
Reconstruct Radio Map with Automatically
Constructed Gaussian Process for Localization

Abstract—Over the past decade, the increasing use of wireless
networking technology has been implemented in real-world
location-based application, especially in localizing clients holding
mobile devices in indoor and outdoor environments. According
to recent published literature, fingerprint methods outperform
other methods and techniques (time-based, angle based, and
power-based techniques) in indoor positioning scenarios. Also,
many algorithms have been proposed to model radio maps during
offline phase and utilize these maps to predict a mobile client’s
location from received signal strength indicators values obtained
from multiple access points. These technologies can be applied to
outdoor environment as well. We cooperate with HUAWEI and
collect the RSRP(Reference Signal Receiving Power) on main
roads and utilize Gaussian Process Regression to predict the
values on small roads to construct the radio map in the city for
localization. The main contribution of this paper are as follows.
First, we identify the different causes of variation in wireless
channel quality. Second, we introduce a Bayesian regression
model - Gaussian Process Regression model to profile the RSRP
pattern of the base stations. We compose kernels automatically
and construct the model. Third, we select different models to
do the comparison and model ensembling. Later, we present our
evaluation in Shanghai JiaoTong University and Yindu Road for
3G and 4G radio map recovery. We collect one million sample
points from twenty square kilometers area and get about 5%
and 7% error rate for 3G and 4G, respectively.

I. INTRODUCTION

Over the past decade, the increasing use of wireless
networking technology has been implemented in real-world
location-based applications, especially in localizing clients
holding mobile devices in indoor environments. Though GPS
is widely used in outdoors, it also has some disadvantages,
such as power consuming and time consuming. The most
significant disadvantage is that the GPS module must be turned
on by the user, or there is no way to locate a device. The
situation that we need to locate a device without the user’s
help exists when there is an emergency such as ’911’ and
kidnapping. So, an accurate alternative wireless positioning
for outdoors is needed. Fortunately, there have been many
solutions proposed to locate indoor mobile clients due to
widespread deployment of WiFi and these technologies can
be applied to outdoors as well.

Most adopted solutions for indoor localization use fin-
gerprinting of ambient environment signatures. At the same
time, a more successful technique requires a substantial ‘pre-
deployment’ effort by way of creating a radio map. Over the
last decade, many algorithms have been proposed to model
WiFi radio maps and use this to predict a mobile client’s
location from Received Signal Strength Indicators (RSSI)
values obtained from multiple access points (APs).

Fingerprint wireless localization techniques is performed on
two phases; offline phase and online phase. During the offline
phase, the signal strength received from the access points
at selected locations are stored in a database, resulting in a
radio map. During the online phase, the system use the signal
strength samples of mobile clients from the access points to
search radio map to estimate the client’s location. In this paper,
we develops a new probabilistic techniques based localization
system that increases the accuracy of positioning.

The biggest challenges with fingerprints techniques is that
they are vulnerable to several dynamic factors in candidate
locations. The first kind of factors are inherent factors, such as
different candidate locations and changes of wireless channels
over time when the client is standing at a fixed location.
Another kind of factors are external factors, such as WiFi
hardware variance problem: the WiFi device (training device)
used to contrust radio maps during the offline phase differ from
the WiFi devices (positioning device) used during the online
phase, or difference between positioning devices. To handle
such factors it is imperative to first understand the impact of
these factors. The experiments described later indicate how
these factors influence the accuracy of localization. Further,
we also consider these factors into our localization model.

Second, for a large outdoor environment, it is too difficult
to sample thousands of survey sites to construct a fine grain
radio map. For example, a university usually needs a hundred
thousand training data during offline phase. Hence, another
objective we investigate in this paper is: How to deal with large
problems when the construction process highly scales and it
is possible to reduce the data matrix rank to approximate
the radio map, while keeping localization accuracy within
a certain limit? A possible solution is that we can easily
collect the data from the main road by driving a car with a
mobile device along these roads. The small roads are hard to
access and time-consuming to go through. Alone these lines,
we introduce machine learning to solve this problem. We use
main road data to recover the data on small road and then
construct the whole radio map.

