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1 Abstract

In this project, we proposed two methods based on neural networks to
address the social network deanonymization problem. The first method
is based on supervised learning, in which we trained a network to learn the
match between nodes. Its two variations balanced supervised learning and
extended supervised learning have gotten an AUC of 0.84 and 0.79 respec-
tively. The second method is based on unsupervised learning, which receives
positive results on small networks.

2 Introduction

The social network deanonymization problem is first addressed by Narayanan|[1]
in 2009, who proved that attackers can reveal the users’ private information from
public datasets from social platforms with the help of an auxiliary network, even
if the companies have already tried to remove or conceal personal information.
One typical result of a successful deanonymization attack is that attackers can
match the nodes in one network against another, which directly confers personal
information leakage.

Since then, deanonymization and anonymization techniques has developed
like playing a chasing game[2]. A stronger anonymization algorithm is devel-
oped, and then it is breached with certain deanonymization algorithm. It is
not certain who will be the final winner, but it is sure that the development of
deanonymization algorithms can spur the growth of the anonymization theory
and private information protection policy.

3 Problem Formulation

In this section, we give our precise definition of the social network deanonymiza-
tion problem.



Given a undirected graph G = (V, E) representing a social network. G rep-
resents the real (and possibly latent) social interpersonal relationship.

Let Gy, = (Vi, Ex), k= 1,--- , K denote several samples of G, where

Vi CV,E, CE

G, represents the interpersonal relationship reflected in various social net-
work data sources. Define ¢y : V' — Vj to describe the change happened in this
sampling process (including shuffling and/or anonymization). Our target is to
find the matching of nodes across different subgraphs.

Target:

Find A4, .7, st. Yu € Vi, v € Vp,
1, ¢, (u) = ¢y, (v),

0, otherwise

A (I (u), I (v)) ={

Here, .# is the signal function, and % (u) is the various information around
a node used to match nodes. In most case, such ideal function .# can not be
found, and different methods give different approximation of it.

¢ is not always invertible (in fact anonymization is intended to be non-
invertible), #~! here is just to denote the original node.

4 Related Work

In Table.1, we summarize the different deanonymization methods according
to the .# and . they used.

It can be seen that neural networks haven’t been used widely in the social
netowrk deanonymization problem. So, this project makes the attempt.

5 Deanonymization Based on Supervised Learn-
ing

In this section, we introduce our supervised learning based method. A for-
ward neural network is trained to learn the similarity between two nodes. We
denote the output by 4 (F), where F is the input.

Generally speaking, neural networks can not handle matching problems,
since the output space changes with different inputs. To circumvent this prob-
lem, we convert the matching problem to classification problem with two classes.



What does .# include

How is .# found

user core social
network features;

topology; iteratively found from
NS[1] common-
. seeds to all nodes
neighbor counts
Community-Enhanced Cgﬁgﬁi?z first match communities,
NS[3] . Y then within communities
designation;
user attributes;
user generated
content; supervised learning
HYDRA[4] user behavior based on real
trajectory; world information

Latent User Space[5]

user attributes

supervised learning based
on real world information

the equation of analytic

Random Forest[2]

1-hop neighbors

topology; Lo
Max A Posteriori[6] community SOlutézré;SSf;::g :;}llﬂli/l AP,
designation; . . .
approximation algorithm
degrees of

random forest

Table 1: Summary of deanonymization methods

Matching: A4V =V

Classfication: A" :V xV — {0,1}

This means the network gets a node pair (u,v) as inputs. If the output
should be 0, u and v are predicted to be non-identical, 1 as identical.

One problem of this transformation is label imbalance. For a network with
n nodes, there exist n correct node matching but n(n — 1) wrong ones. This re-
sults in positive feedback getting overwhelmed by negative ones. In this project,
two methods are tested to address this problem. In the first method, only n
negative samples are selected at random to balance the dataset. In the second
method, the inputs and outputs are further expanded to (u,v1,v2) = {0,1}. In
this case, an output of 1 implies (u, v1) is a better match than (u,v2). We name
the first model as balanced supervised learning, the second as extended

supervised learning.




5.1 Feature Vector

We use a feature vector F(u) to represent a node u. The node feature vector
used here is based on the feature used by Sharad [2]. In that work, each node
is represented with its neighbors’ degrees.

Vu €V, F(u) € R
F(u); = {v: (u,v) € E|iF, <deg(v) < (i+ 1)Fp},i=1,---,F,
In our case, F,, = 10, F; = 10.

balanced supervised learning

Two node vectors are concatenated together to be input of the network.

fbal(uav) = {‘F(u)’f(v)}

extended supervised learning

Three node vectors are concatenated in row.

Fext (u, vi,v5) = {F (), F(vi), F(v)}

5.2 Network Structure

There is no need to resort to deep networks since the feature vector is simple.
In our case, a 4-layer network is used, with 32, 32, 8, 2 hidden units in each layer
respectively. Dropout with a rate of 0.5 is used after the first 2 layers. See Fig. 1.
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Figure 1: Network Structure for Supervised Learning

5.3 Training

balanced supervised learning

A synthetic ER graph G = (V, E) with |V| = 100 and a density of 0.3 is
generated to represent the social network.



