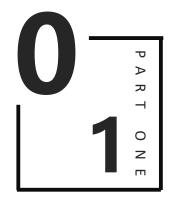
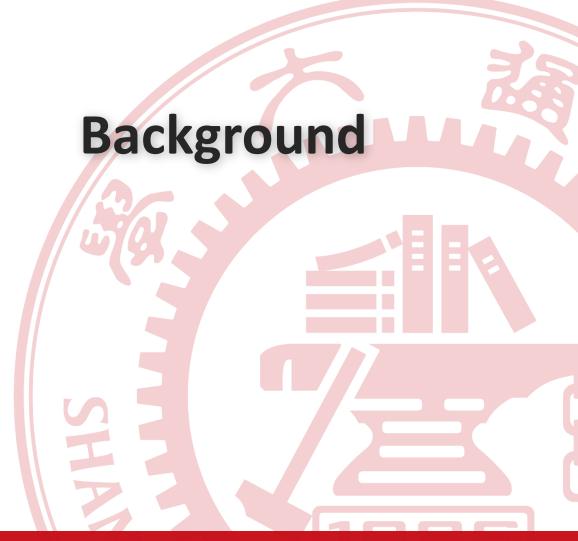


Reconstruct Radio Map with Automatically Constructed Gaussian Process for Localization

- 01 | Background02 | Gaussian Process
- 03 | Kernel Selection
- 04 | Model Ensemble
- 05 | Experiment

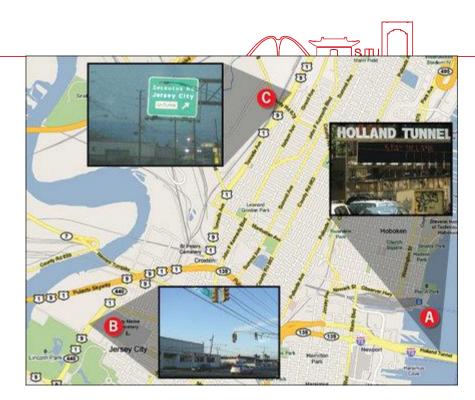




Background

GPS: time consuming Power consuming Turn on

meter



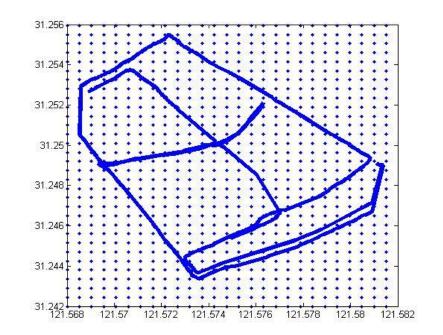
Base station Signal strength

Comparison

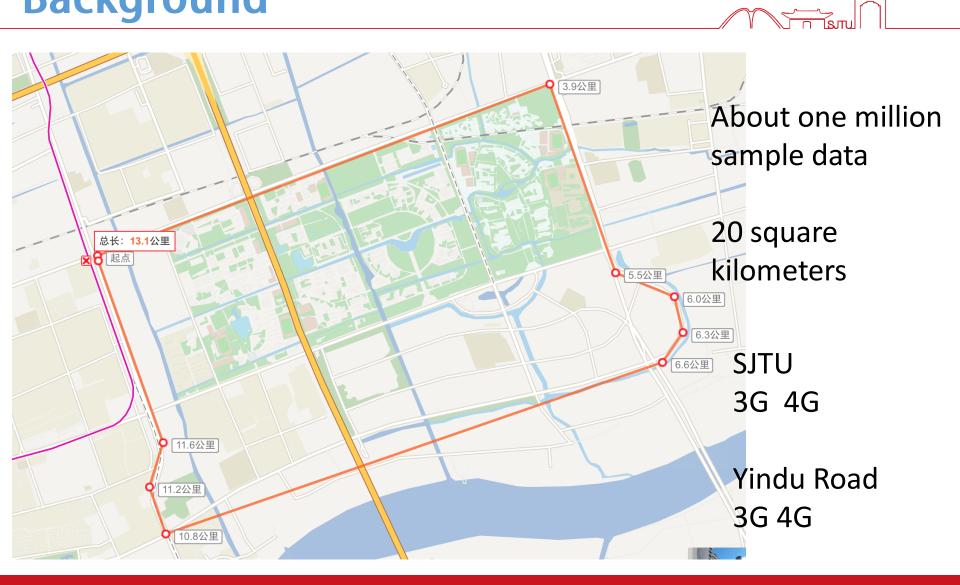
- indoor localization use fingerprinting
- creating a radio map
- Received Signal Strength Indicators (RSSI) values
 obtained from multiple
 access points (APs)

