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The received waveform at the agent from the anchor k can be written as

rk(t) =

Lk∑
l=1

α
(l)
k s(t− τ

(l)
k ) + zk(t) (1)

[1] proves that the Squared Position Error Bound of each position can be defined form the
Fisher Information Matrix as

P (p) =
c2

8π2β2
2
∑

k∈NL
(1− χk)SNR

(1)
k∑

k∈NL

∑
m∈NL

(1− χk)(1− χm)SNR
(1)
k SNR

(1)
m sin2 (φk − φm)

(2)

where p is the position of the agent, k represent the kth anchor, SNR
(1)
k is the SNR of

the first path and χk is determined only by the waveform s(t) and the NLOS biases of the
multi path component.

Assuming that χk and SNR
(1)
k are all the same for all the anchors. χk is the same under

the circumstance that τ
(i)
k − τ

(j)
k and the number lines Lk are the same for all the anchors,

which in other words the information is irrelative with the distance. To simplify the proof,

we use χ and SNR to denote χk and SNR
(1)
k , and the size of NL is denoted as N Thus

we can get

P (p) =
c2

8π2β2
2N(1− χ)SNR

(1− χ)2SNR2
∑

k∈NL

∑
m∈NL

sin2 (φk − φm)
(3)

Now to calculate the position error bound, we only need to focus on∑
k∈NL

∑
m∈NL

sin2 (φk − φm) and we use F to denote it.

Assume that all the anchors are laid out clockwise, which in another word APi is adjacent
to APi−1 and APi+1. Thus the layout has a property that
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φk − φm = φk − φk−1 + φk−1 − φk−2 · · ·+ φm+1 − φm (4)

and to address the situation that when k < m, we can define that φk − φm = φk − φk−1 +
· · ·+ φ2 − φ1 + φN − φ1 + φN − φN−1 + · · ·+ φm+1 − φm

Then use ui to denote φi+1−φi and specifically un = φN−φ1+2π mod 2π, which in other
words represents the intersection angle between the adjacent APs. Thus the expression of
object function can be simplified to:

F =
∑
k∈NL

∑
m∈NL

sin2 (φk − φm) =
∑
i∈NL

sin2 (ui) +
∑
i∈NL

sin2 (ui + ui+1)+∑
i∈NL

sin2 (ui + ui+1 + ui+1) + · · ·+
∑
i∈NL

sin2 (ui + ui+1 + · · ·+ ui+N−1)
(5)

We need to emphasize one point that for the cases that when i + k > N , we define that
ui+k = ui+k−N , for example uN+2 = u2. To find minimum of the error bound P (p), we
need to maximize the object function F under a set of angles {u1, u2, . . . , uN}.

For N = 4, which there are four APs and {u1, u2, u3, u4}. Due to the geometric constraints,
the goal is to calculate the maximum of F under the constraints that u1+u2+u3+u4 = 2π.
Applying the Lagrange Multiplier Approach, we can transfer the problem to solve the
extreme point of the Lagrange function. The methods will be specified below:

L(u1, u2, u3, u4) = F (u1, u2, u3, u4) + λ(u1 + u2 + u3 + u4 − 2π)

=
4∑
i=1

sin2 (ui) +
4∑
i=1

sin2 (ui + ui+1) +
4∑
i=1

sin2 (ui + ui+1 + ui+1)

+ λ(u1 + u2 + u3 + u4 − 2π)

(6)

To calculate the maximum and the minimum of F, we need to take the derivative of each
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parameter ui and the result is

∂L
∂u1

= sin(2u1) + sin(2(u1 + u2)) + sin(2(u4 + u1)) + sin(2(u1 + u2 + u3))

+ sin(2(u3 + u4 + u1)) + sin(2(u4 + u1 + u2)) + λ = 0
∂L
∂u2

= sin(2u2) + sin(2(u1 + u2)) + sin(2(u2 + u3)) + sin(2(u1 + u2 + u3))

