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Chapter 1

Introduction

1.1 Cognitive Radio:A Extension of Software Radio

Cognitive radio(CR) refers to a paradigm in which either a network or a wireless node changes
its transmission or reception parameters to communicate efficiently avoiding interference with
licensed or unlicensed users. This intelligent radio is also viewed also as novel approach for
improving the utilization of the radio electromagnetic spectrum. Before we delve into the
content of CR, a glimpse of the origin of CR is presented here in order that a clear roadmap
on how CR develops from previous technology which lays the foundation for it can be made.
The key technology, which CR is based on, is Software-defined radio, sometimes shortened
to software radio(SR). Joseph Mitola, who is internationally recognized as the ” Godfather”
of the software radio, coined the term in 1991 and he then promoted the term cognitive
radio in 1998. SR is generally a multiband multimode radio that supports multiple air
interfaces and protocols and is reconfigurable through software run on DSP or general-
purpose microprocessors|[1], which provides an ideal platform for the realization of cognitive
radio. Build on SR, the goal of CR is to develop software agents that have such a high
level of competence in radio domains that they may accurately be call ”cognitive”. In
general, ”cognitive radio is a particular extension of software radio that employs model-

based reasoning about users, multimedia content, and communications context”.[3]

1.2 Dynamic Spectrum Access in a Opportunistic Man-

ner

While cognitive radio represents a much broader paradigm where many aspects of communi-
cation systems can be improved via cognition, in this report we mainly focus on a important

application of CR — dynamic spectrum access.



textnormalThe idea of dynamic spectrum access is promoted in response to the limited
available spectrum and inefficiency in spectrum usage now. According to Federal Communi-
cations Commission(FCC)[6], a large portion of the assigned spectrum is used sporadically
and geographical variations in the utilization of assigned spectrum ranges from 15% to 85%
with high variance in time. To deal with the underutilization of spectrum caused by a fixed
spectrum policy, engineers, economists, and regulation communities are taking actions in
searching for better spectrum management and techniques. In contrast to the current static
spectrum management policy, the term dynamic spectrum access has broad connotations
that encompass various approaches to spectrum reform. The diverse ideas presented at the
first IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN)
suggest the extent of this term and a discussion about the categorization of the dynamic
spectrum access can be found in [5].

textnormalln this report, we focus on the overlay approach under the hierarchical access
model. The opportunistic manner will be adopted throughout. Since most of the spectrum
is already assigned, the most important challenge is to share the licensed spectrum without
interfering with the transmission of other licensed users.The cognitive radio enables the usage
of temporally unused spectrum, which is referred to as itspectrum hole or itwhite space[18].
If this band is further used by a licensed user, the cognitive radio moves to another spectrum
hole or stays in the same band, altering its transmission power level or modulation scheme

to avoid interference.

1.3 A New Networking Paradigm

As mentioned above, the spectrum scarcity and inefficiency in its usage necessitates a new
communication paradigm to exploit wireless spectrum opportunistically. From a networking
perspective, this new model is referred to as NeXt Generation (xG) Networks as well as
Dynamic Spectrum Access (DSA) and cognitive radio networks.[4]

textnormalThe concept of xG networks is actually bound up with the technology of cognitive
radio and dynamic spectrum access. ”Cognitive radio techniques provide the capability to
use or share the spectrum in an opportunistic manner. Dynamic spectrum access techniques
allow the cognitive radio to operate in the best available channel. More specifically, the
cognitive radio technology will enable the users to (1) determine which portions of the spec-
trum is available and detect the presence of licensed users when a user operates in a licensed
band (spectrum sensing), (2) select the best available channel (spectrum management), (3)
coordinate access to this channel with other users (spectrum sharing), and (4) vacate the
channel when a licensed user is detected (spectrum mobility).” [4]

In summary, the main functions for cognitive radios in cognitive networks can be summarized



as follows:[4]

e Spectrum sensing: Detecting unused spectrum and sharing the spectrum without harm-

ful interference with other users.

e Spectrum management: Capturing the best available spectrum to meet user commu-

nication requirements.

e Spectrum mobility: Maintaining seamless communication requirements during the

transition to better spectrum.

e Spectrum sharing: Providing the fair spectrum scheduling method among coexisting

cognitive network users.

The main focus of this report is on the algorithm optimization of spectrum sharing, which

is detailed in the following.

1.4 Spectrum Sharing

In cognitive networks, one of the main challenges in open spectrum usage is the spectrum
sharing. In some respects, spectrum sharing can be regarded to be similar to generic medium
access control (MAC) problems in existing systems. However, substantially different chal-
lenges exist for spectrum sharing in cognitive networks. ”The coexistence with licensed
users and the wide range of available spectrum are two of the main reasons for these unique
challenges.” [4]

Here we outline the discussion on spectrum sharing in [4]. We first enumerate the steps in
spectrum sharing in cognitive networks. The spectrum sharing process consists of five major

steps:[4]

1. Spectrum sensing: An cognitive network user can only allocate a portion of the spec-
trum if that portion is not used by an unlicensed user. Accordingly, when an cognitive
network node aims to transmit packets, it first needs to be aware of the spectrum usage

around its vicinity.

2. Spectrum allocation: Based on the spectrum availability, the node can then allocate
a channel. This allocation not only depends on spectrum availability, but it is also
determined based on internal (and possibly external) policies. Hence, the design of
a spectrum allocation policy to improve the performance of a node is an important

research topic.



3. Spectrum access: In this step, another major problem of spectrum sharing comes into
picture. Since there may be multiple cognitive network nodes trying to access the
spectrum, this access should also be coordinated in order to prevent multiple users

colliding in overlapping portions of the spectrum.

