
Page 1 of 10

Auto-Complete Suggestion Basing on Solr
May, 2018

515030910553 Sun Rui

Abstract

Auto-complete is a useful application to predict the word a user wants to type, and

in the search engine it is known as auto-suggest. This project is meant to realize the

suggester function basing on the apache solr search engine.The suggester completion

may come from a dictionary that is based upon the main index or upon any other

arbitrary dictionary, data or file. The result will be only top-N suggestions, either

ranked alphabetically or according to their usefulness for an average user or weight

defined by the system.

1 Backgrounds

1.1 Auto-Complete Search

Auto-complete, or word completion, is a feature in which an application predicts the rest

of a word a user is typing. In graphical user interfaces, users can typically press the tab key

to accept a suggestion or the down arrow key to accept one of several.

Auto-complete speeds up human-computer interactions when it correctly predicts the

word a user intends to enter after only a few characters have been typed into a text input

field. It works best in domains with a limited number of possible words (such as in command

line interpreters), when some words are much more common (such as when addressing an

e-mail), or writing structured and predictable text (as in source code editors).

In search engines, auto-complete user interface features provide users with suggested

queries or results as they type their query in the search box. This is also commonly called

auto-suggest or incremental search. This type of search often relies on matching algorithms



1.2 Solr Search Engine Page 2 of 10

that forgive entry errors such as phonetic Soundex algorithms or the language independent

Levenshtein algorithm. The challenge remains to search large indices or popular query lists

in under a few milliseconds so that the user sees results pop up while typing.

1.2 Solr Search Engine

Solr (pronounced "solar") is an open source enterprise search platform, written in Java,

from the Apache Lucene project. Its major features include full-text search, hit highlighting,

faceted search, real-time indexing, dynamic clustering, database integration, NoSQL features

and rich document (e.g., Word, PDF) handling. Providing distributed search and index

replication, Solr is designed for scalability and fault tolerance. Solr is widely used for enter-

prise search and analytics use cases and has an active development community and regular

releases.

Solr runs as a standalone full-text search server. It uses the Lucene Java search library at

its core for full-text indexing and search, and has REST-like HTTP/XML and JSON APIs

that make it usable from most popular programming languages. Solr’s external configuration

allows it to be tailored to many types of application without Java coding, and it has a plugin

architecture to support more advanced customization.

Apache Solr is a powerful tool with tremendous search capability. In order to search a

document, it performs following operations in sequence:

1. Indexing: First of all, it converts the documents into a machine-readable format which

is called Indexing.

2. Querying: Understanding the terms of a query asked by the user. These terms can be

images, keywords, and much more.

3. Mapping: Solr maps the user query to the documents stored in the database to find

the appropriate result.



Page 3 of 10

4. Ranking the outcome: As soon as the engine searches the indexed documents, it ranks

the outputs as per their relevance.

2 Auto complete suggestion on Solr

A common need in search applications is suggesting query terms or phrases based on

incomplete user input. These completions may come from a dictionary that is based upon

the main index or upon any other arbitrary dictionary. It’s often useful to be able to provide

only top-N suggestions, either ranked alphabetically or according to their usefulness for an

average user (e.g. popularity, the number of returned results, or the weighted defined by the

user).

The Suggester Component in Solr provides users with automatic suggestions for query

terms.This approach utilizes Lucene’s Suggester implementation and supports all of the

lookup implementations available in Lucene.

The main features of this Suggester are:

1. Lookup implementation pluggability

2. Term dictionary pluggability, giving you the flexibility to choose the dictionary imple-

mentation

3. Distributed support

In my solr auto-complete project, I realize this function basing the spell check part and

define the suggest component and request handler. The search can be based on database or

file-based data.

3 Suggest Component

In the suggest component, we reuses much of the SpellCheckComponent infrastructure.



3.1 Suggestion on dadtabase Page 4 of 10

The code are as below:

1 <searchComponent c l a s s=" s o l r . SpellCheckComponent" name="

sugges t " >

2 <s t r name="queryAnalyzerFieldType ">s t r i n g</ s t r>

3 <l s t name=" sp e l l c h e c k e r ">

4 <s t r name="name">de f au l t</ s t r>

5 <s t r name=" f i e l d ">_entext_</ s t r>

6 <s t r name=" classname">org . apache . s o l r . s p e l l i n g . sugges t .

Suggeste r</ s t r>

7 <s t r name=" lookupImpl ">org . apache . s o l r . s p e l l i n g . sugges t .

t s t .WFSTLookupFactory</ s t r>

8 <f l o a t name=" thre sho ld ">0.005</ f l o a t>

9 <s t r name=" sourceLocat ion ">tmp . txt</ s t r>

10 <s t r name=" spe l l check IndexDi r ">d ic</ s t r>

11 <s t r name=" comparatorClass ">f r e q</ s t r>

12 <s t r name="buildOnOptimize">true</ s t r>

13 <s t r name="buildOnCommit">true</ s t r>

14 </ l s t>

15 </searchComponent>

3.1 Suggestion on dadtabase

In this part, the main different parameters define as below:

1. queryAnalyzerFieldType: The fieldType type in managed-schema. If this option is

added, the spelling checker will call this fieldType tokenizer. If it is not added, Solr

will take the word splitter of field defined below or just created a segmentation based



3.1 Suggestion on dadtabase Page 5 of 10

on space because SpellCheckComponent requires a word breaker to run. In our project,

we now hope that Analyzer does not make any changes to the query, so select string.

