of inter-
est, that can sense (and potentially actu-
ate) the physical environment in a variety
of modalities, including acoustic, seismic,
thermal, and infrared. A wide range of ap-
plications of sensor networks are being envi-
sioned in a number of areas, including ge-
ographical monitoring, inventory manage-
ment, homeland security, and health care.
The essential task in many applications of
sensor networks is to extract some relevant
information from distributed data and wire-
lessly deliver it to a distant destination (the
sink node). While this task can be accom-
plished in a number of ways, one particu-
larly attractive technique leverages the the-
ory of CS and corresponds to delivering ran-
dom projections of the sensor network data
to the sink. In contrast to classical ap-
proaches, where the data is first compressed
and then transmitted to a given destina-

tion, with CS the compression phase can
be jointly executed with data transmission.
This is important for WSNs as compress-
ing the data before the transmission to the
data gathering point (hereafter called the
sink) requires to know in advance the cor-
relation properties of the input signal over
the entire network (or over a large part of
it) and this implies high transmission costs.
With CS, the content of packets can be
mixed as they are routed towards the sink.
Under certain conditions, CS allows to re-
construct all sensor readings of the network
using much fewer transmissions than rout-
ing or aggregation schemes. When we uti-
lize CS at the sink node, we obtain more
valuable information, and the received val-
ues are linear random combinations of the
sensor nodes. Nevertheless, there still re-
main certain problems critical for evaluat-
ing the performance of CS for WSNs. (1)
How to choose two matrices φ and Ψ in the
data gathering protocol since the sparsity
requirements and the incoherence ought to
be met. (2) The energy consumption of
transmitting the random combined data of
the sensor nodes in the process of CS should
be took into consideration due to the energy
limitation of WSNs. (3) The robustness of
CS in WSNs is also a problem because of
the node fails and the harsh environment.

One preliminary idea presented in [2] is
that, according to the fundamental encod-
ing y = φx ,each of the n sensors, j = 1n, lo-
cally computes the term φi,jxj by multiply-
ing its data with the corresponding element
of the compressing matrix. The compress-
ing matrix can be generated in a distributed
fashion by letting each node locally gen-
erate a realization of φi,j using a pseudo-
random number generator seeded with its
identifier which can be easily reconstructed.
Then the local terms φi,jxj are simultane-
ously aggregated and distributed across the
network using randomized gossip, which is
a simple iterative decentralized algorithm
for computing linear functions such as yi =
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n∑
j=1

φi,jxj . Because each node only exchanges

information with its immediate neighbors
in the network, gossip algorithms are re-
silient to failures or changes in the network
topology. Moreover, when randomized gos-
sip terminates, the value of yi is available at
every node in the network, so the network
data cannot be compromised by eliminat-
ing a single server or fusion center.
However, this raw thought only realize the
application of CS to the network sensing,
we dont see many advantages since the gos-
sip routing protocol is not energy efficient.
Moreover, each node contains the final pro-
jected result is a waste of energy and stor-
age. Also, in many cases, explicit routing
information is difficult to obtain and main-
tain. Due to these characteristics, there de-
velops another application of CS to WSN
called random sampling with CS.

2.2.1 Random sampling

We would like to apply CS to wireless net-
work sensing. There exists an interesting
method to construct the measuring matrix
Φ ,see [3]. In that paper, a synthetic signal
is generated so as to serve as a comparison
to the real sensor networks to measure the
effectiveness of the CS application. A com-
mon approach is called Random Sampling
(RS). In a nutshell, it randomly chooses M
nodes from all N nodes and gets their read-
ings, then reconstructs the original signal
by interpolation of the collected value. A
new method brought by CS is called Ran-
dom Sampling with CS (RS-CS). As above
each node becomes a source with probabil-
ity M/N. Again, each of these source nodes
transmits a packet containing the reading
of its own sensor. As this packet travels to-
wards the sink, we combine the value con-
tained therein with that of any other node
that is encountered along the path. Specif-
ically, let vm

i with i = 1, 2, . . . , lm be the
readings of the sensors along the path from
node m to the sink, where vm

1 is the read-

ing of the node itself and λm is the length
of the path. Node m sends a packet con-
taining the value ym

