DATA VISUALIZATION AND DASHBOARD FOR MONITORING COVID-19

Mobile Internet Course Project

Yang Jinhai, 517030910300
June 15, 2020

1 Introduction

In 2020, COVID-19 has turned the world upside down. Everything has been impacted. How we live and
interact with each other, how we work and communicate, how we move around and travel. Every aspect of our
lives has been affected. Although the world is in lockdown, governments, epidemiologists, school principals,
entrepreneurs and families around the world are already planning the next steps: how to safely reopen schools
and businesses, how to commute and travel without transmitting or contracting infection. Therefore, they
need a clear understanding of COVID-19. A visualization of COVID-19 and a dashboard for monitoring will
make their decision more accurately and reasonably.

In this course project, my purpose is to visualize the data and make a dashboard for monitoring by using
Python only.

All the work is done by myself because there is only one person in the group.

2 Environment

« IDE
VS Code, Pycharm or any your personal choice of IDE that can write Python code

e Python: belowed are some package used in this project

1.

Requests

Python built-in module urllib is used to access network resources. However, it’s troublesome to use
it. Therefore, I use requests, a more convenient library based on urllib, to handle the url resources.

. Pandas

Pandas is a data analysis library based on numpy in Python. It provides good support for time series
analysis which helps us to process data to make a dashboard.
Jsonpath

Jsonpath is an information extraction library in Python used to parse multiple layer of nested json
data (extract specified information form json document).

. Pyecharts

Echarts is a data visualization JS library open sourced by Baidu. Pyecharts is a library for generating
Echarts charts which interface with Python to conveniently generate graphs with data.

. Plotly

The plotly Python library (plotly.py) is an interactive, open-source plotting library that supports
over 40 unique chart types covering a wide range of statistical, financial, geographic, scientific, and
3-dimensional use-cases. Built on top of the Plotly JavaScript library (plotly.js), plotly.py enables
Python users to create interactive web-based visualizations served as part of pure Python-built web
applications using Dash.

Dash

Dash is a productive Python framework written on top of Flask, Plotly.js and React.js for building
web applications. It is ideal for building data visualization apps with highly custom user interfaces
in pure Python.

O WN -

P OWOWONOUIPWNF-

.

S wWwN e

OCOO~NOOPWN -

3 Data Visualization

3.1 Data Acquisition

There are two data sources I use to acquire the data, one is Tecent’s COVID-19 Real Time Tracking,
another is Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE.

From Tecent’s COVID-19 Real Time Tracking, I can get a real time data of COVID-19. The code of
getting the data of different countries from this website are followed:

def catch_foreign_data():
url_foreign ="https://api.inews.qq.com/newsqa/vl/automation/foreign/country/ranklist"
response =requests.get(url_foreign).json()
return response

data =catch_foreign_data()

However, Tecent’s Real Time Tracking provides no convenient interface for public to get COVID-19 data
with time series. Therefore, it’s a better choice to get data with time series provided by JHU CSSE. These data
will be updated on Github each day which can be downloaded to local to increase the speed of our program if
we don’t pursue the real-time nature of our website. The code of requesting data from JHU CSSE is followed:

crawl the data directly from github

url_confirmed ='https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/'\
'csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'

url_deaths ='https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/'\
'csse_covid_19_time_series/time_series_covid19_deaths_global.csv'

url_recovered ='https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/'\
'csse_covid_19_time_series/time_series_covid19_recovered_global.csv'

df __confirmed =pd.read_csv(url_confirmed)
df _deaths =pd.read_csv(url_deaths)
df _recovered =pd.read_csv(url_recovered)

Then, the data has been acquired. I use the data from Tecent’s COVID-19 Real Time Tracking for data
visualization and the data from JHU CSSE for dashboard.

3.2 Visualization

In this part, I use the pyecharts library generate world distribution map of COVID-19.

