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A small note:

Only the key idea is shown in this ppt. For detailed
proof, algorithms and reference, please refer to the
report
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Introduction

Advertising
? People are widely and closely
Q connected by social networks
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Introduction
Advertising

Which one(s) should we advertise to?

Here comes the Influence maximization problem:

Finding a small set of seed nodes S in a social network that
maximizes the spread of influence under certain influence
cascade models
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Influence maximization

Two basic model

Probabilistic view Quantitative view

independent cascading (IC) model Linear threshold (LT) model

NP-hard

A lot less studied!
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Influence maximization

Negative Opinion

Negative opinion is pervasive and influential

However, negative opinion is seldom studied in influence maximization
(Only two paper as far as | know)
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Introduction
Influence maximization

LT model with negative opinion (LT-N)

Formal Definition:

Social networks are modeled as a directed graph G=(V, E).
Each edge in G has a weight w.
For any in-activated vertex u, vthat (u,v) €E, 0 <w(u,v) < 1.
For any in-activated node Vv, 2 v e gWU, V) < 1.
Each node v has a threshold A which 0 <A< 1.
A satisfaction probability q is introduced as the probability that one node
turns positive after activation. If a node turns negative, its influence turn

negative.

Inf(S) is defined as the number of positive activated nodes
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Influence maximization

LT model with negative opinion (LT-N)

This model captures real world phenomena:
* Product defect or some other unhappy experience is the source of negative opinion

* Consumers take both positive and negative opinion into consideration
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Model Analysis

Two important properties

Monotonicity

For node sets SCT and, Inf(S) < Inf(T)

Submodularity

For node sets SCTCV and a node veV\B, Inf(S U {v})-Inf(S) = Inf(T U {v})-Inf(T)

*They only hold true when g>0.5



Model Analysis
Properties

Why they are important?

Lemma 1:

For any monotone and submodular set function f with f(®)=0, the

greedy algorithm guarantee an 1-1/e approximation.




Model Analysis
Properties

Key idea of proof

Key idea: treat this quantitative problem in a probabilistic view

@ For a node v with a threshold A, what is the probability

w‘ that being activated in this condition?
w

P(v) = max(0, w; + w, -w;) forAis

uniformly random in (0,1]

Then, many probabilistic analysis can be put into use
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Algorithms

Overview

E Greedy algorithm

m Local directed acyclic graph with negative opinion (LDAG-N)

Evolutionary algorithm (EA)



Algorithms

Greedy algorithm

In each round, select the nodes that could cause maximum
incremental influence

Algorithm 1 Greedy Algorithm
1: S=10

2: for i=1 to k do

3: u = argmazx,Inf(SU{u})

4: S=5SU {u}

5)

6

. end for
. return S

Inf(S) in computed by Mont-Carlo simulation, which is very slow.
Have a approximation guarantee of 1-1/e
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LDAG-N

Key idea: influence can be calculated in linear time in a DAG. So, we can
construct local DAGs to approximate the influence

Remember:

P(v) = max(0, w; + w, —w3) for Ais uniformly
random in (0,1]

P(V) = qZ{u:uE{X,y,z}} P(U)W(U) . (1_q) Z{u:ue{x,y,z}} P(U)W(U)
— (Zq_l) Z{u:ue{x,y,z}} P(U)W(U)

We can get all the P in a topological order and in linear time!



Algorithms
LDAG-N

From a expectation view:

Inf(S) =q Z {v:veV} P(V)

So, we can construct a DAG for each node and compute each P(v) in linear time.
Then, we can get the Inf(S) without any simulation!

Oﬁ)\;@ *The actual process is complicated. And
- \ / a trick is used for updating inf(S)

DAG construction for v
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LDAG-N

Algorithm 2 LDAG-N without trick
. S=10

1
2: for vin V do
3: D(v) = FIND_DAG(G, v, 0)
4: Inf(v) — Zu:vGDAG(u) DAG—INF(D(U-)’
{v})
end for
for i=1 to k do
u = argmax,Inf(v)
S=5SUu
for v:u € D(v) do
10: Inf(v) = > . ..epaguDAGINF(D(u),
S+ {v})
11: end for
12: end for
13: return S
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Evolutionary algorithm

Evolutionary algorithm is a powerful tool for discrete optimization in large
search space which is inspired by Evolution Theory. However, it is often ignored
by computer scientists.

Reproduce (Crossover and mutation)

N

Selection <« Evaluate

The flow of EA

EA is the only algorithm that considers the interaction within S



Algorithms

Evolutionary algorithm

A example of mutation A example of crossover

EA is the only algorithm that considers the interaction within S
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Experiment

Experiment setting

120

* Main dataset: ca-GrQc (5424 nodes and 14496
undirected edges)

100

80

* Simulation rounds: 200 # have a strong influence =
on the performance of greedy algorithm, 10000+ was

40|

recommended 20
. . . . K ’ nun1be:gfseeds
* Way of weight generation: uniform for every in- Test for random and uniform weight
edge
* ¢:0.9 #something more about negative - final mean
opinion is in report h(
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* Threshold: 1/640
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Rounds

Means of simulations with different times
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Performance
500 .
— degree
— greedy
a00l| — LDAGN 1
— random EA always keeps the best
— EA
300} 1 Greedy is harmed by insufficient
c simulations
200}
LDAG-N works well
100} Degree and random perform poorly
0 L I L L L
0 5 10 15 20 25 30

number of seeds

Performance of the 5 algorithms *

*EA is only test for k=10,20,30
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Time

Algorithm Time/min Relative Time

Greedy 2246.3 1
EA 148.6 0.066
LDAG-N 1.38 0.00062
Time for k=30

Greedy is unbearably slow. EA outperform greedy in both performance
and running time. However, only LDAG-N is fast enough for much larger
social networks.
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Conclusion

In this project:

* A Linear threshold model with negative opinion for influence maximization
is proposed, which has a strong connection with the real world advertising
and capture the character of the mental activity of customers. This model
keeps the important property of monotonicity and submodularity, which
result in a 1-1/e approximation guarantee for greedy algorithm.

* Then, to tackle with the efficiency and quality problem, LDAG-N and EA are
proposed or used in this problem. Both of them outperform greedy
algorithm in speed, EA achieve the best performance and LDAG-N is
scalable to larger dataset.