1 = α1v
m
1 as well as

the combination coefficient α1, where α1

is a value chosen uniformly at random ei-
ther from (0, 1] or from the set ?1,+1. We
proceed with these random combinations,
where in general node i +1 sends out ym

i+1 =
ym

i1+αi+1v
m
i+1 until the packet finally reaches

the sink. The sink extracts ym
lm

=
lm∑
i=1

αiv
m
i ,

together with the vector of coefficients that
were used along the route. These coeffi-
cients,form the mth row of matrix Φ, re-
ferred to as ϕm. Note that some optimiza-
tions are possible. First, if we know in
advance the network topology, we can as-
sign combination coefficients at setup time
to all nodes, rather than including them
in the packets. We can further use the
same pseudo-random number generator at
the nodes and the sink and synchronize the
seeds. Finally, the sink can build a system
of the form

y =




y1
λ1

y1
λ2

. . .
y1

λm


 =




ϕ1

ϕ2

. . .
ϕm


 X = ΦX

where the yr
λr

with r = 1, 2, . . . ,m are the
combined values that were received by the
sink in the packet that traversed the rth
path, Φ is an m×N matrix whose generic
row r, ϕr, contains the vector of coefficients
included in the packet. Note that, in gen-
eral, some of these coefficients might be equal
to zero, because all the nodes cannot be
reached on a single path. There are four
kinds of choosing the entry value of Φ dis-
cussed (See detail in [3]). The measuring
matrix Φ generated by this routing method
is interesting and close to practice. But
whether it works well is what we really con-
sider. As we know, when we reconstruct
a signal after we apply CS, not only the
signal must be represented as a sparse one
in the representing matrix ϕ , but also the
measuring matrix Φ and ϕ should be inco-
herent. And the smaller the coherence, the
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fewer samples are needed.
From the incoherence discussed and simula-
tion presented in the paper, we see that RS-
CS does not outperform RS, even if when
the data is pre-distributed. Only when the
number of transmissions is high enough and
only for certain representing matrix is the
reconstruction error smaller than RS. In our
opinion, this is because that there are too
many zeros in Φ , which leads to the loss
of the original signal, also the coherence of
Φ and ϕ contributes to this dissatisfaction.
So that the application of CS for real sensor
data is not straightforward and needs fur-
ther exploit, but we think that the method
and the way of thinking is a good inspira-
tion.
In the later part, there emerges another
kind of application of CS to wireless net-
work sensing named CWS, which we will
explain carefully.

2.2.2 Compressive wireless sensing

Recent research has introduced an imple-
mentation of CS for sensor networks called
Compressive Wireless Sensing (CWS) in which
a central base station retrieves wireless sen-
sor network data from a randomly distributed
grid of transducers. Much of this work has
been focused on the power - distortion - la-
tency relationship for a projection of dis-
tributed sensor network data onto an under-
determined basis.
The distributed communication architecture
has been illustrated in the following Figure
8.

Figure 8

This model involves phase-coherent, low-
power, analog transmission of weighted sam-
ple values direct from the nodes in the net-
work to the FC via narrow band AWGN

channel. In this Figure, x represents the
data sensed by the nodes and w is the Gaus-
sian noise added on the data after the trans-
mission from sensors to the MAC. ρ > 0
is a scaling factor used to meet the sen-
sors transmit power constraint. ϕ is the
orthonormal basis where xi is projected.
According to the theory of CWS, when given
sufficient knowledge of ϕ, that is knowing
the basis in which xi is compressible and
the ordering of the coefficients of xi in the
basis, we can discard the n-k coefficients
which is smaller than the other k ones and
obtain the best k-term approximation of xi

in terms of x(k) =
k∑

i=1

θiϕi, where θ is the

coefficients of xi . Accordingly, the power-
distortion-latency trade-off for this case is
given by: D ∼ P−2α

tot ∼ L−2α.
However, even though the destination knows
the basis in which xi is compressible, it
is not likely that the precise ordering of
the coefficients of xi in this basis is avail-
able. One viable approach to this problem
could be to use the distributed scheme that
resort to random transform domain sam-
pling, that is, the compressive wireless sens-
ing scheme. After k random projections,
the observations at the fusion center take
the form of yi =

n∑
j=1

Φij(xj + wj) + z̃j ,

where {wj}n
j=1 and {z̃j}k

j=1 are zero mean
Gaussian random variables. Therefore, the
power-distortion-latency trade-off can be pre-
sented by: D ∼ P

−2α/(2α+1)
tot ∼ L−2α/(2α+1).