4. Transmitter-receiver handshake: Once a portion of the spectrum is determined for
communication, the receiver of this communication should also be indicated about the
selected spectrum. Hence, a transmitter-receiver handshake protocol is essential for
efficient communication in cognitive networks. Note that the term ithandshake by no
means restricts this protocol between the transmitter and the receiver. A third party

such as a centralized station can also be involved.

5. Spectrum mobility: cognitive network nodes are regarded as ”visitors” to the spectrum
they allocate. Hence, if the specific portion of the spectrum in use is required by a
licensed user, the communication needs to be continued in another vacant portion. As
a result, spectrum mobility is also important for successful communication between

cognitive network nodes.

In addition, a classification of spectrum sharing techniques and the fundamental results
about these techniques is given in [5]. Considering the tradeoff between system complexity
and performance, hybrid techniques may be considered for the spectrum technique. In
this report, we discuss a algorithm that is distributed, cooperative and overlay, namely in

opportunistic manner.



Chapter 2

Related Work

2.1 Opportunistic Spectrum Access(OSA)

Motivated by the conflict between finite spectrum resources and increasing number of wireless
devices, open spectrum policy is employed which enables secondary users to share under-
utilized spectrums with primary users (legacy users) opportunistically [7],[8],[9],[10].

[7], [8] focus on the algorithm design in Opportunistic Spectrum Access (OSA) assuming
that each secondary users have full knowledge of the availability of all channels. In the
context of open spectrum, the primary goal is to maximize utilization and provide fairness
among different devices [7], [8] and the main problem lies in dealing with the fluctuation
in spectrum availability (spectrum heterogeneity) and avoiding interference with primary
users, which calls for coordination between users. Considering the case where the collec-
tion of spectrums forms a spectrum pool, algorithms can be designed to find an appropriate
distribution among secondary users while minimizing interference. In a slow varying sce-
nario where user location topology and available spectrum remains unchanged during the
allocation, by modeling with graph theory and describing three utility functions, the spec-
trum allocation problem is reduced to a graph-coloring problem and proved to be PN-hard.
As the centralized algorithm requires a central allocation server which is almost impossible
to implement, a distributed version of the algorithm is built to fulfill the approximation.
[7] While, in a mobile environment where numerous users keeps changing in position, this
topology-optimized allocation algorithm requires huge amount of computation because the
network has to perform global reassignment after any change in topology in order to maintain
spectrum utilization and fairness among users. Actually, prior information can be obtained
from previous spectrum assignment and used in distributed algorithms which further re-
duce the workload to adapt to topology change. A local bargain framework is introduced
by [8] where users make self-organization into bargain groups and these groups make spec-

trum assignment independently to reach an approximation of optimal solution. Simulation
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validates this approach in maximizing the fairness-based spectrum utilization but with less
complexity. [9], [10] focus on the physical layer and media access control layer (MAC) of
OSA technology. Typically, OSA includes spectrum sensor at physical layer, sensing policy
at MAC layer and access policy at MAC layer. [10] Considering the power-consuming nature
of full spectrum sensing, it is unrealistic for battery-powered wireless nodes to perform full
spectrum sensing. So we could only optimize our design based on the assumption that every
secondary user only has access to a subset of the full spectrum. Keeping the interference
perceived by primary users under a certain threshold, [9] proposes an analytical framework
for OSA based on the theory of partially observed Markov decision process (POMDP). The
solution to optimal POMPDA has exponential complexity, so a suboptimal greedy approach
to POMDP is then proposed as a tradeoff to reduce complexity to linear level. It is proved
that the design of spectrum sensor and access policy can be decoupled from that of sensing
policy without losing optimality. [10] Based on this, the joint OSA design can be formulated
as an unconstraint POMDP which leads to insight of the best tradeoff between false alarm

and miss detection.

2.2 Power allocation

In [13],Michael J. Neely developed a dynamic control strategy for minimizing energy expen-
diture in a time varying wireless network with adaptive transmission rates. The algorithm
operates without knowledge of traffic rates or channel statistics, and yields average power
that is arbitrarily close to the minimum possible value achieved by an algorithm optimized
with complete knowledge of future events. Proximity to this optimal solution is shown to
be inversely proportional to network delay. Neely then presented a similar algorithm that
solves the related problem of maximizing network throughput subject to peak and average
power constraints. The techniques used by Neely are novel and establish a foundation for
stochastic network optimization. And in [11], Neely and Modiano made the formulation of a
general power control problem for time-varying wireless networks, the characterization of the
network layer capacity region, and the development of capacity achieving routing and power

allocation algorithms that offer delay guarantees and consider the full effects of queueing.

2.3 Utility optimization

Modern data networks consist of a variety of heterogeneous components, and continue to
grow as new applications are developed and new technologies are integrated into the existing
communication infrastructure. While network resources are expanding, the demand for these

resources is also expanding, and it is often the case that data links are loaded with more



traffic than they were designed to handle. In order to provide high speed connectivity for
future personal computers, hardware devices, wireless units, and sensor systems, it is essential
to develop fair networking techniques that take full advantage of all resources and system
capabilities. Michael J. Neely, Eytan Modiano and Chih-Ping Li designed a set of decoupled
algorithms for resource allocation, routing, and flow control for general networks with both
wireless and wireline data links and time varying channels in [12]. And they have presented a
fundamental approach to stochastic network control for heterogeneous data networks. Simple
strategies were developed that perform arbitrarily close to the optimally fair throughput
point, with a corresponding tradeoff in end-to-end network delay. The strategies involve
resource allocation and routing decisions that are decoupled over the independent portions
of the network, and flow control algorithms that decoupled over dependent control valves at
every node. Such theory-driven networking strategies will impact the design and operation

of future data networks.