At first, I use jsonpath library to process the crawled json file by getting the name of countries and the
number of each country’s confirm cases. Then I combine them to be data_ pair which is the input data form
of pyecharts’ map component.

data =catch_foreign_data()

name =jsonpath.jsonpath(data, "$..name")
confirm =jsonpath.jsonpath(data, "$..confirm")
data_list =list(zip(name, confirm))

In addition, the map component in the pyecharts requires the English name of each country. However,
the data crawled from Tecent’s COVID-19 Real Time Tracking only contains Chinese name of each country.
Therefore, a Chinese-English dictionary of countries is need. Below is a part of the dictionary:

country_dict ={
'Afghanistan': '[{E /",
'Singapore': ‘%ﬁﬁﬂf)}l',
'Argentina': '[TRIE",
"Armenia': 'TE L',
'Australia': "BEAF L',
'Greece': '#&fE',
'Greenland': '#fx=",
'India': 'EUE",
'Ireland': 'E/RZ",
‘Iran': '"fFHA',
'Iraq': '"F#Faw’,
"Iceland': 'WK%"',
'Israel': 'LL&EF]",
'Ttaly': 'BAA',
'Jamaica': 'FE',
'Japan': 'HA',
'Kazakhstan': 'P&FERHATIE ",
'Kenya': 'HEIL',
'Cambodia': 'EIHE',
'South Korea': '#H[E'

https://news.qq.com/zt2020/page/feiyan.htm#/global
https://github.com/CSSEGISandData/COVID-19

[

P OWOWONOOIPWN -

~NOoO O WN -

WN -~

After processing the data, I can use the data to generate the world distribution map of COVID-19. The
code of generating map is followed:

world_map =Map(init_opts=opts.InitOpts(width='1400px', height='700px'))
world_map.add(series_name="The COVID19 distribution in the world",
data_pair=data_list,
maptype="world",
name_map=country_dict,
is_map_symbol_show=Fa1se)
world_map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
world_map.set_global_opts(
title_opts=opts.TitleOpts(title="42IEZ F oM A",
visualmap_opts=opts.VisualMapOpts (max_=2500000))
world_map.render ("World.html")

Then the world distribution map has been generated:
LEEELHER @ The COVID19 distribution in the world

4 2500000

850514

a

However, as we can see on the map, some countries are left blank. There may be two reasons for this
phenomenon. One is because there is no corresponding value in the country-dict dictionary. Another reason
may be that the country left blank has no affected cases. I will do some futher exploring to figure out the exact
reason and fix the map.

4 Design of Dashboard for Monitoring

The dashboard is the most important and difficult part of this project. The data I used is from JHU
CSSE because it associates with time series. I mainly use a Python built-in library Dash to finish this part.
In addtion, Pandas is an important tool to process the data and Plotly is also an important tool to draw the
graph. The dashboard will be display as a website at last.

4.1 Total confirmed, death and recovered cases

On the top of this website, I display the total global confirmed, death and recovered cases. I use the total
global confirmed cases as example. First, I use label H3 to make the title of this part:

html.H3(
children='Total Confirmed',
style={
'textAlign': 'center',

'color': colors['confirmed_text'],

Then I process the data to get the sum of confirmed, death and recovered cases:

df _confirmed_total =df_confirmed.iloc[:, 4:].sum(axis=0)
df_deaths_total =df_deaths.iloc[:, 4:].sum(axis=0)
df _recovered_total =df_recovered.iloc[:, 4:].sum(axis=0)

OO~ WN -

O©COO~NOUPWN -

O~NO U WN -

After processing the data, I use label P in this part which automatically creates some blank before and
after the element making the text a paragraph:

html.P(
f"{df _confirmed_total[-1]:,d}",
style={
'textAlign': 'center',

'color': colors['confirmed_text'],
'fontSize': 30
}
),

html.P(
'Past 24h increase: +' +f"{df_confirmed_total[-1] - df_confirmed_total[-2]:,d}" +'(' +
str(round ((df _confirmed_total[-1] -df_confirmed_total[-2])/df_confirmed_total[-1]%100, 2)) +'%)',
style={
'textAlign': 'center',
'color': colors['confirmed_text'],

Therefore, the preview of the total global confirmed, death and recovered cases has been generated:

4.2 Graph of global COVID-19 cases (total and daily)

The basic components of the graph are radio buttons (button of total cases and daily cases) and graph:

html.Div([
dcc.RadioItems(
id='graph-type',
options=[{'label': i, 'value': i} for i in ['Total Cases', 'Daily Cases']],
value='Total Cases',
labelStyle={'display': 'inline-block'},
style={'fontSize': 20, },
)
D,

html.Div([
dcc.Graph(
id='global-graph',
)
D,

Here, I will introduce an important component in Dash: callback. The callback component consists of
two components: input and output. When the value of the input component changes, it will automatically call
the function packaged by the callback decorator, using the updated content as the input parameter, returning
the input content of the function, and updating the value of the output component. This method using callback
function is a type of Reactive Programming.