The goal of this research was to discuss a
theoretical model for the compressive sam-
pling of wireless sensor network data. The
effects of sensor measurement error, electro-
magnetic interference present at the base
station, and channel phase estimation er-
ror were discussed as far as they pertain to
accurate determination of the values of Y.
Our research considers a similar distributed
grid of sensors (transducers) that measure
some physical data (e.g. temperature, pres-
sure) and wirelessly transmit these mea-
surements to a central base station simul-
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taneously and phase coherently. A typical
sensor network is shown in Figure 9. Here,
each black dot represents a sensor with a
wireless transmitter communicating sensor
readings simultaneously to a base station.
In order to simplify the following discus-
sion, we consider an ordered grid to simu-
late the sensor network.

Figure 9

The novelty of the concept of CWS arises
from the fact that projections of sensor net-
work data can be naturally added at the
base station because the sensors transmit
their data phase coherently. Disregarding
the effects of noise, the pth observation of
the sensor network data which corresponds
to the pth element of Y is given by yp =∑
i

Φi,pxi.

Here, ρi is the phase dependent gain asso-
ciated with the ith sensor in the grid which
is multiplied by the corresponding element
in X. It is assumed that the value of ρi is
known for each sensor and does not change
during the M observations (it is indepen-
dent of p). The value Φi,p is an element
of a Rademacher random matrix that en-
ables random sampling of sensor network
data, where Φi,p = Φi for ∀j. This as-
sumes that an entire compressive reading
of network data is completed before fading
changes. The random matrix, ΦM×N for
CWS is constructed as a matrix of Rademacher
random variables. The pmf of Rademacher
variable is presented in the following:

f(k) =





1/2 if k=-1
1/2 if k=+1
0 otherwise

To normalized the total energy of the
sensors, we can modulate k from±1 to± 1√

n
.

This is useful because it allows each of the
sensors to locally determine their own vec-
tor of Rademacher random variables using
their address as a seed value. The base sta-
tion is then able to construct ΦM×N from
the seed values given by the appropriate ad-
dresses. Thus, the above equation can be
given by this: Y = ΦM×NρN×NΨN×N .
An important focus of this experiment is
to examine the capabilities of current com-
pressed sensing reconstruction methods for
noisy measurements. It is important to dis-
cuss how this noise is modeled in our sim-
ulated network. There are two different
types of error that are analyzed. The first
type is error due to noise present at the base
station receiver. This is given by
Y = ΦM×NρN×N (ΨN×NS + W ) + Z =
ΦM×NρN×NΨN×NS + η
Here Z and W represents an M×1and N×1
vector of zero mean Gaussian random vari-
ables respectively. The second type of er-
ror present in our analysis arises from fad-
ing coefficient estimation error that is in-
troduced when the channel gain from each
sensor to the base station is incorrectly es-
timated.

3 Further thoughts

As increasing small node become available,
large scale sensor network are likely to per-
form significant in a myriad of tasks (thou-
sands of nodes are considered in earthquake).
Because the potential number of the sen-
sor nodes may be large, there exist certain
disadvantages of the above method of com-
pressive sensing. Firstly, we need M chan-
nels for measuring the signal, where M is
proportional to N. Secondly, the long dis-
tance between sensor nodes and FC can
cause high energy dissipation for CWS main-
tain all the N nodes keep transmitting sig-
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nals to FC. Taking the above considerations
into account, one way to solve these prob-
lems is to partition the whole sensor net-
work into several cells. Figure 10 gives the
model of this method. We will develop this
model in our further work.
In this model, there remain certain prob-
lems to consider:
The size of cell affects the potential degree
of frequency reuse in networks. The smaller
the size, the more the frequency reuse, and
the larger the capacity.
The size of cell affects the efficiency of such
local coordination as data aggregation and
load balancing.
The performance of the partitioned sensor
network while using CWS should be evalu-
ated.

Figure 10

4 References
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