2.4 Application of Maximum Weighted Matching (MWM)

The resource allocation problem can be reduced to Maximum Weighted Matching (MWM)
if secondary users transmit on the channel without interference on other channels, which is
the case of orthogonal channels for secondary users[14]. A matching is to link two groups
of nodes and no two links share the same node. A weigh of a matching is the sum of all
the weight of the links belonging to the matching. MWM is to find the maximal weigh of a
matching, with an O(N?) complexity algorithm found in presence[15]. Recent works [16],[17]
have investigated Greedy Maximal Match Scheduling(GMS) to achieve near optimal results
in a much simpler implementation. GMS firstly try to find the largest weight in the available
links and remove all the links that have same nodes as in the first link. It then starts to find
the largest weight of link in the remaining links. Same procedure is continued until no link
is left. GMS algorithm has an O (LlogL) complexity with low overhead and the total weight
is at least 1/2 of the weight of the MWM [16].



Chapter 3

Models and Algorithms on Cognitive
Network

3.1 A Graph-theoretical Model to Characterize Op-

portunistic Spectrum Access in Cognitive Network

We present this theoretical model defined in [19],[21] to represent the general allocation
problem, and describe three utility functions that trade off spectrum utilization and fairness
are described. We then show that this optimal allocation problem can be reduced to a variant

of a graph-coloring problem.

3.1.1 Definitions in the model

e In a network waiting for spectrum assignment, there are N users or entities indexed

from 0 to N — 1 competing for M spectrum bands indexed 0 to M — 1.

o Channel availability: L = Iy p|lnm € 0,15, ,, is a N by M binarymatrix representing

the channel availability: [, ,,, = 1 if and only if channel m is available at user n.

o Channel reward: B = by my, . @ N by M matrix representing the channel reward:
bn.m represents the maximum bandwidth/throughput that can be acquired (assuming

no interference interference from neighbors) by user n using channel m.

o Interference constraint: Let C' = ¢y gm|Cnrm € 0, Lyenxars @ N by N by M matrix,
represents the interference constraints among secondary users. If ¢, 4, = 1, users n and
k would interfere with each other if they use channel m simultaneously. The constraint

depends on channel availability, i.e., ¢y xm < lpm X lpm and ¢, pm = 1 — 0y, Again,
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this constraint is channel specific: two users might be constrained on one channel but

not another.

o Conflict free channel assignment: A = apm|anm € 0,1, apm < Inmnyy 18 @ N by M
binary matrix that represents the assignment: a,,,, = 1 if channel m is assigned to user
n. A conflict free assignment needs to satisfy all the interference constraints defined
by C, that is,

o + Wk < 1 ifenpm =1,Vn,k < N,m < M. (3.1)

Let A(L,C)n m denote the set of conflict free spectrum assignments for a given set of

N users and M spectrum bands and constraints C.

3.1.2 Utility Functions for Optimization

e User reward: R = 3, = Z%:_Ol Unm * Onmyy, TEPresents the reward vector that each

user gets for a given channel assignment.

o Network utilization: The channel allocation is to maximize network utilization U (fR).

Given the model above, this spectrum assignment problem is equivalent to a optimization

problem. In general, the optimization function is as follows:

A" = argmax aea(r,c)yy U (R). (3.2)

Specific utility functions based on traffic patterns and fairness inside the network are pre-

sented as follows:

o Max-Sum-Reward: This maximizes the total spectrum utilization in the system re-

gardless of fairness. The optimization problem is expressed as:
Usum - ﬁn - Qpm - bn,m‘ (33)

o Mazx-Min-Reward: This maximizes the spectrum utilization at the bottleneck user, or

the user with the least allotted spectrum. The optimization problem is expressed as:

M—1
Uy = min = min E a by - 3.4
min 0N ﬁn One N / n,m n,m ( )
m:

Roughly, Max-Min-Reward driven allocation gives the most poorly treated user (i.e.
the user who receives the lowest reward) the largest possible share, while not wasting

any network resources. This is the simplest notion of fairness.
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e Maz-Proportional-Fair: In [19],[21] and the reference therein, the fairness for singlehop
flows is considered. The corresponding fairness-driven utility optimization problem is

expressed as:

=

)IOg(Z Anom - bn,m) (35)

=0

N-1
Usair = Y log(f,) =
n=0

Il
o

n

3.1.3 Color-sensitive Graph Coloring

To solving this complex optimization problem, [19], [21] reduce it to a variant of the graph
coloring problem by mapping spectrum channels into colors, and assigning them to users
(vertices in a graph).

We present a bidirectional graph G = (V, L, E) defined in [19], [21], where V is a set of
vertices denoting the users that share the spectrum, L is the available spectrum or the color
list at each vertex; defined in subsection 3.1.1, and E is a set of undirected edges between
vertices representing interference between any two vertices. For any two vertices u,v € V, a
m-colored edge exists between u and v if ¢, ,,, = 1. The edges depend on the interference
constraint C (see subsection 3.1.1 ).

The spectrum allocation problem is equivalent to coloring each vertex using a number of
colors from its color list to maximize system utility. The coloring scheme is constrained by
that if a m colored edge exists between any two vertices, they cannot simultaneously use

color m. This problem is called color-sensitive graph coloring (CSGC).

