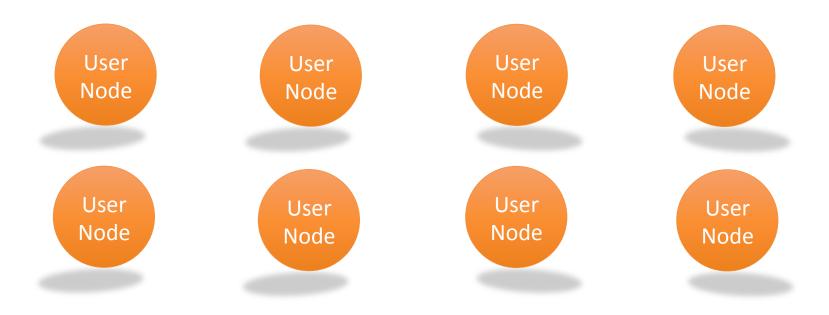


A Dynamic Hybrid MAC Protocol of TMDA and CSMA/CA

Xiaoyi Ge May 20, 2014


A Dynamic Hybrid MAC Protocol of TMDA and CSMA/CA

- ✓ Introduction.
- System Model.
- Mathematic Analysis.
- Simulation.
- Conclusion & Future Work.

Introduction.

• Background of MAC.

- MAC (Medium Access Control).
- What does MAC layer do? Scheduling.

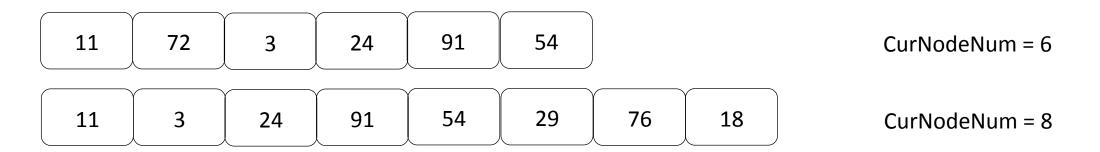
Introduction.

• Motivation.

- CSMA/CA model: the fewer nodes \rightarrow the higher channel utilization.
- TDMA model: the more nodes \rightarrow the higher channel utilization.
- SO!!!
- Why not a hybrid model?
- Relatively high channel utilization ALWAYS.
- Not relative with node number.



A Dynamic Hybrid MAC Protocol of TMDA and CSMA/CA


- \checkmark Introduction.
- ✓ System Model.
- Mathematic Analysis.
- Simulation.
- Conclusion & Future Work.

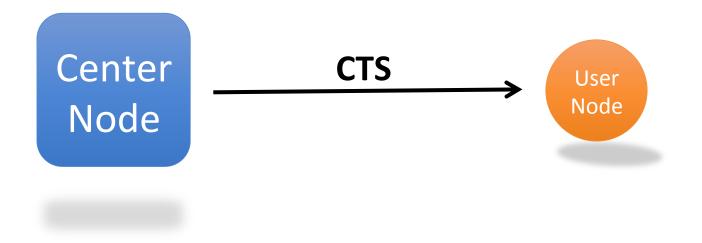
• Step 1. Information Collection.

- Step 1(a). Center Node: **broadcast** the signal to all nodes.
- Step 1(b). Nodes: if new ones transmit, send a **RTS**.
- Step 1(c). Center Node: when RTS received, it send back an ACK.

- Step 2. Scheduling.
- Scheduling consists of two parts of decisions ---- Order and Period.
- Step 2(a). Transmission Order.
- In the Center Node, there is a **Transmission Queue**, which contains the information of transmitting user nodes.

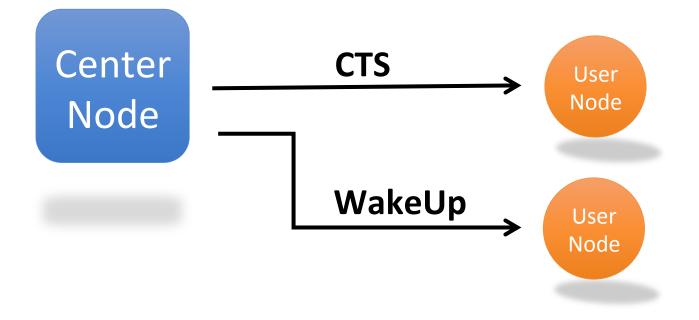
• Step 2. Scheduling.