The main contributions of this paper are as follows.
• We identify the different causes of variation in the indoor

wireless channel quality. The main targets we measure
are received signal strength and throughput. The mea-
surement results confirm that the distribution of received
signal strength around an AP is Gaussian given the target
device is stationary at a location.

• We introduce a Bayesian regression model - Gaussian
Process Regression model to profile the RSRP pattern of



the base stations, constructing radio maps. GPR model
has been recently used to solve complex machine learning
problems.The GPR is specified by its mean function and
covariance function. We use composing kernels to do the
automatic model construction to get better accuracy.

• We select different models such Linear Regression, Sup-
port Vector Regression, Gradient Boost Tree, Xgboost
and so on to do the model comparison and model
ensembling and evaluate their performance.

The remainder of the paper is organized as follows. We
introduce the math background of Gaussian Process in Section
III.We then introduce wireless channel characteristic measure-
ment experiments in Section IV. We describe our Gaussian
Process model in Section V and give automatically kernel
composing. In section VII, we present our evaluation. Related
work and conclusions are in Section II and Section VIII,
respectively.

II. RELATED WORK

Localization has been an active area of research for the past
two decades. In the following, we highlight some of the work
on localization in wireless systems and the scheme on radio
map reconstruction, and point out the difference in our work.

There are two popular techniques for indoor localization
based on wireless network, triangulation-based method and
RF-based method. In triangulation-based method, it uses the
geometric properties of triangles to estimate the location
of the target. Triangulation-based technology can be mainly
categorize into two group: lateration and angulation. In lat-
eration, it estimates the location by measuring its distances
between target and the multiple reference points. Such tech-
nology include TOA (time of arrival)–using different signaling
techniques such as direct sequence spread-spectrum (DSSS)
[2], [3] or ultrawide band (UWB) measurements [1], [4] –
and TDOA (time difference of arrival) [5]. In angulation, it
estimate the location by computing angles retative to multiple
reference points.One of the technology used angulation is
AOA Estimation [8].

Comparing with the triangulation-based technology, the RF-
based technology does not need additional hardware but a
WiFi-integrated mobile device.RF-based scene analysis refers
to the type of algorithms that pre-collect features (fingerprints)
of a scene and then estimate the location of an object by match-
ing online measurements with the closest a priori location fin-
gerprints. Two main category of fingerprint-based technology
is kNN-based method and probabilistic-based method.kNN (k
nearest neighbor algorithm) estimates the target’s location by
computing the centroid of the k closest neighbors that have
the smallest euclidean distance to the online RSS reading data,
such work including RADAR by Microsoft. [9], [10]. Based
on the survey of Liu [6],the probabilistic method (such that
Horus [7]) have better performance than the kNN method. And
our work develop a novel probabilistic techniques in order to
increase the accuracy.

One problem for fingerprint-based method is that it need
significant labour cost during the offline parse to construct

the radio map. To solve this problem we use a small number
of fingerprint to reconstruct the whole radio map. Feng et.al.
[11]develop a compressive sensing scheme to reconstruct the
radio map based on RSS measurements at only a subset of
fingerprints. However, compressive sensing scheme base on
the assumption that the radio map have a sparse nature.And
this work does not care about the temporal characteristic of
RSS.

The other external factor that will influence the accuracy of
the localization the device variance problem. Tsui et.al [12]’s
work focus on the hardware variance problem of RSS-based
localization. Their work base on the assumption that there is
a linear shift between different devices. In our work we try to
use Gaussian Process to find the transformation function, and
combine this model to the spatio-temporal model.

III. BACKGROUND

The core of our method is a Gaussian process regression
model that describes the characteristic of radio map. Before
discussing the characteristic of radio map and its use for radio
map reconstruction, we give a brief overview of Gaussian
process and its regression.