3.1.4 Spectrum Allocation Algorithm

The optimal coloring problem is known to be NP-hard[19], [21]. In this subsection, we discuss
a set of heuristic based approaches given in [19], [21] that produce good coloring solutions.
In this work, the heterogeneity in both the color list and also the color rewards (bandwidth,
throughput) are considered. The colors are assigned in a greedy fashion[19]. In each stage,
the algorithm labels all the vertices with a non-empty color list according to a labeling rule.
Each label is associated with a color. The algorithm picks the vertex with the highest label,
and assigns the color associated with the label, e.g. color m. The algorithm then deletes
the color from the vertexs color list, and also from the color lists of the m color-constrained
neighbors. It should be noted that the neighborhood of a vertex keeps on changing as other
vertices are processed. The labels of the colored vertex and his neighbor vertices are modified
according to the new graph. The algorithm enters the next stage until every vertexs color
list becomes empty. Intuitively, this algorithm chooses to color the most valuable vertices
first, i.e. the vertices that contribute to the system utility the most.

In the following, we examine a set of heuristics based labeling rules that are proposed in

12



[19], [21]. We claim that a rule is collaborative if it considers the impact of interference to

the neighbors when performing labeling and coloring.

e Collaborative-Mazx-Sum-Bandwidth (CMSB) rule
This rule aims to maximize the sum of bandwidth weighted color usage, corresponding
to Usym optimization defined in (3.3). When a vertex n is assigned with a color m,
his contribution to the sum bandwidth in a local neighborhood can be computed as
bn.m/ Dn,m since his neighbors can not use the color. Here D,, ,,, represents the number
of m color constrained neighbor of a vertex n in the current graph. In [19], [21], the

rule to label the vertex is:

l, = max b/ (Dpm + 1), (3.6)
meln
color,, = arg max bom/(Dpm + 1). (3.7)
meEiln

where [,, represents the color list available at vertex n at this assignment stage. This rule
considers the tradeoff between spectrum utilization (in terms of selecting the color with
the largest bandwidth) and interference to neighbors. This rule enables collaboration
by taking into account the impact to neighbors. If two vertices have the same label, then
the vertex with lower assigned bandwidth weighted colors will get a higher label.[19],
[21]

e Non-collaborative-Mazx-Sum-Bandwidth (NMSB) rule
This rule aims to maximize the sum of bandwidth weighted color usage without
considering the impact of interference to neighbors. The vertex with the maximum

bandwidth-weighted color will be colored, i.e. a vertex n is labeled with

label,, = max brms (3.8)
meln
color,, = arg max brm- (3.9)
meln

When colors have the same property, this corresponds to a random labeling. Comparing
to CMSB rule, this rule is relatively selfish or non-collaborative.[19], [21]

e Collaborative-Maz-Min-Bandwidth (CMMB) rule
This rule aims to assign equal number of colors to vertices in order to improve the min-
imum bandwidth weighted colors that a vertex can get, while considering interference
to neighbors. It is targeted to solve MMB optimization defined in (3.4). In each stage,

the vertices are labeled according to
N-1
labely = =Y tnm * b, (3.10)
m=0

13



color, = arg max bom/(Dpm + 1). (3.11)
meiln

If two vertices have the same label, then the vertex with larger max;,es,, bnm/(Dpm—+1)
value gets a higher label.[19], [21]

Non-collaborative-Maz-Min- Bandwidth (NMMB) rule

This rule is a non-collaborative version of CMMB rule where the impact of interference
is not considered in the vertex labeling, and coloring. In each stage, the vertices are still
labeled according to (3.10), but the associated color is determined as arg max,,ej,, bn, -

If two vertices have the same label, then the vertex with larger max,,¢;, by, is assigned
with a higher label.[19], [21]

Collaborative-Maz-Proportional-Fair (CMPF) rule

This rule aims to achieve a specific fairness among vertices, corresponding to MPF
optimization defined in (3.5). It is well known that proportional fair scheduling [19],
[21] assigns resource (time slot) to the user with the highest r,,/R,,, where r,, represents
the reward generated by using the resource and R, is the average reward that the user n
gets in the past. The concept of proportional fair scheduling is applied to this problem

by viewing color as time slot. In each stage, the vertices are labeled according to

maXmei, bn,m/<Dn,m + 1)

label, = , 3.12
Z%:_Ol an,m : bn,m ( )

color,, = arg max bom/(Dpm + 1). (3.13)
meln

where label,, represents the ratio of the interferenceweighted bandwidth using one color
and the accumulated bandwidth in the past. This rule is in general different from
the traditional proportional fair rule as it captures the difference in the impact of

interference generated by a color (resource) assignment.[19], [21]

Non-collaborative-Mazx-Proportional-Fair (NMPF) rule
This is a non-collaborative version of the CMF rule. Each vertex n is labeled according

to
maXmel, bn,m

label,, = —57 , (3.14)
m=0 an,m : bn,m
color,, = argmax by, . (3.15)

meiln

Random (RAND) rule Each vertex is assigned with a random label, and the chosen

vertex is colored with a randomly picked color from his color list. [19], [21]

The implementation of the above coloring algorithm can be divided into two categories.[19],

[21]
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o (entralized: If there is a central controller who makes decisions on color assignment,
the corresponding implementation is quite straightforward. The controller collects
spectrum and interference information from all the vertices, and executes the rule to

distribute colors among vertices and broadcast the assignment.

e Distributed: In this case, each vertex executes the rule to select the appropriate color(s).
The colors are assigned in a greedy fashion. In each stage, each vertex labels itself
according to one of the above labeling rules, and broadcasts the label to his neighbors.
A vertex with the maximum label within his neighborhood gets to grab the color
associated with his label and broadcasts the color assignment to his neighbors. After
collecting assignment information from surrounding neighbors, each vertex updates his
color list and recalculates the label. This process is repeated until the color list at each

vertex is exhausted or all the vertices are satisfied.

