
Fundamental limits of channel state information 

RSSI and LDPL(Log-distance path loss) model 

      RSSI->distance & triangulation location 

  multipath effect -> rough!!!!! 

Fingerprint localization  

      location is related to the characteristic of rssi  

      take the multipath into account  

CSI(Channel State Information) 

      amplitude and phase to get submeter-level accuracy 

In reality, the measurement of RSSI and phase are both affected by the noise as well as 

the multipath effect.  

This causes the measured result has deviation from the theoretical value. 

The deviation affects the localization precision. 

Can we evaluate the measurement error? 

Can we give an error bound of the measurement result?  

then the Fisher information takes the form of an N × N matrix, the Fisher Information 

Matrix (FIM), with typical element:   

 

Where f(X; θ) is the probability density function for X under the parameters θ 



The FIM for a N-variate multivariate normal distribution, X ~ N (μ(θ),Σ(θ)), has a special 

form.  

Let the K-dimensional vector of parameters be θ = [θ1 , . . . , θk ]T , and the vector of 

random normal variables be X =[ X1 , . . . , XN]T, with mean values μ(θ) = [μ1 (θ),...,μN (θ)]T, 

and let Σ(θ) be the covariance matrix.  

 

The received signal can be written as  
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Here is the parameter vector: 

 

As mentioned before, the fisher equality need the pdf(probability distribution function) of 

received signal. Therefore, we sample the received signal with the sampling period T to 

transform the continuous signal into discrete variables.  
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Then we can obtain a series of Gaussian random variables and the covariance between 

each two variables is equal to zero. It means the covariance matrix of these random 

variables is just in proportion to the identity matrix. This can greatly simplify the further 

calculation. 

Covariance matrix: 

 

 

 

where E is the identity matrix. 

Now, we combine the random variables into a joint probability and we can get the actual 

probability distribution function and all estimations of the parameters in the parameter 

vector are based on the function 

Then, we can calculate the fisher information matrix. 

The elements of the information matrix: 

 

 

 

Taking into the multipath effect and the noise existing in the surrounding area, the fisher 

matrix seems somewhat complex due to its high dimensions. To circumvent direction 

matrix inversion and gain insights into the localization problem, we first introduce the 
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notions of EFI——Equivalent Fisher Information Matrix. We divide the parameter vector 

into two parts, only the first part includes the parameters of our interests. Due to the 

symmetry, the fisher information matrix can also be divided into the four parts as shown. 

Given 

 

The FIM 

 

Where 

 

 

Then, the equivalent Fisher information matrix for 
1
  is given by this. Because EFIM 

retains all the necessary information 

to derive the information inequality for the parameter vector 
1
 . 

 

since this equation is correct. So we can reduce the dimension of the original FIM. 

To display our results more clearly, we applied the above steps to calculation the phase 

error bound of a simple model. Regardless of the multipath effect, we only consider the 

noise. 

Then, we can calculate the fisher information matrix and here is the result. We applied it 

to determine the phase error bound, the final expression are shown like this. 

The FIM: 
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The time delay error bound： 

 

 

SNR ↑ error bound ↓ 

Supposing                             

 

Higher Frequency signal suffers less from the effect of noise. 

Future work 

1. The relationship between T/N and bound 

2. AP deployment 

3. Experiments to confirm results 
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