In this part, the input value is the value of the graph-type which is determined by clicking the Radioltems
component. The output value is the graph generated according to the input value.

output: id='global graph', 'figure' [output: the figure of a graph]
input: 'graph-type', 'value' [input: the value of the radio_items]
@app. callback(
Output ('global-graph', 'figure'),
[Input ('graph-type', 'value')])
def update_graph(graph_type) :
fig_global =draw_globa1_graph(df_confirmed_total, df _deaths_total, df_recovered_total, graph_type)
return fig_global

In the draw_ global graph() function, I use the datetime in the pandas array as the index of this graph
to draw it.

When the input component’s value is ’Daily’, the daily cases’ data equals to the today’s total data minus
yesterday’s total data.

In addition, I use a function named add__trace() to add trace to a plotly interactive visualization, to see
the data accurately on each day.

In summary, I can draw the figure combining the function above. The code is followed:

draw the global figure: total/daily to attached to dcc component
def draw_global_graph(confirmed_total, deaths_total, recovered_total, graph_type='Total Cases'):
confirmed_total.index =pd.to_datetime(confirmed_total.index)

if graph_type =='Daily Cases':
confirmed_total =(confirmed_total -confirmed_total.shift(1)).drop(confirmed_total.index[0])
deaths_total =(deaths_total -deaths_total.shift(1)).drop(deaths_total.index[0])
recovered_total =(recovered_total -recovered_total.shift(1)).drop(recovered_total.index[0])

OO~ WN -

fig =go.Figure()

fig.add_trace(go.Scatter(x=confirmed_total.index, y=confirmed_total,
mode='lines+markers',
name="'Confirmed’,
line=dict(color="'#3372FF', width=1),
fill="'tozeroy',))
fig.add_trace(go.Scatter(x=confirmed_total.index, y=recovered_total,
mode="'lines+markers',
name='Recovered',
line=dict(color="'#33FF51', width=1),
£fill="'tozeroy',))
fig.add_trace(go.Scatter(x=confirmed_total.index, y=deaths_total,

mode='lines+markers',
name="'Deaths’,

line=dict(color='#FF3333', width=1),

fill='tozeroy',))

fig.update_layout (

)

hovermode="x

font=dict(
family="Courier New, monospace",
size=14,
color=colors['figure_text'],

),

legend=dict(

x=0.02,

y=1,

traceorder="normal",

font=dict(
family="sans-serif",
size=12,

color=colors|['figure_text']
),
bgcolor=colors['background'],
borderwidth=5
),
paper_bgcolor=colors['background'],
plot_bgcolor=colors['background'],
margin=dict(
1=0, r=0, t=0, b=0
),
height=300,

fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='#3A3A3A')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#3A3A3A"')

fig.update_yaxes(zeroline=True, zerolinewidth=2, zerolinecolor='#3A3A3A"')
return fig

The figure I draw can be viewed below:

Graph of Global COVID19 Cases

0 Total Cases @ Daily Cases

8M

Confirmed Q
w#= Recovered
Deaths

Feb 16 Mar 1 Mar 15 Mar 29 Apr 12

(a) Global COVID-19 total cases

ay 10 May 24

Jun 7

Graph of Global COVID19 Cases

® Total Cases 0 Daily Cases

150k Confirmed e
w®= Recovered
Deaths

uﬂ'.ﬁ‘ *
o Tt

(b) Global COVID-19 daily cases

OO WN -

OCO~NOUIddWN -

4.3 Graph of top ten highest cases countries (confirmed, death and recovered)

The graph can be drawn similarly using the procedure of drawing graph of global COVID-19 cases (total
and daily) above. The most important part’s (callback function) code is followed:

output: id='highlO-graph', 'figure' [output: the figure of a graph]
input: 'graph-highlO-type', 'value' [input: the value of the radio_items]
Qapp.callback(
Output('high10-graph', 'figure'),
[Input ('graph-highl10-type', 'value')])
def update_graph_high10(graph_high10_type):
fig highl0 =draw_highest_10(df_confirmed_t_stack, df_deaths_t_stack, df_recovered_t_stack, graph_highlO_type)
return fig_highl0