Because of the drawbacks of radio propagation model, an
alternative method is probability techniques with supervised
learning. Supervised learning, that is, given empirical data (the
training dataset), we learn the relationship between input and
output, then make the prediction based on new observations. In
our problem, we take the main road data as the training set and
the small road data as the test set. Here, we do not consider
a strict function between input and output by violence. On
the contrary, we give a prior probability to every possible
function, where higher probabilities are give to functions that
we consider to be more likely. That is what Gaussian process
is going to do. Here, we don’t rigidly differentiate process and
distribution, though a probability distribution and a stochastic
process respectively describes random variables and properties
of functions.

A. Gaussian Process

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.In
this section we give a brief review of GPR for implementation
purpose; further details can be found in [?]. GPML website:
http://gaussianprocess.org/gpml/

A Gaussian process f(x) is completely determined by a
mean function m(x) and a covariance function k(x,x′),such
that, where x is the input vector

f(x) ∼ GP(m(x), k(x,x′)) (1)

m(x) = E[f(x)] (2)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3)

Concerning with Gaussian noise, a Gaussian process can be
expressed as

y = f(x) + ε (4)



where X = {xi|i = 1, ..., n} is input dataset, y = {yi|i =
1, ..., n} is output and ε ∼ N (0, σ2

n).

B. Gaussian Process Regression

The joint distribution of the training outputs y and the test
outputs f∗with a zero mean function is[

y
f∗

]
∼ N (0,

[
k(X,X) + σ2

nI k(X,X∗)
k(X∗,X) k(X∗,X∗)

]
) (5)

where X and X∗ are design matrices for training data and
test data respectively.Conditioning f∗ on observation y, the
predictive distribution can be derived:

p(f∗|x∗, X,y) ∼ N (f∗, V (f∗)) (6)

where
f∗ = k(X∗,X)[k(X,X) + σ2

nI]−1y, (7)

V (f∗) = k(X∗,X∗)−k(X∗,X)[k(X,X)+σ2
nI]−1k(X,X∗).

(8)
p(f∗|x∗, X,y) = N (φ>∗

∑
p Φ(K + σ2

nI)−1y,

φ>∗
∑
p φ∗ − φ>∗

∑
p Φ(K + σ2

nI)−1Φ>
∑
p φ∗)

(9)

Further, we can define k(X,X′) is a covariance function or
kernel.

Under normal circumstances, we assumes the Mean function
of Gaussian process as zero, because it turns out that the
impact is adding an item related to noise variance at the end
of the covariance function (kernel) and, so it is equivalent to
a new kernel, which will not affect the final result.

IV. OBSERVATION

Due to the very dynamic nature of the wireless signal, the
assumption that the wireless characteristic during the offline
phase keep consistent with the condition during online phase
is impractical. Thus, it seems more necessary to monitor
RSSI characteristic and variations in both spatial and temporal
domains.

A. Spatial Characteristic

This section describes how the RSS value receiving from
one AP changes when the location of detector varies. The
variation is divided into two characters, one meaning distance
between the detector and the AP and the other meaning
detector’s orientation towards the AP.

1) Distance variation: We conduct our measurement in the
test bed, and measure RSS values from one AP as distance
from it increases. The selected test locations align as a line
as possible. Because the wifi networks work at the 2.4GHz
range, the wavelength is 12.5cm, we measure the RSS values
under two situations: 1) the distance interval is larger than 12.5
centimeters, specifically, we set interval about 0.5 meters. 2)
the distance interval is less than 12.5 centimeters.

Considering the first situation, Fig.1(a)shows the RSS value
receive from AP will decrease with the distance increasing.
However the relationship between them is not a strict linear
function. Under the second situation, the RSS value varies
in less than 1dBm. Remember our goal is construct the radio
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Fig. 1. Fluctuation of RSS

map more efficiently and reduce unnecessary squander of labor
during offline phase. So, we don’t need to capture the the RSS
variance in the wavelength range.