3.2 A Game Theory Model to Characterize Spectrum

Sharing in Cognitive Network

We present this theoretical model defined in [22] to solve the spectrum sharing problem.
Spectrum sharing is an inherently distributed problem, with no central authority to coor-
dinate and arbitrate channel allocation. It is important that spectrum sharing be efficient,
allowing as many users as possible to use the network. With this in mind, we have modeled
spectrum sharing as a game between providers, and analyzed the price of anarchy. We view
the channel assignment problem as a game, where the players are the service providers and
APs are acquired sequentially. And it is shown that if we assume that providers are able
to use easily implementable bargaining procedures, the price of anarchy is bounded by a

constant if users are distributed uniformly or every AP uses the same transmission power.

3.2.1 Definitions in the model

o Game Theory:Game theory is a branch of applied mathematics that is used in the
social sciences (most notably economics), biology, political science, computer science
and philosophy. Game theory attempts to mathematically capture behavior in strategic
situations, in which an individual’s success in making choices depends on the choices
of others. While initially developed to analyze competitions in which one individual
does better at another’s expense (zero sum games), it has been expanded to treat a

wide class of interactions, which are classified according to several criteria.

e Price Of Anarchy:the radio between the total coverage of the APs in the worst Nash
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Figure 3.1: Potential interference between two APs

equilibrium of the game and what the total coverage of the APs would be if the channel
assignment were done by a central authority. It shows how far a Nash equilibrium can

be from the socially optimal solution to the problem.

Nash Equilibrium: In game theory, the Nash equilibrium is a solution concept of a game
involving two or more players, in which no player has anything to gain by changing
only his or her own strategy unilaterally. If each player has chosen a strategy and no
player can benefit by changing his or her strategy while the other players keep theirs
unchanged, then the current set of strategy choices and the corresponding payoffs

constitute a Nash equilibrium.

Unit Disk Graph: In geometric graph theory, a unit disk graph is the intersection graph
of a family of unit circles in the Euclidean plane. That is, we form a vertex for each
circle, and connect two vertices by an edge whenever the corresponding circles cross

each other.

3.2.2 Interference graph induced by the game

The small circle, denoted R;(u), represents u’s transmission range. All messages sent by u

can be correctly received by users in R;(u). The larger circle, denoted Rg(u), represents u’s

sensing range. In practice, the radius of R (u) is about twice that of R;(u). The actual size

of Rs(u) and R;(u) depends on the transmission power used by uw. AP u’s within R,(u) if

they share the same channel. To avoid such interference, the distance d(u,v) between u and v
has to be greater than R;(u)+R:(v)+max{Rs(u),Rs(v)}. That is, if APs u and v are greater
than R;(u)+ R:(v)+max{Rs(u),Rs(v) }apart, they can transmit using the same channel, since

then no user in v’s transmission range will be able to sense a message from u or its users,

and vice versa.

We can represent the game using a labeled Graph G=(V,E), where the vertices in V are
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Figure 3.2: A collection of unit circles and the corresponding unit disk graph

the APs, and two vertices u and v are joined by an edge if they potentially interfere, i.e.,
if d(u, v) < Ry(u)+R:(v)+max{Rs(u),Rs(v)}. Each vertex also has a label, which represents
the utility of the AP associated with that vertex being assigned a channel. G is called the

interference graph induced by the game.

3.2.3 k-coloring of the graph

An association of some vertices to colors such that two adjacent edges are labeled with
different colors. Clearly this corresponds to a feasible assignment of channels to APs. All
APs that are assigned colors can safely communicate on the channel associated to the color
without interference. The APs that are assigned a channel in a Nash equilibrium of the game
correspond to a maximal subset of vertices that has been colored with k colors. A maximal
k-colored subset of the induced graph is defined to be a subset of nodes with specific coloring
such that no additional nodes can be colored. If there are any other vertices in the graph that
can be colored, then the corresponding AP should have been assigned a channel. Conversely,
given a maximal k-colored subset of the interference graph, there is a Nash equilibrium of
the game where these are precisely the APs that are assigned a channel. In particular, this
will be the case if the APs in the maximal set are set up before any other APs are set
up. Thus there is a 1-1 correspondence between maximal k-colored subsets of the graph
and Nash equilibria of the game. Moreover, a socially optimal assignment corresponds to
a maximal k-colored subset of maximum weight. Thus, the price of anarchy is simply the
ratio of the total weight of a maximal k-coloring of minimum weight to the k-coloring of

maximum weight.

3.2.4 Spectrum Sharing Games Model

We model the channel assignment problem as a game, where the players are the service
providers, APs are set up or acquired by service providers sequentially. When an AP is set

up or acquired, a channel must be chosen that does not interfere with the channels chosen
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for APs that were previously set up; if there is no such channel, the AP cannot be used.
The order that the APs are set up is determined exogenously and is arbitrary. We assume
that when a service provider sets up an AP, it knows about the APs that have already been
set up and might interfere with it, but we do not make any assumptions about what the
service providers know about other APs that have already been set up. For simplicity, we
also assume that when a service provider sets up and AP, it does not know what APs will
become available in the future. The only information it has is the Aps that currently exit.

The utilities of the service providers depend on how many users they can serve. We
assume that there is a commonly known distribution of users. The utility to a service
provider of setting up an AP u that is assigned a channel is the expected number of users
in Ry(u); if AP w is not assigned a channel, then its utility to the service provider is 0. The
utility of a provider at the end of a game is just the sum of the utilities of the APs that it
sets up.

In some special cases players converge to a Nash equilibrium after polynomial number
of steps. But in the general case, we show that there exists an exponentially long path of

improvements to a Nash equilibrium.

