
MySQL Load balancing and
Solr Performance Tuning

Zhuyang Wang
515030910543

wzy1997@sjtu.edu.cn

May 28, 2018

1 Solr Performance Tuning
Solr[1] is highly reliable, scalable and fault tolerant, providing distributed
indexing, replication and load-balanced querying, automated failover and
recovery, centralized configuration and more. Solr powers the search and
navigation features of many of the world’s largest internet sites.

However, configuring Apache Solr properly is critical for production sys-
tem stability and performance. It can be hard to find the right balance be-
tween competing goals. There are also multiple factors, implicit or explicit,
that need to be taken into consideration.

In this project, we investigate a running Solr instance, which provides
searching and faceting utilities for the website Acemap[4], and we make some
improvements on different aspects.

It is easy to setup a simple workable Solr instance through the following
steps:

1. Define a schema. The schema tells Solr about the format of documents
it will be indexing. For example, year should be of type int, title is
string, and keyword is a list of string.

2. Index data for which our users will search. Solr will generate several
index files for further usage.

1



And now we can search via RESTful API provided by Solr from the backend
or frontend using simple HTTP request URLs.

It is easy to see that there are few critical points regard to performance.
First is a well defined schema. Even a simple modification of schema can
largely influence searching performance and the index size. We will discuss
schema design in 1.1. The index file size also matters. For small index, Solr
can directly load it into memory. But as the index size grows we may not
have enough memory to hold the whole index. We will talk about this in 1.2.
Another important factor is cache size for different searching requests, which
will be discussed in 1.3. What’s more, since Solr is running on JVM, it is
also important to tune JVM parameters. See 1.4 for details. Finally in 1.5
we give an example in which we speed up the loading process of some charts
by faster faceting and asynchronous fetching.

1.1 Schema Design
Solr’s schema is a single XML file that stores the details about the fields and
field types Solr is expected to understand. The schema defines not only the
field or field type names, but also any modifications that should happen to
a field before it is indexed. For example, we may want to normalize all the
words in a paper, or we may want to categorize searching result by keywords.
These rules are defined in schema.

Solr has a schemaless way to index data. Schemaless means Solr will try
to guess the field itself so we can start using Solr without having to define all
the fields we trying to index. However there exist limitations. If it guesses
wrong, we can do nothing but reindex the whole data. It may be preferable
to use schemaless way on small dataset, but in our project it is totally not
recommended and we must define a suitable schema ourselves.

After some investigation we found some parts of original schema can be
further improved. For each field, Solr has two attributes indexed and stored
which are important. Indexed fields are fields which undergo an analysis
phase, and are added to the index. If a field is not indexed, it cannot be
searched on. And the purpose of the stored attribute is to tell Solr to store
the original text in the index somewhere so the actual value of the field can be
retrieved by queries. These two attributes are independent and orthogonal.
By carefully turning on or off thse two attributes we can reduce the index
file size and increase the overall searching speed.

Another problem is that in the original schema, there exist two isomor-

2



phic fields called _text_ and _entext_, which means they contain the same
and duplicate data. These two copyFields, which is prepared for matching
multiple default fields, result in large index file.

Besides, fields need faceting should turn on the attribute docValues,
which can dramatically increase faceting speed. This attribute is turned
on defaultly for field with type int and string, hence we do not have to
manually configure it.

1.2 In-memory Index
Solr uses custom DirectoryFactory to handle index. The default imple-
mentation solr.StandardDirectoryFactory is filesystem based, and tries
to pick the best implementation for the current JVM and platform. We can
force a particular implementation specifying solr.MMapDirectoryFactory,
solr.NIOFSDirectoryFactory, or solr.SimpleFSDirectoryFactory.

The one used in our project is NRTCachingDirectoryFactory, which
wraps solr.StandardDirectoryFactory and caches small files in memory
for better NRT(Near Real Time) performance. After a look at the code[3], we
found that StandardDirectoryFactory should use mmap if the OS and Java
version support it. If support isn’t there, it will use conventional file access
methods. As far as we know, all 64-bit Java versions and 64-bit operating
systems will support mmap.

Reasons to use MmapDirectory on 64-bit platforms are detaily discussed
in [2]. Using mmap we can allocate as less as possible heap space for Java
since our index is in OS’s disk cache, which is also very friendly to the Java
garbage collector.

Because NRTCachingDirectoryFactory is best suited for frequent soft
commits, which is not needed by our project, we may directly force the
mmap implementation in the future and compare performance.

1.3 Cache
Solr caches are associated with an Index Searcher — a particular ’view’ of
the index that doesn’t change. So as long as that Index Searcher is being
used, any items in the cache will be valid and available for reuse. Caching
in Solr is unlike ordinary caches in that Solr cached objects will not expire
after a certain period of time; rather, cached objects will be valid as long as
the Index Searcher is valid.

3



The current Index Searcher serves requests and when a new searcher is
opened, the new one is auto-warmed while the current one is still serving
external requests. When the new one is ready, it will be registered as the
current searcher and will handle any new search requests. The old searcher
will be closed after all request it was servicing finish. The current Searcher
is used as the source of auto-warming. When a new searcher is opened, its
caches may be prepopulated or ”autowarmed” using data from caches in the
old searcher.