- Scheduling consists of two parts of decisions ---- Order and Period.
- Step 2(b). Changes of Transmission Period.
- The length of transmission period \leftrightarrow The current number of nodes.
- The algorithm is shown as following:
 - While(CurNodeNum>time_period/N₁) time_period*=2;
 - While(CurNodeNum<time_period/N₂) time_period/=2;
- time_period/ $N_1 \rightarrow$ lower bound of CurNodeNum.
- time_period/ $N_2 \rightarrow$ upper bound of CurNodeNum.

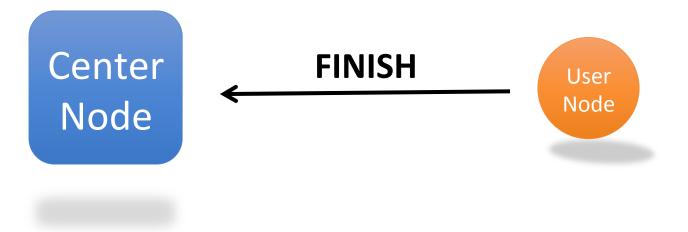

• Step 3. Transmission.

- Step 3(a). Divide the transmission period into N parts. (N:NodeNum)
 - Set slot_max = M/N. (M: length of transmission period)

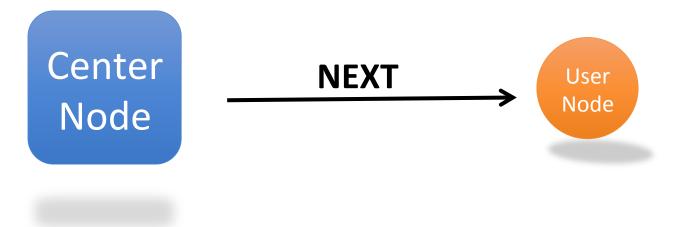
Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7	Slot 8	Slot 9	Slot 10
--------	--------	--------	--------	--------	--------	--------	--------	--------	---------


• Step 3. Transmission.

• Step 3(b). The ith node starts to transmit with a CTS signal.


• Step 3. Transmission.

• Step 3(c). Wake up the i+1th node just before the ith node transmits.


• Step 3. Transmission.

- Step 3(d). Handle those nodes who finish transmitting ahead.
 - When a node finishes transmitting ahead, it will send back a FINISH signal back to center node in order to let next node to transmit immediately.

• Step 3. Transmission.

- Step 3(d). Handle those nodes who finish transmitting ahead.
 - After Center Node knows this User Node has finished the transmission, it will send a NEXT signal to this User Node to put it in the sleep mode.

• Step 3. Transmission.

- Then we can get two different cases:
- Case a: A transmitting node doesn't finish transmission in a time slot.

стѕ	WakeUp	DATA

• Case b: A transmitting node finishes transmission in a time slot.

CTS	WakeUp	DATA	FINISH	NEXT
-----	--------	------	--------	------

• Step 3. Transmission.

- Then we can get two different cases:
- Case a: A transmitting node doesn't finish transmission in a time slot.

$$Efficiency_1 = \frac{T_{DATA}}{T_{CTS} + T_{WakeUp} + T_{DATA}}$$

• Step 3. Transmission.

- Then we can get two different cases:
- Case b: A transmitting node finishes TR in a time slot.

CTSWakeUpDATAFINISHNEXTEfficiency_2 =
$$\frac{T_{DATA}}{T_{CTS} + T_{WakeUp} + T_{DATA} + T_{FINISH} + T_{NEXT}}$$

A Dynamic Hybrid MAC Protocol of TMDA and CSMA/CA

- ✓ Introduction.
- ✓ System Model.
- ✓ Mathematic Analysis.
- Simulation.
- Conclusion & Future Work.

- Part A. Efficiency.
- As mentioned previously:
- (a) When the transmitting node normally stops transmitting, we get the Efficiency₁ (Eff₁) as following:

$$Efficiency_1 = \frac{T_{DATA}}{T_{CTS} + T_{WakeUp} + T_{DATA}}$$

• (a) When the transmitting node finishes transmission ahead of time, we get the Efficiency₂ (Eff₂) as following:

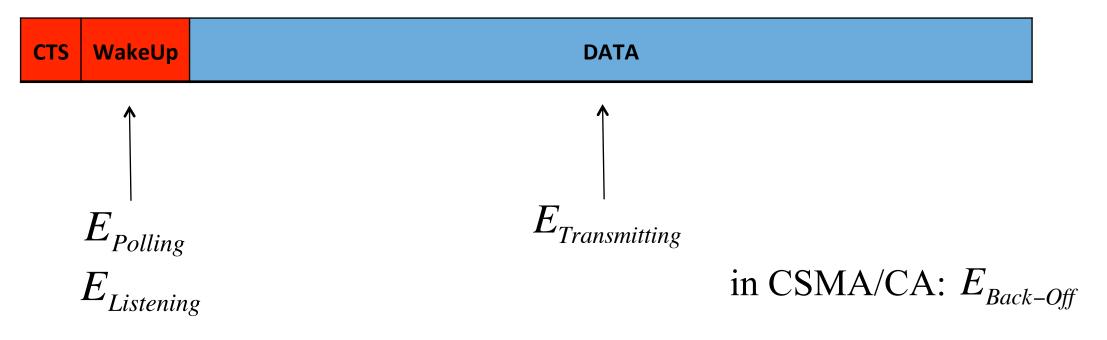
$$Efficiency_{2} = \frac{T_{DATA}}{T_{CTS} + T_{WakeUp} + T_{DATA} + T_{FINISH} + T_{NEXT}}$$

18

• Part A. Efficiency.

- And then we assume in one time period T_i :
- The number of n_i nodes are transmitting data.
- The possibility $P(n_i) \rightarrow$ nodes normally stopping their transmission.
- The possibility $1-P(n_i) \rightarrow$ nodes finishing transmission ahead of time.
- Thusly, we can get the total efficiency as following:

$$Efficiency = \frac{\sum_{i=1}^{N} \left[n_i \cdot P(n_i) \cdot Eff_1 + n_i \cdot (1 - P(n_i)) \cdot Eff_2 \right]}{\sum_{i=1}^{N} n_i}$$


• Part A. Efficiency.

$$Efficiency = \frac{\sum_{i=1}^{N} \left[n_i \cdot P(n_i) \cdot Eff_1 + n_i \cdot (1 - P(n_i)) \cdot Eff_2 \right]}{\sum_{i=1}^{N} n_i}$$

- The possibility $P(n_i) \leftrightarrow$ The node number n_i .
- $n_i \uparrow$ then $P(n_i) \uparrow$.
- $n_i \downarrow$ then 1-P(n_i) \uparrow .

• Part B. Energy Consumption.

• In the Wireless Sensor Network, energy saving is an important issue.

• Part B. Energy Consumption.

• In my dynamic hybrid model of TDMA and CSMA:

$$\eta_{hybrid} = \frac{E_{Transmitting}}{E_{Polling} + N_{Listening} \cdot E_{Listening} + E_{Transmitting}}$$

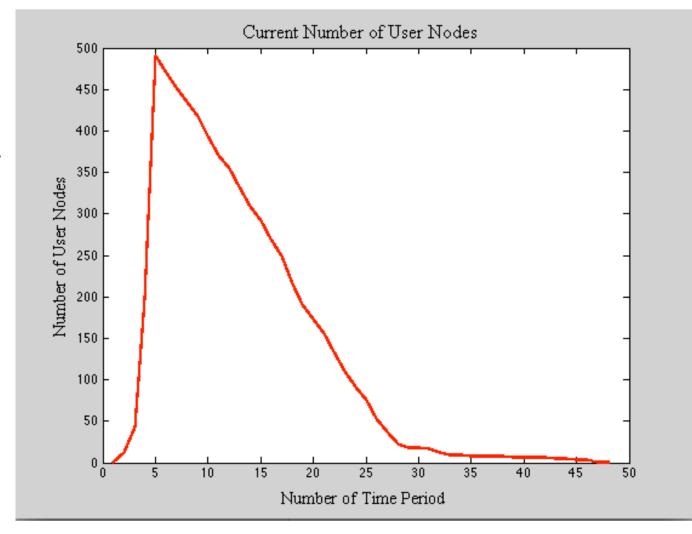
- HOWEVER!
- $N_{Listening} = 1$ can make sure the fact as following:
- $N_{Listening} \cdot E_{Listening}$ is quite a small amount of energy.

• Part B. Energy Consumption.