Two subgraphs G1, G2 are sampled by randomly discard edges at a proba-
bility of 0.8.

There is no need to shuffle the nodes order explicitly as [1] did since nodes
pairs are feeded into the network without global information.

The training dataset X is composed of all of the 100 identical node vector
pairs X1 = {Fpar(ui, v;) : u; € Vi,v; € Va,i =1,---,100} with label 1 and 100
non-identical node vector pairs Xo = {Fpai(u;,v;) @ w; € Vi,v; € Vo,i # j}
selected at random with label 0.

extended supervised learning

Subgraphs with identical parameters are generated.

The training dataset X is composed X1 = {Fext(ui, vi, v5) = u; € Vi,v;,05 €
Va,i=1,---,100,j # i} with label 1 and Xy = {Fext (i, v, v;) 1 w; € Vi, 05,05 €
Vo,i=1,---,100,7 # i} with label 0.

5.4 Evaluation

A new graph with identical parameters is generated for evaluation.

Training result: an ROC curve. See Fig. 2.

analysis
It can be seen from the ROC curve and the experiment that:
e Both variations give a positive result on prediction

e Extended supervised learning proves to be better than balanced supervised
learning, the reason can be possibly attribute to the richer dataset the
extended scheme possesses.

e Though extended supervised learning is slightly better, it takes much more
time to construct the training dataset.

6 Deanonymization Based on Unsupervised Learn-
ing
Supervised learning requires a training dataset already known to the at-

tacker, which is sometimes too high a requirement. In this section, a neural
network based unsupervised learning method is proposed.



ROC curve for extended and balanced supervised learning
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Figure 2: ROC curve for supervised learning

6.1 Estimation based on MAP

Define 7 to a permutation matrix representing the node matching, and mg
to be correct match. Onaran[7] has already form the deanonymization problem
into a max a posteriori (MAP) optimization problem under the community
model (which is not concerned in this project) and given the objective function:

# = argmax P(m = mo|G1,Ga,0,C)
mell

# = argmin Y wee() L)) — L) m()es)]

el i

where
1—pijs(2—s)

w;; = log( (1 — 5

)

The symbol used here:

e C(i): the community of the i-th node.

e II: all possible permutation matrices.

e 7(4): the image of the i-th node in subgraph Gs.

o 0: {{pi;}, s}, all introduced parameters



And Fu [6] has given its convexity approximation as
# = arg min(|rA — Br|% + uflrm — ml|3)
well
where:
e A: the weighted adjacency matrix of Gj.
e B: the weighted adjacency matrix of Gs.
e m: the community assignment vector.

e || - ||F: the Frobenius norm.

6.2 Unsupervised learning formulation

Fu [6] has given various methods to optimize this objective function. In
this project, a new method is proposed to as a new attempt. The idea is to
use the objective function as the loss function of the network (instead of cross
entropies which requires known labels). With back propagation, the weights of
the whole network will be adjusted to minimize the loss function, which force
the network to give the correct match. Also, since community structures are not
concerned in this report, the regularization term(u|7m—ml|%) can be dropped.

back propagation equation
Define the loss function:
L= lnA ~ Bl
The back propagation can be calculated in this way:
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With this expression, the loss can be propagated backwards onto the weights
of the network.

6.3 Training

The neural network and training dataset is constructed in the same way as
balanced supervised learning (section 5.3) does. The difference is that the node
feature vectors are input as a whole.

N F x F = [0,1]™"

The network will output a n-by-n matrix 7* = .4 (F) with values between 0 and
1, where n is the number of nodes. 7* will be used as the approximation of the
permutation matrix 7 (since a permutation matrix is required to be orthogonal
but 7* is not) and calculate the loss.

The exact matching can be calculated this way: the 0-1 matching can be
generated from the network output sequentially by marking the highest proba-
bility in the output matrix as matched (setting the value to 1, and setting all
values in the same column and row to 0), until we get a permutation matrix.

6.4 Evaluation

Synthetic random graph with 30, 60 and 100 nodes are generated as test
data, whose ROC curve is depicted in Fig.3.

ROC curve for unsupervised learning
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Figure 3: ROC curve for unsupervised learning



analysis
From the ROC curve and experiment, it can referred that:

e The performance of unsupervised learning is much worse then the super-
vised setting.

e As the scale of the social networks grows, the performance of unsupervised
learning recedes rapidly. One possible reason can be the too much local
optima the objective function contains, which goes beyond the ability of
neural networks.

7 Summary

In this report, we proposed two neural network based methods to address
the social network deanonymization problem under supervised and unsupervised
settings.

In supervised setting, a network is trained to learn the match between nodes.
Its two variation balanced and extended supervised learning prove to be effec-
tive for node matching, with a AUC of 0.84 and 0.79 respectively.

In unsupervised setting, a network is trained to lower the loss function which
will finally lead to a correct matching. This proves to be less effective than su-
pervised learning, and its performance recedes rapidly as the size of the network
grows.
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