2) Orientation variation: These variation happen when the
angle between the detector and the AP changes. Theoretically,
the attenuation of wireless signal strength is identical over all
orientation. However, it is impossible due to specific indoor
architectural structure. The position of windows, doors, and
corners could all influence the distribution of RSS values [?,
]. It should be noted that some work have studied that people
standing at different angles to an AP (facing north or south,
but staying at the same site) may cause different attenuation
to the radio wave power [?, ]. In our opinion, the influence
coming from the variation of human body is less significant
than the influence by specific spatial structure. Obviously, the
latter plays a pivotal role in practical situation.

B. Temporal Characteristic

In this section, We mainly focus on the temporal changing
property of wireless signal strength. In order to observe this
property, we settle the mobive devices in a fixed place and
let them collect the wireless signal strength from a given
access point. An Android application we programmed is used
to collect the signal strength data for a long period of time.
The smart phone used in this experiment is the Note-1s from
Xiaomi company, and the access point is provided by Foxcoon
company. This AP works on dual band, which 2.4GHz and
5 GHz. In our experiment,the frequency band we used is
2.4GHz. We collect data for two hours in three period of time:
10:00 12:00, 16:00 18:00 and 20:00 24:00. The result of our
experiment is shown as following figures.
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Fig. 3. Autocorrelation of temporal sequence of RSS

From the Fig.2, we can exploit that the fluctuation of the
RSS is varied in different time period. The reason of the
variety is partily because the activity of the client conecting
the access point can influence the RSS value smart phone
collected.

In order to mine the information behind the data, we analyse
the autocorrelation of the temporal RSS sequence. The result
is showen as following figures.

From Fig.3, we can get that the autocorrelation is big when
it has a short delay, which indicates that there is a strong
correlation between the sequence in a short period of time.
In conclusion, the prediction of temporal RSS is practicable,
since if there is a correlation in a short period of time, the
RSS in this period of time can be used in the prediction of the
following time period. We can also find out that if the delay
time is long, the autocorrelation will rebound, however, the
autocorrelation is still a small value. This observation shows
that the appearance of sequential wave crest does not indicate
the periodicity of temporal RSS sequence.

V. KERNEL COMPOSING

In the traditional offline phase, a site survey performed in
the selected area is conducted by an operator who collects
RSRP values at target locations to construct the database as
a function of the client’s physical coordinates. The drawback
of this method is time-consuming, especially impractical under
large outdoor environments. In section IV-A and section IV-B,
we have manifested that existing RSRP patterns for each base
station. Therefore, an alternative approach is establishing a
power profile for each base station, utilizing small number

of RSRP observations to estimate or predict RSRP values at
unknown locations.

We propose the following regression model based on sta-
tistical knowledge. By training a small number of data points,
we can give a reasonable estimate. The Gaussian process
regression model we used has described in Sec. III.

A. kernel methods

Suppose our training dataset is D = {X,y}. Next, we will
specify the input and output of Gaussian process used in our
approach.

Let us consider a two-dimensional physical space X, with
n base stations. Due to most base stations are previously
installed into the environment, we just assume the location
of base stations is known. Let us denote the RSRP reported
from various base stations by an n dimensional vector s ∈ S,
where S is the n-dimensional signal strength space. We select
m locations as fundamental dataset. Hence, at each location i,
we obtain RSRP values vector Li = [rss1, rss2, ..., rssn], i =
1, 2, ...,m reported from n base stations. As for each AP
installed into X, we can also write the dataset into the form
of Mj = [rss1, rss2, ..., rssm]>, j = 1, 2, ..., n reported from
m locations. Therefore, the fundamental dataset from offline
observations (basic radio map) is represented by Ψm×n where
ψi,j = 1

t

∑t
τ=1 ψi,j(τ) is the average of RSS readings over

time domain from base station j at location i, as {ψi,j(τ), τ =
1, ..., t, t > 1} with t being the total number of time samples
collected. Because of limited power of one base station, there
is might no RSS readings for an base station at some locations.
The corresponding RSS values in the Ψ are set to a very small
values (-110dBm in our approach) which implies zero power
readings. One thing need to note is that in our approach, the
dynamical phenomenon in the target space X is specified by
a spatio-temporal Gaussian process, hence t is supposed to be
small when we need to observe RSS values distribution over
long time T . Here t is just used to eliminate the measurement
error, and acuqiring average readings could reduce this error.