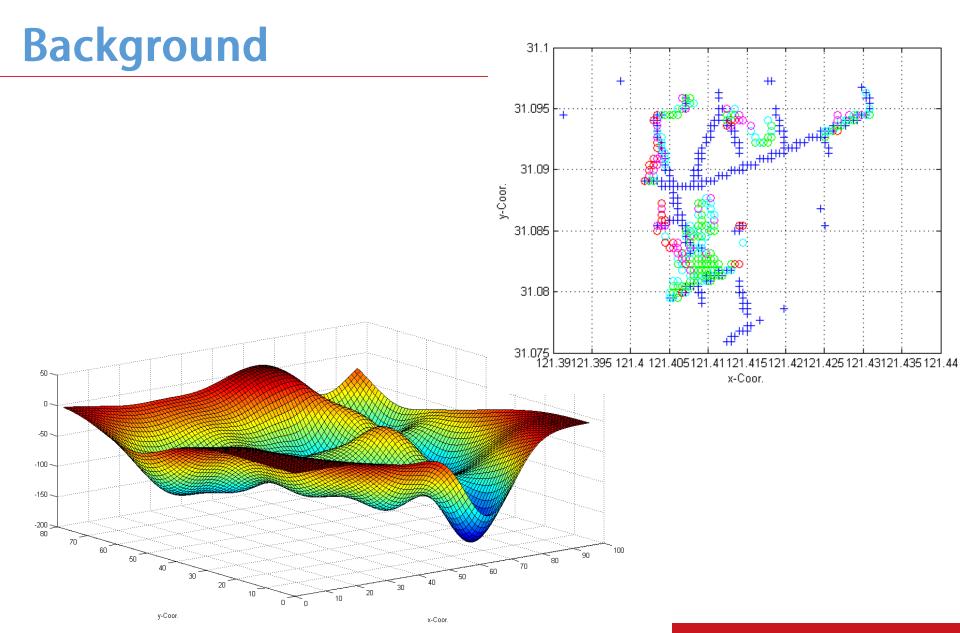
- a large outdoor environment
- sample thousands of survey sites to construct a fine grain radio map
- a university usually needs hundred thousand training data

Background



Background

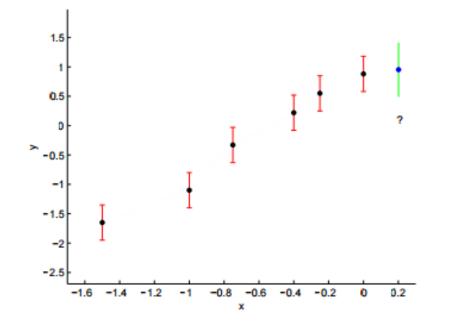




GP Motivation

Given a training set $D = \{(x_i, y_i) | i = 1, ..., n\}$

How to calculate the output y_* for a new input x_*



Linear regression? – Least Square Method

Nonlinear regression? -- Gaussian Process

Relationship to Linear Regression

- In logistic regression, the input to the sigmoid function is $f = \omega^T x + b$ where ω are parameters.
- A Gaussian process places a prior on the space of functions f directly, without parameterizing f.
- Therefore, Gaussian processes are non-parametric
- more general than standard regression the form not limited by a parametric form

Definition

Given a training set $D = \{(\mathbf{x}_i, y_i) | i = 1, ..., n\}$

How to calculate the output $y_*(RSS)$ for a new input $x_*(longitude/latitude)$ Assume $y = \{y_1, y_2, ..., y_n\}$ obey multivariate Gaussian Distribution

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \sim N(\mathbf{0}, K) \to \mathbf{y} \sim N(\mathbf{0}, K)$$

Where

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n) \end{bmatrix}$$

Definition of GP

• A Gaussian process any finite number of which have joint Gaussian distributions.