The function draw__highest_10() can be written similarly with the function draw__global _graph() by sorting
the data and selecting the highest 10 countries for confirmed, death and recovered indepedently.
The figure I draw can be viewed below:

0 Confirmed Cases ® Death Cases ® Recovered Cases @ Confirmed Cases ® Death Cases 0 Recovered Cases

Y

(c) Top 10 confirmed cases countrise (d) Top 10 death cases countrise (e) Top 10 recovered cases countrise

4.4 Top ten total and single day highest cases countries (confirmed and death)

The preview of the top 10 highest cases countries, including total and single day highest on confirmed and
death cases will be handled seperately.

At first, the data need to be transformed into a form in html label P which I have used in the preview of
the total confirmed, death and recovered cases. I write a function to process data and transform it to a label
P form (country name | total cases of the country —+increasing cases’ number(percent if death)). The code is
followed:

def high_cases(country_name, total, single, color_word='#63b6ff', confirmed_total=1, deaths=False,):

if deaths:
percent =(total/confirmed_total)*100
return html.P([
html.Span(
country_name +' | ' +f"{int(total):,d}",
style={'backgroundColor': colors['highest_case_bg'], 'borderRadius': '6px', }
),
html.Span(
' +' +f"{int(single):,d}",
style={'color': color_word, 'margin': 2, 'fontWeight': 'bold', 'fontSize': 14, }
),
html.Span(
f' ({percent:.2f}})', style={'color': color_word, 'margin': 2, 'fontWeight': 'bold', 'fontSize': 14, }
),
1,
style={'textAlign': 'center', 'color': 'rgb(200,200,200)', 'fontsize': 12, }
)

return html.P([
html. Span(
country_name +' | ' +f"{int(total):,d}",
style={'backgroundColor': colors['highest_case_bg'], 'borderRadius': '6px', }
),
html. Span(
' +' +f"{int(single):,d}", style={'color': color_word, 'margin': 2, 'fontWeight': 'bold', 'fontSize': 14, }
),
1,
style={'textAlign': 'center', 'color': 'rgb(200,200,200)', 'fontsize': 12, }
)

Then, the data in a new form must be appended to a list to fit the data form which will be displayed. 1
take the top 10 highest countries on confirmed cases as example. The code is followed:

OO WN —

OCOO~NOOWN -

OO ~NOUPWN -

noToDisplay =10

confirm_cases =[]
for i in range(noToDisplay) :
confirm_cases.append(high_cases(df_confirmed_sorted_total.iloc[i, 0], df_confirmed_sorted_total.iloc[i, 1],
df _confirmed_sorted_total.iloc[i, 2]))

After data processing, I use the label P to display the data processed before. The code is followed:

html.P([
html.Span('Countries with highest cases: ',),
html.Br(),
html.Span(' + past 24hrs',
style={'color': colors['confirmed_text'], 'fontWeight': 'bold', 'fontSize': 14, })

1,
style={
'textAlign': 'center',
'color': 'rgb(200,200,200)"',
'fontsize': 12,
'backgroundColor': '#3B5998',
'borderRadius': '12px',
'fontSize': 17,
}

),

html.P(confirm_cases)

The preview of top 10 highest cases countries (total and single day) on confirmed and death has been
generated and displayed below:

Countries with highest cases: Single day highest cases: Countries with highest deaths: Single day highest Death:
+ past 24hrs (Death Rate) + past 24hrs (Death Rate)
US | 2,074,526 +25,540 US| 2,074,526 +25,540 US | 115,436 Brazil | 42,720
Brazil | 850,514 +21,704 Brazil | 850,514 +21,704 Brazil | 42,720 US| 115,436
Russia | 519,458 +8,697 India | 308,993 +11,458 United Kingdom | 41,747 Mexico | 16,872
India | 308,993 +11,458 Russia | 519,458 +8,697 Italy | 34,301 India | 8,884