In the next subsection, we will specifically discuss how
to use Gaussian process to estimate the RSRP values from
various base stations at unknown locations.

The kernel function(covariance function) plays the impor-
tant role in Guassian Process Regression as it corresponds to a
kind of model assumption. We note that each kernel function
has a series of parameters that can be used to control the spe-
cific shape of the covariance function. Here some parameters
are called hyperparameters because hyperparameters do not
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Fig. 4. The result of using SE kernel directly

directly determine the form of the function, but the distribution
of other parameters.

According to the test results of Section IV-A, there is
not direct periodic characteristic and linear characteristic. So
choosing Periodic kernel function or Linear kernel function is
unwarranted.So we model the radio map as a Guassian Process
and choose square exponential kernel function:

k(x,x′) = σ2
f exp(−

∑
l∈x,y

(sl − s′l)2

2`2
) (10)

where (sx, sy) = x represents a coordinate of two-dimensional
physical space X. ` and σ2

f is the length-scale and the signal
variance respectively. Generally, we call these parameters
hyperparameters to emphasize that they are parameters of non-
parametric model.

Figure 4 shows the predict result of using SE kernel directly.
We selected part of the location data as training set, and then
predict the wireless signal strength value in the rest of the
position, which are called test points. Here we do not consider
the influence of time. We list the test points in the order from
small to large in x axis, and the wireless signal strength value
in the y axis. We draw the true value in the picture. The
predicted value is indicated by the mean and variance of the
model output. The upper bound of the prediction equals to
the mean plus twice the standard deviation, the lower bound
of the prediction equals to mean minus twice the standard
deviation. As you can see,there is still a large gap between
the real and predicted values, so the prediction did not meet
our expectation.

Here we need to build more complex Gaussian kernel
functions. To construct combined kernel functions, there are
two ways, one is Addition, the other is Multiplication.

(1)
Ka +Kb = Ka(x, x′) +Kb(x, x′) (11)

The kernel function constructed by Addition has all the prop-
erties of the original basic functions. For example,the addition
of periodic and linear kernel functions shows linear trend as
a whole, but they are approximately periodic in a small area.

Taking advantage of this feature, we can construct a new kernel
function in space.

Considering the measurement in the second chapter, we use
two SE kernels, which have different parameters in length
scale. We construct such a new kernel function because the
wireless signal strength in the area close to the Access Point
changes more intense than those areas far away from the AP,
which fits the test above:more than fourteen meters away, the
change of the RSS value is not that obvious.

So we construct a new Gaussian kernel function as:

k(x,x′) = σ2
f1 exp(

(xl − x′l)2

2`21
) +σ2

f2 exp(
(xl − x′l)2

2`22
) (12)

Note that in the formula, two parameters σ2 is not the same.
So far, this kernel function based on space has a total of

four hyperparameters. As to how to estimate the hyperparam-
eters, there are many methods,commonly used maximizing the
probability density methods will be discussed later in detail.

