# AceKG: Large-scale Knowledge Graph for Academic Data Mining

515021910338 Ruijie Wang 2018.05.27

## Content

- Background
- Dataset
- Experimental Benchmark
- Future Work

# Background

- Graph:
  - G=(V,E), where V is vertex set and E is edge set;
  - Preserve network topology structure;
- Knowledge Graph:
  - G=(E,R,P), where E is entity, R is relation and P is property.
  - topology structure + vertex content + side information
  - Format: triplets

#### Background





# **Experimental benchmark**

- Knowledge embedding:
  - Aim: enrich the knowledge base;
  - Method: Embed triplets into vectors;
  - Tasks: Link prediction.....

# **Knowledge Embedding**



Figure 1: Simple illustration of TransE and TransH.

[Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowledge Graph Embedding by Translating on Hyperplanes. In *Twenty-Eighth AAAI Conference on Artificial Intelligence*.]

# **Knowledge Embedding**

|          | MRR   |        |  | Hits at |      |      |  |
|----------|-------|--------|--|---------|------|------|--|
| Model    | Raw   | Filter |  | 1       | 3    | 10   |  |
| TransE   | 0.358 | 0.719  |  | 62.7    | 82.5 | 89.2 |  |
| TransH   | 0.315 | 0.701  |  | 61.0    | 77.2 | 84.6 |  |
| DistMult | 0.432 | 0.749  |  | 68.7    | 79.5 | 86.1 |  |
| HolE     | 0.482 | 0.864  |  | 83.8    | 87.1 | 88.2 |  |
| ComplEx  | 0.440 | 0.817  |  | 75.4    | 85.8 | 89.0 |  |

Table 4: Results of link prediction task on AK18K.

# **Experimental benchmark**

- Network representation learning:
  - NRL assigns nodes in a network to low-dimensional representations and effectively preserves the network structure.
  - Using the embedding result, we can learn the classification of the academic entities. Then we can predict the academic labels of them.

### **Network representation learning**



[B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710. ACM, 2014.]

# **Network representation learning**

| Metric   | Method        | FOS_BI | FOS_CS | FOS_EC | FOS_ME | FOS_PH | FOS_5F | Google |  |  |  |  |
|----------|---------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|--|
| Micro-F1 | DeepWalk      | 0.792  | 0.545  | 0.692  | 0.663  | 0.774  | 0.731  | 0.948  |  |  |  |  |
|          | LINE(1st+2nd) | 0.722  | 0.633  | 0.717  | 0.701  | 0.779  | 0.755  | 0.955  |  |  |  |  |
|          | PTE           | 0.759  | 0.574  | 0.654  | 0.694  | 0.723  | 0.664  | 0.966  |  |  |  |  |
|          | metapath2vec  | 0.828  | 0.678  | 0.753  | 0.770  | 0.794  | 0.831  | 0.971  |  |  |  |  |
| Macro-F1 | DeepWalk      | 0.547  | 0.454  | 0.277  | 0.496  | 0.592  | 0.589  | 0.942  |  |  |  |  |
|          | LINE(1st+2nd) | 0.445  | 0.542  | 0.385  | 0.577  | 0.640  | 0.655  | 0.949  |  |  |  |  |
|          | PTE           | 0.495  | 0.454  | 0.276  | 0.555  | 0.571  | 0.528  | 0.961  |  |  |  |  |
|          | metapath2vec  | 0.637  | 0.570  | 0.485  | 0.659  | 0.635  | 0.682  | 0.968  |  |  |  |  |

Table 6: Results of scholar classification.

#### **Network representation learning**



#### **THANK YOU**