 $f \sim gp(m,k)$

- A Gaussian process is fully specified by its mean function m(x) and covariance function k(x,x').
- Two things to define our GP:
 - choose a form for the mean function.
 - choose a form for the covariance function

For new input data y* joint distribution defined as:

$$\begin{bmatrix} \mathbf{y} \\ y_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K & K_*^{\mathrm{T}} \\ K_* & K_{**} \end{bmatrix} \right)$$
$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n) \end{bmatrix}$$

 $K_* = \begin{bmatrix} k(x_*, x_1) & k(x_*, x_2) & \cdots & k(x_*, x_n) \end{bmatrix} \qquad K_{**} = k(x_*, x_*).$

高斯过程——均值方差

Get conditional distribution:

$$y_* | \mathbf{y} \sim \mathcal{N}(K_* K^{-1} \mathbf{y}, K_{**} - K_* K^{-1} K_*^{\mathrm{T}}).$$

Mean and variance:

$$\overline{y}_* = K_* K^{-1} \mathbf{y},$$

$$\operatorname{var}(y_*) = K_{**} - K_* K^{-1} K_*^{\mathrm{T}}.$$

Tune Hyper-Parameters

Hyper-parameters::

$$\boldsymbol{\theta} = \{l, \sigma_f, \sigma_n\} \qquad k(x, x') = \sigma_f^2 \exp\left[\frac{-(x - x')^2}{2l^2}\right] + \sigma_n^2 \delta(x, x')$$

Maxlimum: $p(\theta | \mathbf{x}, \mathbf{y})$

Maxlimum the log likelihood: (conjugate gradients)

$$\log p(\mathbf{y}|X, \boldsymbol{\theta}) = -\frac{1}{2} \mathbf{y}^{\top} K_y^{-1} \mathbf{y} - \frac{1}{2} \log |K_y| - \frac{n}{2} \log 2\pi_y$$

Hyper-parameters

The covariance function defines how smoothly the (latent) function f varies from a given x.

SE kernel:
$$k(x,x') = \sigma_f^2 \exp\left[\frac{-(x-x')^2}{2l^2}\right] + \sigma_n^2 \delta(x,x')$$

$$\sigma_f^2$$
: overall vertical scale of variation of the latent value.

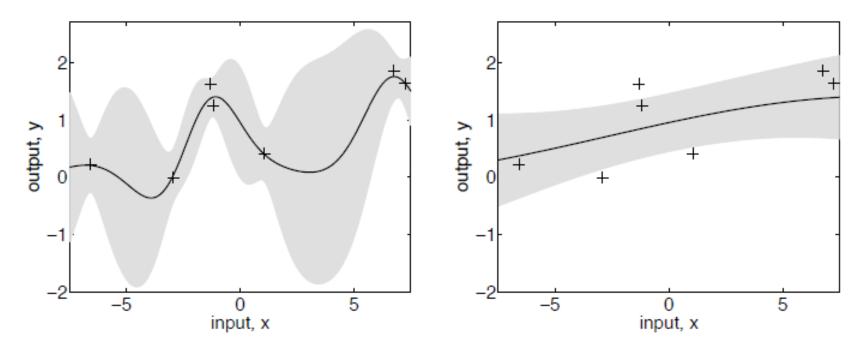
- *l*: characteristic length-scale
- short means the error bars can grow rapidly away from the data points.
- large implies irrelevant features .
- σ_n^2 : noise variance