• Compared with TMDA and CSMA model:

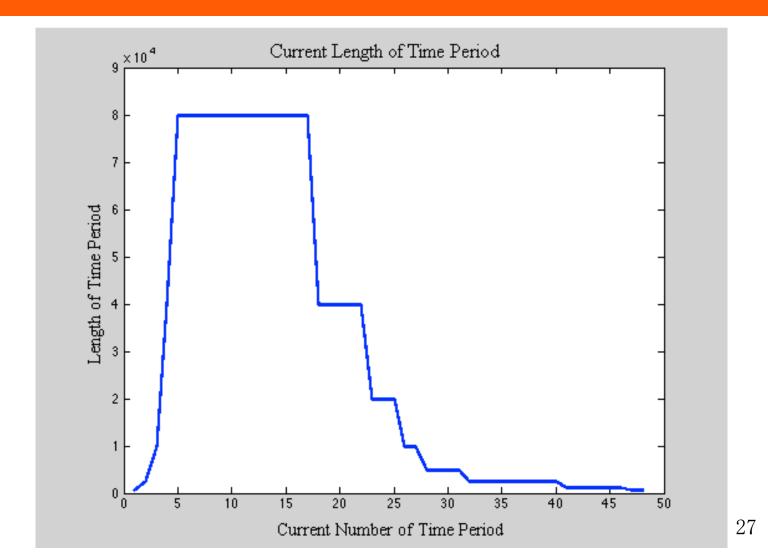
• TMDA model:
$$\eta_{TDMA} \approx \frac{E_{Transmitting}}{E_{Transmitting}} = 1$$

• CSMA model: $\eta_{CSMA} = \frac{E_{Transmitting}}{E_{Polling} + E_{Listening} + E_{Transmitting} + E_{Back-Off}}$
• Therefore: $\eta_{TDMA} > \eta_{hybrid} >> \eta_{CSMA}$

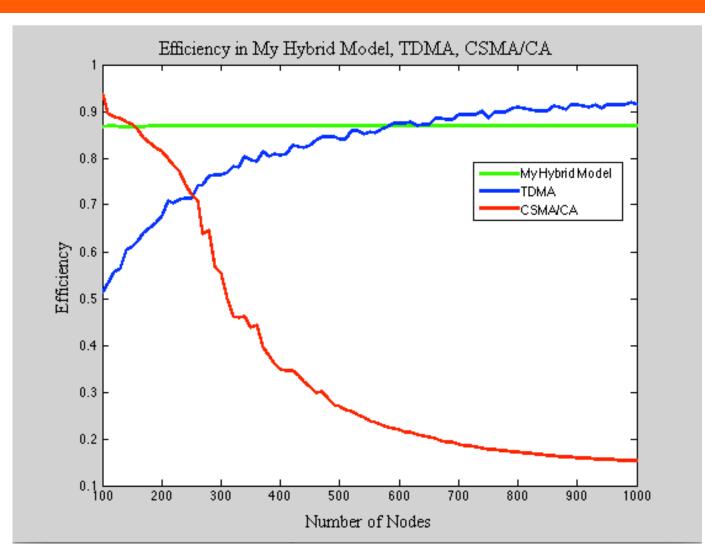

A Dynamic Hybrid MAC Protocol of TMDA and CSMA/CA

- ✓ Introduction.
- ✓ System Model.
- ✓ Mathematic Analysis.
- \checkmark Simulation.
- Conclusion & Future Work.

• A. Process.


- Arrival Time of Users: node_time = rand[0,MAXtime];
- Data packages of Users: node_package = rand[0,MAXpackage];
- Number of Users: node_number = constant.

- A. Process.
- X: Time Period.
- Y: Current Node Number.
- Node = 500.



26

- A. Process.
- X: Time Period.
- Y: Time Period Length.
- Node = 500.

- B. Efficiency.
- X: Number of Node.
- Y: Efficiency.
- Node Number:
- 100:10:1000.

A Dynamic Hybrid MAC Protocol of TMDA and CSMA/CA

- \checkmark Introduction.
- ✓ System Model.
- ✓ Mathematic Analysis.
- \checkmark Simulation.
- ✓ Conclusion & Future Work.

Conclusion & Future Work.

• Conclusion.

• The dynamic hybrid model of TDMA and CSMA/CA adds the algorithms of CSMA/CA to the TDMA model.

• Also the length of every time period is up to the current number of transmitting nodes.

Conclusion & Future Work.

• Conclusion.

- The simulation results show that:
- (1) There is a close relevance between the number of transmitting nodes and the length of every time period.
- (2) The performance of this dynamic hybrid model is not changing greatly with the number of nodes. This model has the best performance on average.

Conclusion & Future Work.

• Future Work.

- (1) Simulation with better tools like NS3.
- (2) Even implementation in the real-time systems.
- (3) Improve this hybrid model in the further step.

THANK YOU FOR LISTENING

33