Figure 1: Solr Server Memory

There are few caches available for faster searching. Filter cache is used
by SolrIndexSearcher for filters (DocSets), unordered sets of all documents
that match a query. When a new searcher is opened, its caches may be
prepopulated or autowarmed using data from caches in the old searcher.
Query result cache caches results of searches - ordered lists of document ids
(DocList) based on a query, a sort, and the range of documents requested.
Document cache caches Lucene Document objects (the stored fields for each
document). Since Lucene internal document ids are transient, this cache will
not be autowarmed.

We can increase corresponding cache size to achieve better search per-
formance. For facet cache, the related caches are field value cache and filter

4



Category Keyword Conference Journal Author Year
Total Time/s 2.34 0.33 0.15 0.77 0.18
Facet Time/ms 30.5 25.96 24.17 459.81 24.86

Table 1: Time of fetching data of different categories

cache. Since field value cache is not declared in current solrconfig.xml, it
is generated automatically with an initial size 10, a max size of 10000, and
no auto warming.[5] We can increase initial size and enable auto warming to
speed up facet.

1.4 JVM tuning
Solr instance needs a lot of allocated memory in our situation, and the Java
virtual machine will sometimes be out of memory. Whence we should increase
the initial memory size and maximal memory size for Java virtual machine.
However, too large memory for JVM may lead to slow garbage collection.
We should test different garbage collectors like parallel and generational in
the future.

1.5 Faster Faceting
Facet functionality is used heavily in searching result page[4]. It will count
papers published in different years and present the result in a chart, as well
as other charts with various types of facet information.

Though these charts are fantastic, it upsets us that the loading time is too
long, usually taking three or more seconds to fetch data and render charts
2. The problem is that facet is often slower than plain query since it must
iterate over all matching documents to count. What’s more, in addition to
facet result, the keyword chart needs much more data from MySQL database.
Actually it takes 2.34 seconds on average to fetch keyword related data.

We conduct some experiments about fetching time and the result is shown
in Table 1. We randomly choose 100 words from dictionary, make query for
different categories and calculate the average time it takes. It is suggested
that the reason keyword chart loads slowly is database operations but not
Solr facet. We also discover that faceting author ID takes a lot of time,
because there are too many authors in our system.

5



Figure 2: Loading charts

To address this problem, we first separate that one huge faceting request
into 5 asynchronous requests. This trivial modification dramatically improve
the loading speed of some charts like paper published year. Further more
improvements can be witnessed after facet performance tuning.

2 MySQL Load balancing
Modern high-traffic websites, like Acemap, must serve hundreds of thousands,
if not millions, of concurrent requests from users or clients and return the
correct text, images, video, or application data, all in fast and reliable man-
ner. To cost-effectively scale to meet these high volumes, modern computing
best practice generally requires adding more servers.

There exist many load balancing algorithms. Different algorithms provide
different benefits:

Random Choice Requests are randomly sent to server.

Round Robin Requests are distributed across the group of servers sequen-
tially.

Weighted Round Robin Requests are distributed sequentially with some
weight.

6



Figure 3: MySQL cluster and load balancer

Least Connections A new request is sent to the server with the fewest
current connections to clients. The relative computing capacity of each
server is factored into determining which one has the least connections.

IP Hash The IP address of the client is used to determine which server
receives the request.

Currently we use round robin algorithm to implement load balancing.
The ultimate goal is to consider each MySQL server’s load, capacity, CPU,
memory status. Until now we have done load balancing for one table, which
will be extended to all the tables in the future. Failure detection is also a
must for load balancing, as well as master-slave auto synchronization.

Acknowledgements
I would like to express my sincere thanks to Prof. Xinbing Wang and Luoyi
Fu for thier inspiring lectures in this semester. They showed me the golden
principles to do great research. I am also extremely thankful to Yuting Jia
and Xiaoyang Huo under whose guidance and assistance I finally accom-
plished this project and I came to know lots of new things. I would also like
to thank people who has ever helped me during this project. Finally I would
not forget Apache Solr team for their excellent wiki and detailed reference.

7



References
[1] The Apache Software Foundation. Apache Sorl. url: https://lucene.

apache.org/solr/.
[2] Uwe Schindler. Use Lucene’s MMapDirectory on 64bit platforms, please!

url: http://blog.thetaphi.de/2012/07/use-lucenes-mmapdirectory-
on-64bit.html.

[3] Eric Torti. Is solr.StandardDirectoryFactory an MMapDirectory? url:
http://grokbase.com/t/lucene/solr-user/15a79gakvs/is-solr-
standarddirectoryfactory-an-mmapdirectory.

[4] Acemap Inc. Shanghai Jiao Tong University. Acemap. url: http://
acemap.sjtu.edu.cn/.

[5] Solr Wiki. SolrCaching. url: https : / / wiki . apache . org / solr /
SolrCaching.

8