(2)
Ka ∗ Kb = Ka(x, x′) ∗ Kb(x, x′) (13)

Apart from using the Addition method to construct the ker-
nel function, we can also use the Multiplicity method, whose
purpose, typically,is to construct a multi-input Gaussian kernel.
In particular, the multiplicity of several square exponential
kernel function has a special name ”Automatic Relevance
Determination”(ARD), where the length-scale parameter `1,`2
... determines the correlation between the different dimensions.
Those dimensions with larger length-scale means a relatively
small change in that dimension. Therefore, we continue rewrit-
ing to the Gaussian kernel above as:

k(x,x′) = σ2
f1 exp(−

∑
l∈x,y

(xl − x′l)2

2`21
)

+ σ2
f2 exp(−

∑
l∈x,y

(xl − x′l)2

2`22
) (14)

So far, this kernel function based on space has a total of
eight hyperparameters. So far,we did not take time domain
into consideration. A simple idea is to multiply the kernel
of time dimension to the kernel of space, which introduces
too many parameters and costs much time in the parameter
estimation. Our model proposes a more reasonable solution
and to reduce the computational complexity. Ultimately we
can predict the signal strength value in a new time at a new
location, so that we can provide a robust signal strength map,
reduce the time required and the number of samples.

B. Automatic Construction through Kernel Composing

To automatically construct Gaussian process models, we
search over sums and products of kernels, maximizing the
approximate marginal likelihood. We show how any model
in this class can be automatically decomposed into different
parts, and illustrate the structure discovered in the data.

We have used the measured data in the Section ?? to
construct the kernel function of the kernel function based on



space. Gaussian process models use a kernel to define the
covariance between any two function values: Cov(y, y′) =
k(x, x′). Commonly used kernels families include the squared
exponential (SE), periodic (Per), linear (Lin), and rational
quadratic (RQ). Positive semi-definite kernels (i.e. those which
define valid covariance functions) are closed under addition
and multiplication. This allows one to create richly structured
and interpretable kernels from well understood base compo-
nents.

C. Searching over structures

Despite its importance, choosing the structural form of the
kernel in nonparametric regression remains a black art. We
define a space of kernel structures which are built composition-
ally by adding and multiplying a small number of base kernels.
We present a method for searching over this space of structures
which mirrors the scientific discovery process. The learned
structures can often decompose functions into interpretable
components and enable long-range extrapolation on time-
series datasets. Our structure search method outperforms many
widely used kernels and kernel combination methods on a
variety of prediction tasks.

As discussed above, we can construct a wide variety of
kernel structures compositionally by adding and multiplying
a small number of base kernels. In particular, we consider
the four base kernel families discussedabove: SE, Per, Lin,
and RQ. Any algebraic expression combining these kernels
using the operations + and × defines a kernel family, whose
parameters are the concatenation of the parameters for the base
kernel families.
To evaluate a kernel family we must integrate over kernel
parameters. We approximate this intractable integral with
the Bayesian information criterion(Schwarz, 1978) after first
optimizing to find the maximum-likelihood kernel parameters.

BCI(M) = −2 logP (D|M) + |M | log n (15)

where |M | is the number of kernel parameters, p(D|M) is
the marginal likelihood of the data, D, and n is the number of
data points. BIC trades off model fit and complexity.

VI. MODEL ENSEMBLING

The Gaussian Prosess Regression is a robust model with
high accuracy to do the machine learning. However, we still
struggle to get better accuracy in this task. In statistics and
machine learning, ensemble methods use multiple learning
algorithms to obtain better predictive performance than could
be obtained from any of the constituent learning algorithms
alone. So it is a very powerful technique to increase accuracy
on a variety of ML tasks. In this part we will share the
ensembling approaches.

Some common advantages of ensemble methods includ-
ing:1)They average out biases. If you average a bunch of
democratic-leaning polls and a bunch of republican-leaning
polls together, you will get on average something that isn’t
leaning either way.2)They reduce the variance. The aggregate
opinion of a bunch of models is less noisy than the single

opinion of one of the models. This is also why the models will
be better with more data points rather than fewer. 3)They’re
unlikely to overfit. If you have individual models that did-
n’t overfit, and you’re combining the predictions from each
model in a simple way (average, weighted average, or logistic
regression), then there’s no room for overfitting.