3.2.5 Two Kind of Bargains In The Spectrum Sharing Games

e The first is a generalization of the situation described initially with APs v;,v5, and wvs.
If vy is colored (i.e., has a channel assigned), v and v3 are not, v and vz could be
colored if v, were not colored, and the sum of the weights of v; and v3 is greater than
the weight of vy, then we assume that the providers that own APs v; and v3 can always
offer the owner of v, sufficient utility, so that v, is uncolored, while still themselves
coming out ahead. We do not go into the details of exactly what the offers are. All
that matters is that, in equilibrium, the exchange will be made. We call this a local

2-buyer-1-seller bargain.

e The second occurs if an AP is uncolored but its weight is greater than the sum of weights
of all its neighbors of a particular color. In this case, we assume that the owner of that
AP can offer the owners of the interfering APs sufficient utility so that the interfering
APs will be uncolored. Again, we do not go into the details of exactly what the offers
are. We call this local 1-buyer-multiple-seller bargain. Note that although many sellers
may be involved, this really is a collection of 2-way arrangement, since the buyer can

negotiate separately with each of the sellers.

3.2.6 some theorems and propositions of PoA

In [22], the author proved some theorems and propositions of price of anarchy(PoA).
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Suppose the price of anarchy if there is only one channel for a spectrum-sharing game
that allows a certain type of bargaining is p. Then, for all k, the price of anarchy for
the same game with k channels is at most p+ max (0,1 — p/k) and at least p.

The price of anarchy is unbounded in the basic spectrum-sharing game, no matter how

many channels or players there are, even if all vertices have equal weight.

If all APs transmit with the same power and users are uniformly distributed, then the
price of anarchy of the spectrum-sharing game is at most 5+maz(0,1-5/k) and at least
5.

If all APs transmit with the same power, users are uniformly distributed, and 2 buyer-1
seller bargains are allowed, then the price of anarchy of the spectrum-sharing game is
at most 3+max(0,1-3/k) and least 3.

If APs transmit with the same power but user may not be uniformly distributed, then
the price of anarchy is unbounded unless bargains involve at least min(p,T) sellers,

where p is the number of players and the interference graph is (T + 1)-claw free.

If APs transmit with the same power and 1-buyer-multiple-seller bargains are allowed,
then the price of anarchy of the spectrum-sharing game is at most 5+mazx(0,1-5/k) and
at least 5.

In the general case(where APs transmit with different powers and users are not uni-
formly distributed), then the price of anarchy of the spectrum sharing game is un-

bounded, even if multiple-buyer-multiple-seller bargains are allowed.

Suppose that distances have been normalized so that, for any pair of nodes u, v, we have
Ri(u)+Ri(v)+maz{ Rs(u),Rs(v)}<1. Thus, two vertices u, v such that d(u,v) > 1 do
not have an edge between them in the interference graph. Further suppose that bargains
involving arbitrary sets of vertices within distance v/2d are allowed. Then the price of

anarchy in the spectrum-sharing game is at most d2/(d — 1)°.

Even if users are distributed uniformly, in the spectrum-sharing game with power con-
trol, the price of anarchy is unbounded unless bargains involve at least min(p, ) sellers,

where p is the number of players and the interference graph is (T + 1)-claw free.

If users are distributed uniformly and 1-buyer-multiple seller bargains are allowed, then
the price of anarchy of the spectrum-sharing game with power control is at most 9 and

at least 7-€, for any € > 0.
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3.2.7 Convergence to Nash equilibria

In the weighted spectrum sharing game, players will converge to a local optimum after finitely
many local improvements, no matter what kind of bargains are allowed. Furthermore, if all
weights are integers bounded by a polynomial in the number of vertices, then players will
converge to a local optimum after a polynomial number of local improvements.

Suppose that local improvements are of two kinds: coloring a new vertex and changing
the coloring via a 1-buyer-multiple-seller bargain. In the weighted spectrum sharing game
on unit disk graphs, it may take exponentially many local improvements to converge to a

Nash equilibrium.

3.3 Network Model for opportunistic scheduling with

reliability guarantees in Cognitive Radio

This model presented here aims at maximizing the throughput utility of the secondary users
while considering the collision constraint with primary users and the interference with other
secondary users(channels may not be orthogonal to secondary users). In order to achieve
this, adaptive queuing and Lyapunov Optimization are employed to design an online control,

scheduling and resource allocation algorithm for cognitive radio.

3.3.1 Underlying Assumptions of this Model

The network we talk about here is a time-slotted model consisting of M primary users and
N secondary users as shown below. Primary users are assumed to be static, while secondary
users can move around and the channels ’visible’ to them also keep changing. But we
assume that the topological pattern of the network remains the same during one time slot.
Exactly one unique channel is assigned to every licensed user. And all these channels are
orthogonal to each other. In order to make things simple and clear, exactly one packet
can be transmitted over any channel during a time slot. We also make the assumption
that channel state information and channel accessibility of secondary users are Markovian
process. Finally, the network here is a distributed one which means that no user knows a

whole picture of the network.

3.3.2 Aim of this model

Throughput under the constraint of collision and interference is evidently the ultimate goal

of cognitive radio designing. Let R,, be the number of new packets admitted into this queue
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Figure 3.3: Network structure of the cognitive network,cited in[14]

in slot t. Let r, denote the time average rate of admitted data for secondary user n that

means: .

Tn = tliglo - > Ry(7) (3.16)

=0

Let r=(ry,...,rN) denote the vector of these time average rates of these N secondary users.
Under a specific but common situation, the weight of these N secondary users are the same,
so the throughput should be defined as % > r,. But for a more general purpose, let {0,...,0,,}
be a collection of positive weights for N secondary users, then the aim of the model is to
design a flow control and scheduling policy that yields a r that maximize Zf:f:l 0,,r, while

subject to some constraints.

