
Auto-Complete Suggestion
Basing on Solr

515030910553 Sun Rui

1

2

3

4

5

Backgrounds

Auto complete suggestion on Solr

project completion

Results

Conference

Auto-Complete Search

Solr Search Engine

Backgroun
ds

Auto-Complete Search

• Auto-complete, or word completion, is a feature in which an
application predicts the rest of a word a user is typing. It
speeds up human-computer interactions when it correctly
predicts the word a user intends to enter.

• In search engines, auto-complete user interface features
provide users with suggested queries or results as they type
their query in the search box. This is also commonly called
auto-suggest or incremental search.

Solr Search Engine

• Solr (pronounced "solar") is an open source enterprise search
platform, written in Java, from the Apache Lucene project. Its
major features include full-text search, hit highlighting, faceted
search, real-time indexing, dynamic clustering, database
integration, NoSQL features and rich document handling.

• Apache Solr is a powerful tool with tremendous search
capability. In order to search a document, it performs following
operations in sequence:

• Indexing
• Querying
• Mapping
• Ranking

Solr Search Engine

Indexing: First of all, it
converts the

documents into a
machine-readable

format which is called
Indexing.

Querying:Understandi
ng the terms of a

query asked by the
user. These terms can
be images, keywords,

and much more.

Mapping: Solr maps
the user query to the
documents stored in
the database to find

the appropriate result.

Ranking the outcome:
As soon as the engine
searches the indexed
documents, it ranks
the outputs as per

their relevance.

Auto complete basing on SolrSuggestion

Auto complete suggestion on Solr

• This project is meant to realize the suggester function basing
on the apache solr search engine.The suggester completion
may come from a dictionary that is based upon the main index
or upon any other arbitrary dictionary, data or file. The result
will be only top-N suggestions, either ranked alphabetically or
according to their usefulness for an average user or weight
defined by the system.

• The Suggester Component in Solr provides users with
automatic suggestions for query terms.This approach utilizes
Lucene�s Suggester implementation and supports all of the
lookup implementations available in Lucene.(The structure is
on the next page)

• In my solr auto-complete project, I realize this function basing
the spell check component and redefine the suggest
component and request handler. The search can be based on
database or file-based data.

Auto complete suggestion on Solr

• The main features of Suggester structure are.:
• Lookup implementation pluggability
• Term dictionary pluggability, giving you the flexibility to choose the

dictionary implementation
• Distributed support

Suggest Component

Request Handler

project
completion

Suggest Component

• In the suggest component, we reuses much of the
SpellCheckComponent infrastructure.

• The code are as below:

Suggest Component-on dadtabase

parameter Function

queryAnalyzerFieldTy
pe

The fieldType type in managed-schema. If this option is added, the
spelling checker will call this fieldType tokenizer. If it is not added, Solr
will take the word splitter of field defined below or just created a
segmentation based on space because SpellCheckComponent requires
a word breaker to run. In our project, we now hope that Analyzer does
not make any changes to the query, so select string.

name Same as the field defined in request handler.

lookupImpl The look-up of matching suggestions in a dictionary is implemented by
subclasses of the Lookup class.

*There are four main implementations that are included in solr:
Ø JaspellLookup - tree-based representation based on Jaspell
Ø TSTLookup - ternary tree based representation, capable of immediate data structure updates
Ø FSTLookup - finite state automaton based representation
Ø WFSTLookup - weighted automaton representation: an alternative to FSTLookup for more fine-grained

ranking
Direct benchmarks indicate that (W)FSTLookup provides better performance and has a much
lower memory cost compared to the other two methods so I choose WFSTLookupFactory.

Suggest Component-on dadtabase
parameter Function

threshold A value between 0 and 1, representing the minimum fraction of
documents where a term should appear. This will limiting some
infrequent words. But if the search is a file-based dictionary, this
parameter will be useless.

comparatorClass Return the sort of the result. There are four different types:
Ø empty: If not settled, the default will call this
Ø score: Explicitly choose the default case
Ø freq: Sort by frequency first, then score
Ø a fully qualified class name: Provide a custom comparator that

implements Comparator

buildOnOptimize/buil
dOnCommit

If set to true then the Lookup data structure will be rebuilt after
commit/optimize. If false (default) then the Lookup data will be built only
when requested. Noticing that only when this parameter is set as true
the spellchecker will work.

Suggest Component-on dictionary

• This part is defined in the suggest component as:
<str name="sourceLocation">tmp.txt</str>
<str name="spellcheckIndexDir">dic</str>

• When a file-based dictionary is used then it's expected to be a
plain text file in UTF-8 encoding. Each line must be consist of
either a string without literal TAB character, or a string and a
TAB separated floating-point weight. If weight is missing, it will
be assumed as 1.0.

• Weights affect the sorting of matching suggestions when
spellcheck.onlyMorePopular=true is selected - weights are
treated as "popularity" score.

• spellcheckIndexDir is the index file directory for recommended
check. Solr will create this folder at startup and store the index
of the check suggestion under this folder.

Request Handler

• After defining the suggest component, we need to add a new
handler that uses SearchHandler with with SearchComponent
that we just defined.

• The code are as below:

Request Handler
parameter Function

spellcheck Run the Suggester for queries submitted to this handler.

count Configure the number of spell check prompt results.

onlyMorePopular If this parameter is set to true then the suggestions will be sorted by
weight ("popularity") - the count parameter will effectively limit this to a
top-N list of best suggestions. If this is set to false then suggestions are
sorted alphabetically.

collate Provide a query collated with the first matching suggestion.

build Use this function to reconstruct the index when the core reloads.

Data search result

Dictionary search Result

Result

Data search result

• If we put "ac" as the input
qt basing on , the result
is:

Data search result

• he give dictionary type is as
(paper_name paper_ID TAB
weight), for example:
sangji university 00002523 820

• If we put "ac" as the input qt
basing on , the result is:

Conference

1. https://en.wikipedia.org/wiki/Autocomplete
2. https://en.wikipedia.org/wiki/Apache_Solr
3. https://wiki.apache.org/solr/Suggester
4. https://lucene.apache.org/solr/guide/6_6/solrcloud.html
5. http://iamyida.iteye.com/blog/2205114
6. http://public.dhe.ibm.com/software/dw/java/j-solr1-pdf.pdf