A. Selected Models

We choose several widely used machine learning methods to
do the ensembling: Linear Regression(LR),Support Vector Re-
gression(SVR),Gradient Tree Boosting(GDBT),Xgboost,GP
(SE),GP (RQ),GP (Compose). Among them, LR is a model
with high bias but low variance. GDBT and Xgboost are
already ensemble models and are widely used in all kinds of
data mining competitions and the industry as well. GP(SE) and
GP(RQ) are traditional GP models. GP(Compose) is the model
constructed by automatically kernel composing and selection.
As shown in the results, boost methods and nonparametric
GP yields better results than the other vector based statistic
learning methods.

B. Ensembling Methods

1) Averaging: Averaging works well for a wide range
of problems (both classification and regression) and metrics
(AUC, squared error or logarithmic loss).There is not much
more to averaging than taking the mean of individual model
predictions. Averaging predictions often reduces overfitting.
We ideally want a smooth separation between classes, and a
single model’s predictions can be a little rough around the
edges. Remember the goal is not to memorize the training
data, but to generalize well to new unseen data.

Rank averaging. When averaging the outputs from multiple
different models some problems can pop up. Not all predictors
are perfectly calibrated: they may be over- or under confident
when predicting a low or high probability. Or the predictions
clutter around a certain range. Our solution is to first turn
the predictions into ranks, then averaging these ranks. After
normalizing the averaged ranks between 0 and 1 you are sure
to get an even distribution in your predictions.

2) Stacked and Blending: Stacked generalization was intro-
duced by Wolpert in a 1992 paper, 2 years before the seminal
Breiman paper ’Bagging Predictors’. The basic idea behind
stacked generalization is to use a pool of base classifiers, then
using another classifier to combine their predictions, with the
aim of reducing the generalization error. Lets say you want
to do 2-fold stacking: Split the train set in 2 parts: train a
and train b. Fit a first-stage model on train a and create
predictions for train b. Fit the same model on train b and
create predictions for train a. Finally fit the model on the
entire train set and create predictions for the test set. Now train
a second-stage stacker model on the probabilities from the
first-stage model(s). A stacker model gets more information
on the problem space by using the first-stage predictions as
features, than if it was trained in isolation.

Blending. Blending is a word introduced by the Netflix
winners. It is very close to stacked generalization, but a bit



simpler and less risk of an information leak. With blending,
instead of creating out-of-fold predictions for the train set,
we create a small holdout set of say 10% of the train set.
Blending has a few benefits: It is simpler than stacking.
It wards against an information leak: The generalizers and
stackers use different data. We do not need to share a seed
for stratified folds with your teammates. Anyone can throw
models in the ’blender’ and the blender decides if it wants
to keep that model or not. The cons are: You use less data
overall The final model may overfit to the holdout set. The
CV is more solid with stacking (calculated over more folds)
than using a single small holdout set. As for performance, both
techniques are able to give similar results.

We use both rank averaging and blending to do the model
ensemble. In the rank average, we rank the models according
to their accuracies on the training data. In the blending, we
split the test set and use 10% as the training set. Here is a
little difference. We use the data from the test set because
the data can be sampled in the training phase as well and
the environment factors such as the weather and the traffic
that day are important as well. We can take these factors
into consideration by doing so. The performance of model
ensemble is evaluated below.

VII. PERFORMANCE EVALUATION

A. Experiment

In this section, we measure the RSRP values, operating over
3G and 4G in Shanghai JiaoTong University and Yindu Road.
We collect one million sample points in about twenty square
kilometers. Here we use the main road data as train set and
the small road data as the test set(see Fig.6).

1) Experimental Test Bed: We perform our outdoor RSRP
measurement in two testbeds used for experiments. The test
environment, henceforth called ROE, is the whole campus of
Shanghai Jiaotong University and the Zizhu Science Park. The
ROE consists of obstructions in the form of buildings roads
and lakes.The environments are equipped by base stations are
distributed in environments (see Fig.6). There are more than
100 base stations covering the ROE that is the testbed in
Section IV for characteristic analysis of RSRP.