United Kingdom | 295,828 +1,426 Chile | 167,355 +6,509 France | 29,401 Chile | 3,101

Spain | 243,605 +396 Pakistan | 132,405 +6,472 Spain | 27,136 Peru | 6,308

Italy | 236,651 +346 Peru | 220,749 +5,961 Mexico | 16,872 United Kingdom | 41,747
Peru | 220,749 +5,961 South Africa | 65,736 +3,809 Belgium | 9,650 Russia | 6,819
France | 193,746 +526 Mexico | 142,690 +3,494 India | 8,884 Pakistan | 2,551

Germany | 187,267 +41 Saudi Arabia | 123,308 +3,366 Germany | 8,793 Italy | 34,301

4.5 Table of all countries’ COVID-19 cases and their graph

In this part, I will design a table which contains all countries’ COVID-19 cases on confirmed, death and
recovered. There is a button on the left side of each country. If the button is clicked, two graphs which visulaize
the country’s COVID-19 cases will be displayed on the right side of the table.

4.5.1 Table of all countries’ COVID-19 cases

To make a table containing all countries’ COVID-19 cases data, I use a component in Dash named DataT-
able to complete this task.

At first, I should finish the task of data processing. In this part, I create a new array map_ data to sort
the data with the column needed such as Province/State, Country/Region, Confirmed, Deaths and Recovered.
Then, I sort the array descending by the index of Confirmed.

Recreate required columns for data_table

map_data =df_confirmed[["Province/State", "Country/Region", "Lat", "Long"l]

map_datal'Confirmed'] =df_confirmed.loc[:, df_confirmed.columns[-1]]

map_datal['Deaths'] =df_deaths.loc[:, df_deaths.columns[-1]]

map_datal'Recovered'] =df_recovered_fill.loc[:, df_recovered_fill.columns[-1]]

map_datal'Recovered'] =map_datal['Recovered'].fillna(0).astype(int) # too covert value back to int and fillna with zero

last 24 hours increase

map_data['Deaths_24hr'] = df_deaths.iloc[:, -1] - df_deaths.iloc[:, -2]

map_data['Recovered_24hr'] = df_recovered_fill.iloc[:, -1] - df_recovered_fill.iloc[:, -2]
map_data['Confirmed_24hr'] = df_confirmed.iloc[:, -1] - df_confirmed.iloc[:, -2]
map_data.sort_values(by='Confirmed', ascending=False, inplace=True)

After data-processing, I use the map_ data to make the DataTable. The style of the DataTable is easy to
set by assigning value to DataTable’s parameters. We can set the data to be sortable by setting the sort_ action
equals to "native”. The code of making a DataTable is now followed:

OO~ WN -

dt.DataTable(
data=map_data.to_dict('records'),
columns=[

1,

{"name": i, "id": i, "deletable": False, "selectable": True} for i
in ['Province/State', 'Country/Region', 'Confirmed', 'Deaths', 'Recovered']

fixed_rows={'headers': True, 'data': 0},
style_header={'backgroundColor': 'rgb(30, 30, 30)', 'fontWeight': 'bold'},
style_cell={

T,

'backgroundColor': 'rgb(100, 100, 100)',
'color': colors['text'],

'maxWidth': O,

'fontSize':14,

style_table={'maxHeight': '510px', 'overflowY': 'auto'},
style_data={'whiteSpace': 'nmormal', 'height': 'auto', 1,
style_data_conditional=[

1,

{'if': {'row_index': 'even'}, 'backgroundColor': 'rgb(60, 60, 60)', },

{'if': {'column_id': 'Confirmed'}, 'color': colors['confirmed_text'], 'fontWeight': 'bold'},
{'if': {'column_id': 'Deaths'}, 'color': colors['deaths_text'], 'fontWeight': 'bold'},
{'if': {'column_id': 'Recovered'}, 'color': colors['recovered_text'], 'fontWeight': 'bold'},

style_cell_conditional=[

1,

{'"if': {'column_id': 'Province/State'}, 'width': '26%'},
{'if': {'column_id': 'Country/Region'}, 'width': '26%'},
{'if': {'column_id': 'Confirmed'}, 'width': '16%'},
{'if': {'column_id': 'Deaths'}, 'width': '11%'},