+ sin(2(u2 + u3 + u4)) + sin(2(u4 + u1 + u2)) + λ = 0
∂L
∂u3

= sin(2u3) + sin(2(u2 + u3)) + sin(2(u3 + u4)) + sin(2(u1 + u2 + u3))

+ sin(2(u3 + u4 + u1)) + sin(2(u2 + u3 + u4)) + λ = 0
∂L
∂u4

= sin(2u4) + sin(2(u3 + u4)) + sin(2(u4 + u1)) + sin(2(u2 + u3 + u4))

+ sin(2(u3 + u4 + u1)) + sin(2(u4 + u1 + u2)) + λ = 0

u1 + u2 + u3 + u4 − 2π = 0

(7)

subscribe the last equation into the first four equations, we can get


sin(2u1)− sin(2u2)− sin(2u3)− sin(2u4) + sin(2(u1 + u2)) + sin(2(u4 + u1)) = −λ(8a)

sin(2u2)− sin(2u1)− sin(2u3)− sin(2u4) + sin(2(u1 + u2)) + sin(2(u2 + u3)) = −λ(8b)

sin(2u3)− sin(2u1)− sin(2u2)− sin(2u4) + sin(2(u2 + u3)) + sin(2(u3 + u4)) = −λ(8c)

sin(2u4)− sin(2u1)− sin(2u2)− sin(2u3) + sin(2(u3 + u4)) + sin(2(u4 + u1)) = −λ(8d)

The extreme point must satisfy the equation above. Equation(8a) minus equation(8c)
is

2 sin(2u1)− 2 sin(2u3) + 2 sin(2(u1 + u2))− 2 sin(2(u2 + u3)) = 0 (9)

Similarly, equation(8b) minus equation(8d) is

2 sin(2u2)− 2 sin(2u4) + 2 sin(2(u1 + u2))− 2 sin(2(u1 + u4)) = 0 (10)

Simplify the two equations above,{
cos(u4) cos(u2) sin(u1 − u3) = 0

cos(u1) cos(u3) sin(u2 − u4) = 0
(11)

the results about the extreme point are analyzed under three different conditions.

1. Both the two corresponding sets of opposite angles equals each other. Then we have
u1 = u3, u2 = u4.

2. only one set of opposite angles equals each other. For convenience, let u1 = u3 while
u2 6= u3. To satisfy the equation(11),
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(a) if u4 = u2 + π, given that 2π = u1 + u2 + u3 + u4, we have u1 + u2 = π
2 .

(b) if u4 6= u2 + π, then we have u1 = u3 = π
2 .

3. neither of the two sets of opposite angles equals each other, then we have u1 = u2 = π
2 .

However, as for the third condition, the results cannot both satisfy the equation(8a), (8b),
(8c),(8d).

All the possible extreme points has been discussed above. Therefore, there are only three
possible types of the extreme points.

The extreme point is for ui which is defined as φi+1 − φi. The situation we consider is
that there are four APs in the field. The extreme points are suitable for all the situations
for the quadrangle, but not all the quadrangle can achieve the extreme point and from the
discussion below only the rectangle and the quadrangle which four vertex are in the same
circle.

The first type is the intersections of diagonal lines of the quadrangle corresponding to
the condition(1), the second type lies in the circumscribed circle of a rectangle because
u1 + u2 = π

2 and the last type is the intersections of two circles, whose diameters are the
two long opposite sides.

Especially, when the quadrangle is a rectangle, the first type of the extreme points lie in
the center of the rectangle, as shown in the figure 1 .

However, not all the center points in the rectangle possess the property. Under some
conditions, they appear to be saddle points rather than the extreme points.

As for the second type, the extreme points lie in the circumscribed circle of the rectangle,
as shown in the figure 2.
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Figure 1: extreme point in the rectangle
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Figure 2: extreme point in the circumscribed circle
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Finally, the last type of extreme points in the rectangle can be shown in the figure 2

Figure 3: extreme point in the center
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