2) Experiment on kernel function in time domain: The
Rational Quadratic kernel function take both long and short
period of time into consideration. We focus on one selected
point in the data, and measure the received signal strength
from one base station for one continuous minute and model
them using the Rational Quadratic kernel functionas shown in
Figure 7.

In the figure,the area after the blue line represents the time
after the training data, which is the time in the future. Figure
?? is actually made up of two parts, Figure ?? represents the
short time,and Figure ?? represents the long time. As can
be seen, in a short time, the variation of the radio signal
strength is much more complex, for the curve is sharp. On
the other hand,in the long time,the wireless signal strength
changes more gently, showing relatively smooth curve.

Fig. 5. Floor plan for the testbeds ROE

Fig. 6. Main road as training set and small road as test set

B. Experiment with real data for recovery

1) outdoor environment: For outdoor environment, it is not
as complex as the indoor environment, for there is not much
influence brought by obstructions such as walls and people.

We get the data provided by HUAWEI company and by
ourselves, which are collected by real base stations located in
Shanghai. For every base stations, we have from dozens to
one thousand measured points and the data covers more than
two hundred base stations.

2) recovery process: We use main road data as training data
to recover the rest small road data as test set to test whether
our Gaussian Process based recovery has a good result.

We take two APs as example: one has 200 measure points
and another has 400 points. Using Gaussian Process Regres-
sion, we can predict the 20% points after training according to
the 80% points. In Figure VII-A2 and Figure VII-A2 we plot
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(a) the change of signal strength in a period
of time

0 10 20 30 40 50 60 70 80 90 100

-88

-86

-84

-82

-80

-78

-76

-74

-72

-70

-68

likGauss/infVB -lZ=95.55

(b) when l is relatively large
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(c) when l is relatively small

Fig. 7. Floor plan for the two testbeds where RSS readings were collected in the marked points. (Black points are building shores.)

(a) The prediction in whole area.The deeper the
color , the larger the RSRP value.

(b) The blue cross as training and others as
test.Green: less than 5db, Pink: between 5db and
10 db. Red: more than 10 db.

(c) After deleting points with high variance

Fig. 8. One base station as example
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(b) Error in blue and truth is green in the test
area, which is small road

(c) Error Rate of different Models

the mean function plus/minus two standard deviations, which
corresponds to a 95% confidence interval.

The mean error is less than 5 db, and the standard error is
less than 10db. The prediction has good results.

Here gives the meaning of above three figures in
Fig.VII-A2. The first one is the recovery result in the whole
area. The deeper the color , the larger the RSRP value. The
second and the third figure gives the result of this recovery.
The blue points are the training data from the main road. The
other cross points are the test data in the small roads. The
green cross means the error is less than 5db, the pink cross
means the error is between 5db and 10 db. The red cross means
the error is more than 10 db. By deleting the points with large
variance, we can avoid much red points with more than 10db
error.

3) Model Comparison: We propose several models above
and here we want to give the comparison and evaluate the
results(see Fig.VII-B2).

We notice that in single models, boost method such as
GDBT and Gaussian Process yields better accuracy than the
traditional statistic learning methods. The ensemble method
gets better results than all single model, which validates the
statement that ensembling can reduce the overfitting problem.
With 10% samll road data as training data, we can get about
5% error rate in 4G environment and about 7% error rate in
3G environment.

VIII. CONCLUSION AND FUTURE WORK

This paper propose an efficient way to recovery the radio
map that provide a foundation for localization in online phase.
This method based on signal strength and the theoretical



(d) Error Rate of different Models(%)

basis is Gaussian process. After taking these two domains
into account, we propose a GP automatic kernel construction
model, which aims to combine and search for the best kernels
and predict the values on the small road so that we can refresh
and reconstruct the radio maps. Because of the problem of
overfitting, we then propose the model ensembling, that is,
by combining different models with averaging or blending,
we can obtain a better model. We also carried out extensive
experiments to validate our model. Our future work is to
reduce the complexity of solving mixed Gaussian process
model and taking some domain knowledge into consideration.
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