{'if': {'column_id': 'Recovered'}, 'width': '16%'},

editable=False,
filter_action="native",
sort_action="native",
sort_mode="single",
row_selectable="single",
row_deletable=False,
selected_columns=[],
selected_rows=[],
page_current=0,
page_size=1000,
id='datatable',

The generated DataTable contains all the countries’ data we get including Confirmed, Deaths and Recov-
ered cases. By clicking on the left side, we can get a clearer picture of the COVID-19 situation in each country
by two graphs I design in the next part. The figure of the DataTable is below:

e -

I S ™ I T R
o 000 een|] eoms] ews] e
11 I = T T
I O T I T
(o] 0 [veke| awer] aws tsvom
IS I = R T
(o] 000 [wme| e eers] towor
II__
II_
o |

n

South Africa

OO~ WN -

4.5.2 Graph of each specific country’s COVID-19 cases

This is the last part of my project. Two graphs of the specific country’s COVID-19 cases are made to
make a clearer picture of the situation and trend of COVID-19. The most important callback function can be
written as belowed code:

output: id='line-graph', 'figure'
output: id='bar-graph', 'figure'
input: id='datatable', 'selected_rows'
input: id='graph-line', 'value'
Qapp. callback(
[Output ('line-graph', 'figure'),
Output ('bar-graph', 'figure')],
[Input('datatable', 'selected_rows'),
Input('graph-line', 'value')])
def map_selection(selected_rows, graph_line):
if len(selected_rows) ==0:
figl =draw_single_country_scatter(df_confirmed_t, df_deaths_t, df_recovered_t, 0)
fig2 =draw_single_country_bar(df_confirmed_t, df_deaths_t, df_recovered_t, O, graph_line)
return figl, fig2
else:
figl =draw_single_country_scatter(df_confirmed_t, df_deaths_t, df_recovered_t, selected_rows[0])
fig2 =draw_single_country_bar(df_confirmed_t, df_deaths_t, df_recovered_t, selected_rows[0], graph_line)
return figl, fig2

#
#
#
#

Besides, I made the daily cases chart into two form: bar chart and line chart. The viewer can choose
each type of graph he prefers to see the trend from the COVID-19’s outbreak to today. The graphs are shown
below:

US (Total Cases) US (Total Cases)

Confirmed
== Recovered

Confirmed
==®= Recovered

Deceased Deceased

,/

" Feb 2020 ar 2020 Apr 2020 a 0 Jun 2020

,_’/

"~ Feb 2020 ar 2020 Apr 2020 a 0 Jun 2020

US (Daily Cases) US (Daily Cases)

[E Confirmed
B Recovered
[Deceased

Confirmed
m#®m Recovered

N -MM».M

% <>

Ll ' <>

Apr 2020 May 2020 May 2020

o 2p 0

® Bar Chart O Line Chart

o Bar Chart @ Line Chart

(f) Bar

5 Future Work

There exist two parts I want to improve:

(1) The first part is the data visualization. The map I make in the first part has no clear relevent to the
Dashboard I make in the next part. Therefore, I want to make the map to be a part of Dashboard in particular
as a part of the DataTable. When clicked on button on the left side of the DataTable, not only will the two
graph be shown, but the map will also be updated to the clicked country’s map with the COVID-19’s data.

(2) The next part is to deploy the website on server which can ensure that everyone with internet access
can view the Global COVID-19 Dashboard.

	Introduction
	Environment
	Data Visualization
	Data Acquisition
	Visualization

	Design of Dashboard for Monitoring
	Total confirmed, death and recovered cases
	Graph of global COVID-19 cases (total and daily)
	Graph of top ten highest cases countries (confirmed, death and recovered)
	Top ten total and single day highest cases countries (confirmed and death)
	Table of all countries' COVID-19 cases and their graph
	Table of all countries' COVID-19 cases
	Graph of each specific country's COVID-19 cases

	Future Work