Hyper-parameters

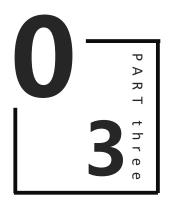
Different hyper parameters

 $\overline{y}_* \pm 1.96 \sqrt{\operatorname{var}(y_*)}$

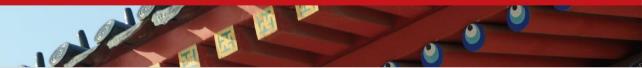
Bias & Variance trade off



left with small *l* right with large *l*

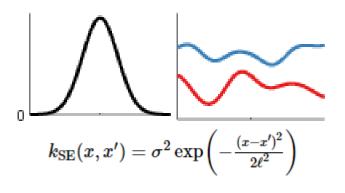


Kernel Selection

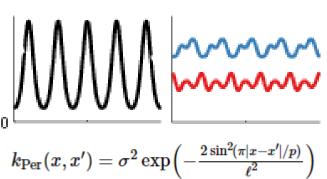


Kernel Selection

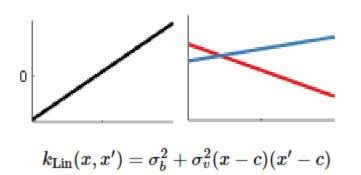
Squared Exponential Kernel

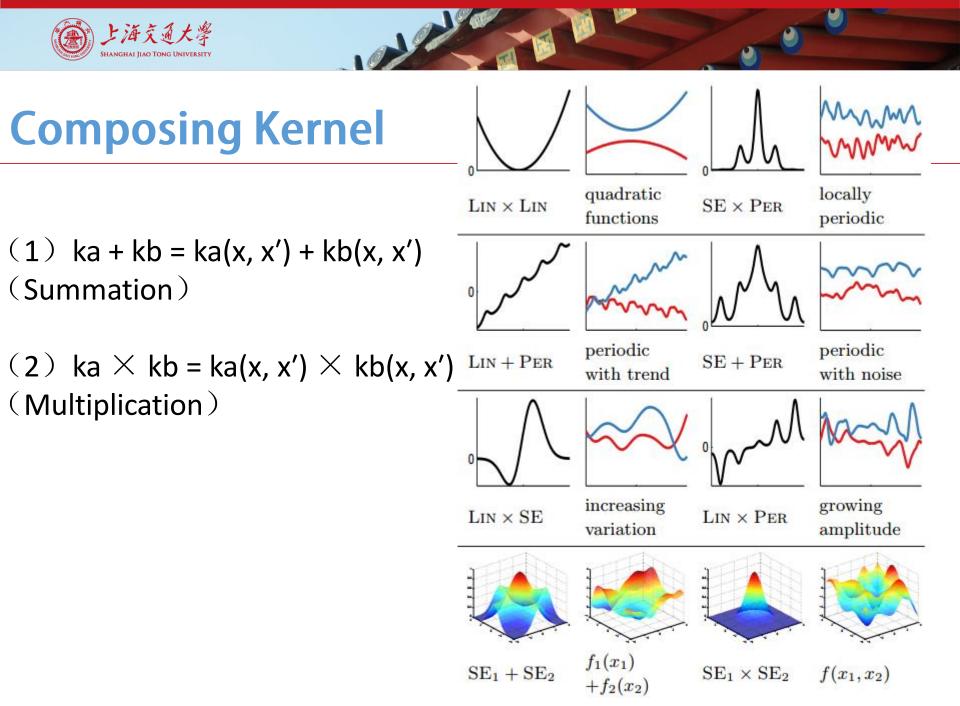


Periodic Kernel



Linear Kernel





Automatic Model Construction

choosing the structural form of the kernel: a black art

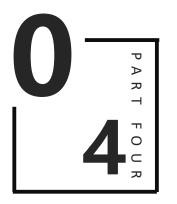
$$k_{\rm SE}(x,x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2\ell^2}\right)$$
$$k_{\rm PER}(x,x') = \sigma^2 \exp\left(-\frac{2\sin^2(\pi(x-x')/p)}{\ell^2}\right)$$
$$k_{\rm LIN}(x,x') = \sigma_b^2 + \sigma_v^2(x-\ell)(x'-\ell)$$
$$k_{\rm RQ}(x,x') = \sigma^2 \left(1 + \frac{(x-x')^2}{2\alpha\ell^2}\right)^{-\alpha}$$

海京角

 $\operatorname{BIC}(M) = -2\log p(D \mid M) + |M|\log n$

BIC trades off model fit and complexity

- Search over sums and products of kernels
- Maximizing the BIC(M)
- Show how any model be decomposed into different parts