3.3.3 Important Definition and Variables

e Channel accessibility matrix
H(t):{hnm}NxM
Where:

B (t) = { 1 if sec. user n can access channel m in slot t (3.17)

0 else

As we have mentioned above, the H(t) process is Markovian and has a well defined

steady state distribution.

e Channel occupancy
Let S(t)=(S1(t),52(t),...,5n(t)) represent the current primary user occupancy state of
the M channels. S;(t)=0 if channel i is occupied by primary user i in time slot t and
S;(t)=1if i is idle in time slot t. Because we only have two states(occupied or idle)

over a channel and the number of primary user is finite, S(t) evolves according to a

21



finite state ergodic Markov chain on the space {0,1}*. Due to some limitation in
carrier sensing, the exact channel state may nit be available to the secondary users.
The channel state available to secondary user is described by a probability vector P(t)

discussed below.

Channel state probability vector.

P(t)=(Pyi(t),Ps,...,Py) where P; is the probability that channel i is idle in time slot t.
This vector can be obtained through a knowledge of the traffic statistics of primary
users. The statistic nature of P(t) leads to the inherent sensing measurement errors
that no primary transmission detection algorithm could solve. As collision is inevitable,

our goal is to constrain it under a pre-given constant p,,.

Channel set of interference

These M channels mentioned above may not ne orthogonal to secondary uses, so vari-
ables are needed to characterize the interference between secondary users. We define
Z.m as the set of channels that secondary user n interferes with when it uses channel
m. A indicator variable is further defined as:

1 if ke o
Inm:{ ke (3.18)

0 else

Clearly, if there is no interference between secondary users, then 7, = {m}Vn.

Data receiving process

Each secondary user n receives data according to an i.i.d arrival process A, (t) which is
upper bounded by a constant value A, that has rate A\, packet/slot. We will show
later that this A,,.. guarantees the worst performance of this model which is very

important in practical scenario.

Backlog queue in network layer
U, is defined as the backlog queue of secondary user n at the beginning of time slot
t.

Virtual collision queue
We define X,,(t) to track the amount by which the number of collisions suffered by a

primary user m exceeds its time average collision constraint rate p,,.

New packets admitted

R,, is the number of new packets admitted into this queue in slot t.

Number of attempted transmission
Let fnm(t) be the number of attempted packet transmission when a control action

allocates channel m to n.
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e (ollision variable

Cm(t) =

{ 1 if there was a collison with the primary user in channel m in time slot t
0 else

(3.19)
Let ¢ (t) = limy—oo 1 S Cn(T)

e Control variable
Control variable V offered by the algorithm that we will discuss later enables an explicit
trade-off between the average throughput utility and delay.

3.3.4 Modeling the Network with Queuing Dynamics

There are two kinds of queues involved in this model. One is the backlog queue in network
layer of secondary users as we described above and the other is the virtual collision queue

which is maintained in software.

e The queuing dynamics of the secondary user n is described by:

Un(t + 1) = mazx|U, Z,unm (t)Sm, 0] + R, () (3.20)

Which means that the backlog at the beglnnmg of time slot t + 1 equals to the re-
maining backlog of time slot t plus the number of new packets admitted in the queue
during time slot t. And the constraints are:

— Constraint on transmission rate: i, (t) € 0,1Vm,n

— Idle channel: i, (t) < hpm(t) Vm,n

— Allocation constraint: 0 < My, (1) < 1 Vn

— Successful transmission: fi,,(t) = 1 <= Z] SV i Lijmui;(t) = 0Vm,n
— Data rate constraint: 0 < R, (t) < A,(t)

When the channels are orthogonal for secondary users, these constraints simplifies to
0< 22[:1 [ (1) < 1.

e The queuing dynamics for virtual collision queue X,,(t) is:
X (t+1) = mazx[X,,(t) — p— m,0] + Cp(t) (3.21)

The whole system is rate stable only when ¢, < p,,, but the value of queuing dynamics
lies in that we can turn the time average constraint into queuing problems if our flow

control and resource allocation policies to stabilize all collision queue.
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3.3.5 An online algorithm to achieve maximized throughput

This algorithm is a cross-layer strategy which contains two aspects.

e Flow control:
We aim at minimizing R, (¢)[U,(t) — V0,] under the constraint of 0 < R,,(t) < A,(t).
We can easily affect the performance/delay tradeoff by changing the parameter V.

e Resource allocation:
We choose an allocation that maximize _, . finm (0)[Un(t) P(t) — 224:1 Xi(t)(1 —
Py.(t))IF,,] This is the difference between the current queue backlog U, (t) weighted by
the probability that primary user m is idle and the weighted sum of all collision queue

backlog for the channels that user n interferes with if it uses channel m.

The two maximization requires solving the Maximum Weight Match(MWM) problem on
an NxM bipartite graph of N secondary users and M channels which is presented in [14]
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3.4 Cognitive Network Control Algorithm(CNC)

Cognitive Network Control Algorithm(CNC) is the methods created on the basis of the 3.3.