2. name: Same as the field defined in request handler.

3. lookupImpl: The look-up of matching suggestions in a dictionary is implemented by

subclasses of the Lookup class. There are four main implementations that are included

in solr:

• JaspellLookup - tree-based representation based on Jaspell

• TSTLookup - ternary tree based representation, capable of immediate data struc-

ture updates

• FSTLookup - finite state automaton based representation

• WFSTLookup - weighted automaton representation: an alternative to FSTLookup

for more fine-grained ranking

For practical purposes all of the above implementations will most likely run at similar

speed when requests are made via the HTTP stack. Direct benchmarks of these class-

es indicate that (W)FSTLookup provides better performance and has a much lower

memory cost compared to the other two methods.(JaspellLookup can provide "fuzzy"

suggestions, but this functionality is not currently exposed).

4. threshold: A value between 0 and 1, representing the minimum fraction of documents

where a term should appear. This will limiting some infrequent words. But if the

search is a file-based dictionary, this parameter will be useless.

5. comparatorClass: Return the sort of the result. There are four different types:

• empty: If not settled, the default will call this

• score: Explicitly choose the default case



3.2 Suggestion on dictionary Page 6 of 10

• freq: Sort by frequency first, then score

• a fully qualified class name: Provide a custom comparator that implements Com-

parator

6. buildOnOptimize/buildOnCommit: If set to true then the Lookup data structure will

be rebuilt after commit/optimize. If false (default) then the Lookup data will be

built only when requested. Noticing that only when this parameter is set as true the

spellchecker will work.

3.2 Suggestion on dictionary

When a file-based dictionary is used then it’s expected to be a plain text file in UTF-8

encoding. Each line must be consist of either a string without literal TAB character, or a

string and a TAB separated floating-point weight.

If weight is missing, it will be assumed as 1.0. Weights affect the sorting of matching

suggestions when spellcheck.onlyMorePopular = true is selected - weights are treated as

"popularity" score.

This part is defined in the suggest component as:

1 <s t r name=" sourceLocat ion ">tmp . txt</ s t r>

2 <s t r name=" spe l l check IndexDi r ">d ic</ s t r>

In this section, spellcheckIndexDir is the index file directory for recommended check. Solr

will create this folder at startup and store the index of the check suggestion under this folder.

4 Request Handler

After defining the suggest component, we need to add a new handler that uses Search-

Handler with with SearchComponent that we just defined.



Page 7 of 10

The code:

1 <requestHandler name="/ sugges t " c l a s s=" s o l r . SearchHandler ">

2 <l s t name=" d e f a u l t s ">

3 <s t r name=" sp e l l c h e c k . d i c t i ona ry ">de f au l t</ s t r>

4 <s t r name=" sp e l l c h e c k ">true</ s t r>

5 <s t r name=" sp e l l c h e c k . onlyMorePopular ">true</ s t r>

6 <s t r name=" sp e l l c h e c k . count">10</ s t r>

7 <s t r name=" sp e l l c h e c k . c o l l a t e ">true</ s t r>

8 <!−−s t r name=" sp e l l c h e c k . bu i ld ">true</ s t r−−>

9 </ l s t>

10 <arr name="components">

11 <s t r>s u g g e s t</ s t r>

12 </ ar r>

13 </ requestHandler>

And the default component are defined as below:

1. spellcheck: Run the Suggester for queries submitted to this handler.

2. count: Configure the number of spell check prompt results.

3. onlyMorePopular: If this parameter is set to true then the suggestions will be sorted

by weight ("popularity") - the count parameter will effectively limit this to a top-N list

of best suggestions. If this is set to false then suggestions are sorted alphabetically.

4. collate: Provide a query collated with the first matching suggestion.

5. build: Use this function to reconstruct the index when the core reloads.



Page 8 of 10

5 Result

5.1 Data search result

If we put "ac" as the input qt basing on , the result is:

5.2 Dictionary search Result

The give dictionary type is as(paper_name paper_ID TAB weight):

1 i l l i n o i s c o l l e g e o f optometry 000011FD 409

2 s a n g j i u n i v e r s i t y 00002523 820

3 manchester i n s t i t u t e o f innovat ion r e s ea r ch 00003DEF 101

4 ateneo de manila un i v e r s i t y 00004D0A 1010

5 i n s t i t u t o m i l i t a r de engenhar ia 0000A38E 1094



REFERENCES Page 9 of 10

6 s a p i e n t i a un i v e r s i t y 0000AB6E 123

7 kahramanmaras sutcu imam un i v e r s i t y 0000B3C1 1646

8 a l akhawayn un i v e r s i t y 0000BAE4 364

If we put the "ac" as the input qt, the result is:

It will return top ten weighted suggestions with name and the paper ID.

References

[1] https://en.wikipedia.org/wiki/Autocomplete



REFERENCES Page 10 of 10

[2] https://en.wikipedia.org/wiki/Apache_Solr

[3] https://wiki.apache.org/solr/Suggester

[4] https://lucene.apache.org/solr/guide/6_6/solrcloud.html

[5] http://iamyida.iteye.com/blog/2205114

[6] http://public.dhe.ibm.com/software/dw/java/j-solr1-pdf.pdf


