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• Social Network

Introduction



• An earlier survey: a taxonomy for information cascade prediction

• Collaborative Filtering methods

• Leverage homophily: insightful

• Get rid of troublesome feature engineering

Introduction – A Taxonomy
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• Key idea behind CF: Homophily

• Transplantable to information diffusion modeling

Introduction – Why CF?
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• CRPM & IRPM [1] (CIKM2015)

Related Work – Extant CF-based Studies
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• GPOP [2] (WWW2017)
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Related Work – Extant CF-based Studies



• A Collaborative Filtering Model for Personalized Retweeting Prediction [3] 

(DASFAA2015)
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Related Work – Extant CF-based Studies



• More sufficient utility of social network information 

• Better adapted for Information Diffusion modeling

• Novel insights into user retweet behavior

Challenge & Motivation
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• More sufficient utility of social network information 

- A flat “snapshot” of users’ historical behaviors

- Information loss: Permutation? Sequence? Diffusion topologies?

Challenge & Motivation
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• More sufficient utility of social network information 

• Better adapted for Information Diffusion modeling

- Leverage diffusion topologies

* Essence of information diffusion

* A main difference from recommendation system problems

Challenge & Motivation
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• More sufficient utility of social network information 

• Better adaption to Information Diffusion modeling

• Novel insights into user retweet behavior

Challenge & Motivation
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Our Work



• A novel framework for information diffusion

Our Work - ReTrend
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• Four matrices carrying observable data

- Subscription Matrix (S)

- Contagion Matrix (C)

- Resistance Matrix (T)

- Retweet Matrix (R)

ReTrend – Observable Data
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• Four factor matrices carrying latent feature vectors

- User Interest Matrix (X)

- User Influence Matrix (Y)

- User Resistance Matrix (Z)

- Item Attraction Matrix (A)

ReTrend – Learning Latent Feature
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• Four factor matrices carrying latent feature vectors

- User Interest Matrix (X)

- User Influence Matrix (Y)

- User Resistance Matrix (Z)

- Item Attraction Matrix (A)

• We deem this inherent attribute ‘resistance’ varies over latent space but 

remains fixed for a fixed user
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ReTrend – Learning Latent Feature
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• Take Contagion Matrix for example

• Contagion Matrix: |user| × |post|

• Entry 𝐶𝑢𝑖 : count of retweet behaviors 

triggered by user 𝑢 w.r.t. post 𝑖

• 𝐶𝑢𝑖 reflects two facts:

- to what degree a user can trigger his 

friends to retweet the post

- how attractive the post is
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ReTrend – Logic Explanation

𝑆

𝑍

𝑌𝑋 𝐴

𝑇

𝐷𝑖𝑓

𝐶

𝑅

Interest-extraction 

Component

Resistance-extraction Component

Prediction 

Component



• Take Contagion Matrix for example

• Assume a Gaussian observation noise
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ReTrend – Logic Explanation
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• For Retweet Matrix

• Retweet behavior can be determined 

by user interest, resistance, parent 

influence and post attraction

where
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ReTrend – Logic Explanation
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• Conditional distribution over all observed data as

• Place zero-mean spherical Gaussian priors on latent feature vectors
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ReTrend – Entire Model



• By modifying the log-likelihood, we obtain the loss function as

• SGD for optimization
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ReTrend – Entire Model



• How ReTrend leverage information better?

• Tree-structured essence of information cascade – Retweet-tree
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ReTrend – Retweet-tree Encoding
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• Subscription Matrix
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ReTrend – Retweet-tree Encoding
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• Retweet Matrix
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ReTrend – Retweet-tree Encoding
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• Contagion Matrix
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ReTrend – Retweet-tree Encoding
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• Dynamic inference on the most likely retweet-tree structure 
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ReTrend – Training



• AND, it is post-transcending
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ReTrend – Training



Modification
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Matrix Factorization – Drawbacks

• Simple and fixed inner-product: Low Non-linearity[4]

• Complex inference in low-dimensional latent space

• Too much constraints
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MLP Module – Optimization for MF

• Replace multiplication with a simple MLP module.

• Level up non-linearity

Matrix A Matrix B

Result

Matrix A Matrix B

Result

MLP
Module
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MLP Module – Detail
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Experiments – Dataset

• Real-world dataset from Twitter

• More than 90,000 users and 99,696,204 tweets related[1][2].

• 440,000+ subscribes.

• 2,370,000+ retweet behaviors.

• 18,210,000+ un-retweet behaviors.

• 18,210,000+ resistance tuples.

• 2,170,000+ contagion tuples.

[1] https://www.aminer.cn/data-sna#Twitter-Dynamic-Net
[2] https://www.aminer.cn/data-sna#Twitter-Dynamic-Action



EE447 2018.6 Final Report – Zhenhao Cao, Ru Wang 32/42

Experiments – Implementation detail

• For ReTrend:

• Indicator matrices

• Normalization for R, S, C, T

• Latent Feature: 30

• SGD:

• Batch size: 1000

• Training epoch: 100

• Learning rate: 0.03;  0.03*value(loss function)/500 when loss function is below 500

• For MLP Module:

• Trained for 20 epochs implemented by Keras
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Experiments – Performance

• Plausibility Validation for MLP:

• Plain features: only the identity of user and

item

• Embedding: latent vector for user and item

0 0 1 0 0 0 0 0 0 0 0 0 1 0
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Experiments – Performance

• Baselines:

• Random

• Word Vector Based SVM[5]

• Neural Collaborative Filter[4]
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Experiments – Performance

• ReTrend+MLP:



• [1] Jiang, Bo, Jiguang Liang, Ying Sha, and Lihong Wang. "Message clustering based matrix factorization model 

for retweeting behavior prediction." In Proceedings of the 24th ACM International on Conference on Information 

and Knowledge Management (CIKM), pp. 1843-1846. ACM, 2015.

• [2] Cui, Peng, Fei Wang, Shaowei Liu, Mingdong Ou, Shiqiang Yang, and Lifeng Sun. "Who should share what?: 

item-level social influence prediction for users and posts ranking." In Proceedings of the 34th international ACM 

SIGIR conference on Research and development in Information Retrieval, pp. 185-194. ACM, 2011.

• [3] Li, Jun, Jiamin Qin, Tao Wang, Yi Cai, and Huaqing Min. "A Collaborative Filtering Model for Personalized 

Retweeting Prediction." In International Conference on Database Systems for Advanced Applications, pp. 122-134. 

Springer, Cham, 2015.

• [4] Xiangnan He, Lizi Liao, Hanwang Zhang. “Neural Collaborative Filtering”. arXiv preprint arXiv: 1708.05031, 

2017

• [5] Zhang, Q., Gong, Y., Wu, J., Huang, H., & Huang, X. (2016). Retweet prediction with attention-based deep 

neural network. 75-84.

Reference

EE447 2018.6 Final Report – Zhenhao Cao, Ru Wang 36/42



Thanks