3.4.1 Implementation of Cognitive Network Control Algorithm(CNC)

We focus on the the orthogonal channel case in which secondary users transmission on one
channel would not interfere with other channels. In this case, the problem is reduced to a
Maximal Weight Match(MWM) on a N x M bipartite graph between N secondary users
and M primary users. An edge would exist between nodes n and m if secondary users n can
access the channel m in slot ¢. The topology can be seen in Figure 3.4,and the weight is
given by U, (t) Py, (t) — X;n(t) (1 — P, (t)). The algorithm is to find a match that will maximize

Base Station 1

Base Station 2

'. Secondary User

I:I Primary User

Figure 3.4: Resource allocation can be reduced to maximum weighted matching at the case of orthogonal

channels

the sum weights of the match. While the MWM problem can be solved in polynomial time,
the complexity of implementation is great. Here we provide another simple idea of Greedy
Maximal Match(GMM), which greedily chooses the edge of largest weight at each step. The
GMM has the advantage of fast implementation and the obtained result can be as least half
as better as the optimal result. The GMM has the property below:

Dt M O[O () Pr() = X (8) (1= Pon(1))] = % D 1 O[Un () Pra(t) = Xon(8) (1 = Pn(8))]

Table 3.1 is the implementation of Greedy Maximal Match.
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1: For each timeslot do
2: Flow control:
For each secondary user i do
if U(i)>V then packet arrives at input rate A
else no packet is permitted.
End
3: Update status S,,(t),H(t) and calculate P,,.
4: Resource Allocation:
For each channel m and secondary user n in BS 7 do
if hpn(t) > 0 then
The weight of the edge (m,n) is:
Wi (1) = Un(8) P (1) — Xon (1) (1 = Pa(t))
end if
End
While at lease one remaining edge w,,,(t) > 0 Do
Find the largest weighted edge (i, j)
Channel i is allocated to secondary user j for transmission.
Delete all the edges connected to either channel i or secondary user j
End
5: Update the backlog queue U, (t) and collision queue X, (¢).
6: End For

Table 3.1: Implementation of the Greedy Maximal Match

3.4.2 Simulations on CNC

We simulate our algorithm on two kinds of conditions: single primary user-per cell and
multi primary user-single cell. The network is builded on a cell-partitioned architecture.
The primary users are confined in their cells with their own licensed channels. A secondary
user moves in the network randomly and access to the licensed channel opportunisticly.
The channel states Sy, () is governed by an ON/OFF Markov chain with the transition
probabilities between ON and OFF given by 0.2. The maximum collision rate p = 0.1.

New packets arrives at the secondary users with the probability A each slot.

1. Single Primary User-Per Cell

We establish an example cognitive network consisting of 9 primary users and 8 sec-

ondary users as shown in Figure 3.5. The secondary users move from one cell to another
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Priniary User Pritmary User

. Secondary User . Sevoniry User
Figure 3.5: Example single primary user-multi Figure 3.6: Example multi primary user-single
cell network used in simulation cell network used in simulation

according to a Markovian random walk. In particular, at the end of every slot, a sec-
ondary user decides to stay in its current cell with probability 1 — (3, else move to an
adjacent cell with a probability 3/4(8 = 0.25). If there is no feasible adjacent cell, the

secondary user will stay in its current cell.

Since there is only one primary user in each cell, the maximum weight match is same
as a greedy maximal match. Figure 3.7 plot the average total occupancy(summing all
packets in the backlog queue of the secondary users) versus the input rateA. Each data
represents a simulation over 500,000 timeslots, and different curves correspond to values
of Ve {1,2,5,10, 100, 00 }. The network capacity for this network appears at A = 0.285
packets/slot. Figure 3.8 illustrates the achieved throughput versus input rate. For
small values of A, the throughput is identical to the input rate, and the throughput
gradually saturates depends on V. The throughput reaches the capacity level close to
A = 0.285 when V is large. Finally, the average collision rate is approximately to our

target p = 0.1.
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Figure 3.7: Total congestion vs. input rate for Single Primary User-Per Cell

0.35
—+—V=1
03r —%—\=2 b
—o—Vs5 J
——V=10
0.25F —a— V=100 7

0.2 b

0.15r b

Throughput(packets/slot)

0.1F b

1 1 1 1 1 1 1 1 1

0 005 01 015 02 025 03 03 04 045 05
Input Rate(packets/slot)

Figure 3.8: Throughput vs. input rate for Single Primary User-Per Cell
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2.

Multi Primary Users-Single Cell

Previous example is a rather simplified case as there is only one primary user in one
cell, hence the idea in the algorithm to cooperate with different channel can not be
illustrated. We present another example consisting 9 primary users in one single cell
with different number of secondary users. The set of the number of the secondary
users is {4,8,10,15,20,30}. The channel state process is same as in the previous
example. The state that whether secondary users stay or leave the cell is governed by

an ON/OFF Markov chain with symmetric transition probabilities given by 0.05.

The Greedy Maximal Match used in this example can not achieve the optimal allo-
cation, thus the network capacity remains to be improved. In the implementation of
GMM, the computing overhead is much larger than previous example. Here we use

the same parameter except that the total timesolts is reduced to 50,000.

As can be seen in Figure 3.9, the achieved throughput remains almost the same when
the number of secondary users is smaller than that of primary users. However, when
secondary users increase in size, the throughput decreases rapidly since less channels

are available to them. The flow control parameter we use here is V' = 100.

0.4

0.35

o
w

o
N
a

Achieved througput(packets/slot)
<)
e =}
(5] N

o
i

0.05

1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input rate(packet/slot)

Figure 3.9: Throughput vs. input rate for Multi Primary Users-Single Cell with different number of secondary

users
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3.4.3 Discussion of the CNC model

The CNC model converts the problem of allocation channel between primary users and
secondary users to the problem of maximal weight match. The weight of the match is used
to guarantee the collision in the channels, and greedy maximal match is used to shorten
computing overhead. This model can only be applied to the centralized-control network
architecture. Moreover, the fairness of the secondary users to access the channel is not
taken into consideration. Finally, since base station should be utilized to centralize resource
allocation in CNC, another different algorithm is needed for ad-hoc network at which channel

allocation can be done distributedly.
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