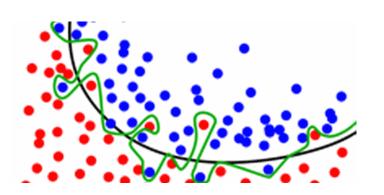


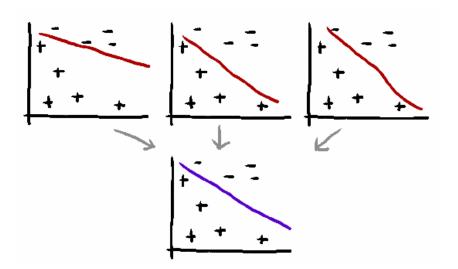
Model Ensemble

Model Ensemble

Don' t Overfit!

Averaging multiple different green lines should bring us closer to the black line. average out biases
reduce the variance
unlikely to overfit



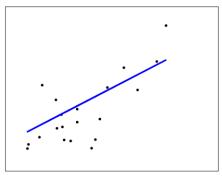


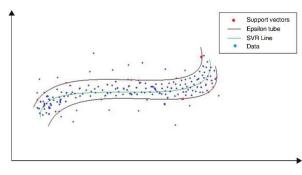
Model Ensemble

Linear regression

SVR

Gradient Tree Boosting





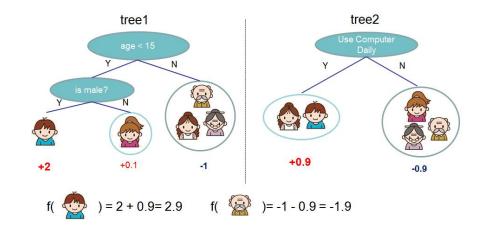
Xgboost

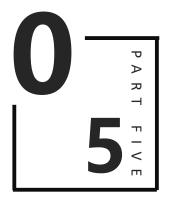
GP (RQ)

GP (Compose)

Rate Averaging

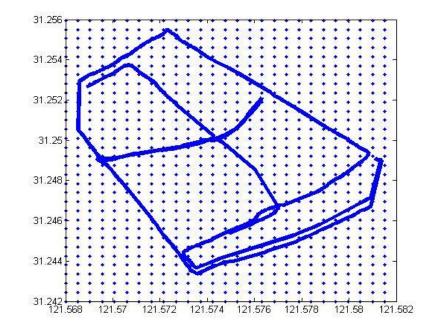
Blending





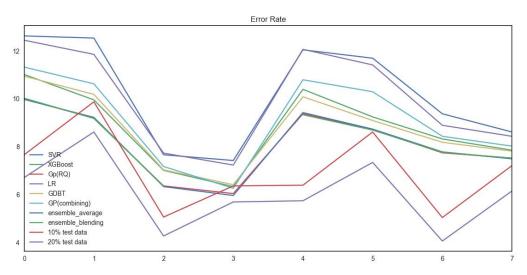
Experiment Results

Experiment Results



โรเ

Experiment Results



Unnamed: 0	SVR	XGBoost	Gp(RQ)	LR	GDBT	GP(combining)	nsemble_averag	semble_blend	10% small road	20% small road
SJTU_3G	12.6	11	10	12.4	10.9	11.3	9.98	10	7.67	6.72
SJTU_3G	12.5	9.96	9.19	11.9	10.2	10.6	9.23	9.19	9.88	8.62
SJTU_4G	7.67	7.02	6.37	7.74	7.04	7.18	6.34	6.36	5.07	4.28
SJTU_4G	7.43	6.34	6.05	7.24	6.42	6.27	5.97	nan	6.37	5.7
YINDU_3	12.1	10.4	9.38	12.1	10.1	10.8	9.43	9.34	6.4	5.75
YINDU_3	11.7	9.25	8.72	11.4	9.1	10.3	8.74	8.7	8.62	7.35
YINDU_4	9.38	8.33	7.75	8.9	8.19	8.44	7.79	7.77	5.05	4.07
YINDU_4	8.62	7.86	7.53	8.44	7.82	8.03	7.5	7.53	7.22	6.16

