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1 Objective Function

The objective function is based on [1]. However, we adopt a discretized truth vector here to avoid in
complicated EM algorithm.

Suppose there are n sensors in an arbitrary connected sensor network and each sensor is asked
to answer m questions. The questions for each sensor are same and each answer can only be 0 or 1.
Xn×m ∈ {0, 1}n×m

is the observed matrix of the answer from the whole network. In X, xij denote
the answer of question j from sensor i, xi is the ith row of the X, and xj is the jth column of the X.
tm ∈ {0, 1}m is the truth vector, the true answers of the m questions. rn ∈ [0, 1]

n
is the reliability

vector, the possibility of telling truth of each sensor.
We try to discover the truth vector through observing the X, that is,

max p (X|t, r) .

Here t and r are related to each other, we further simplify the object function.
For question j, we denote sensors that observe 0 the set Sj0 and those that observe 1 the set Sj1.

p (xj |r, tj = 0) =
∏

i∈Sj0

ri
∏

j∈Sj1

(1− ri)

p (xj |r, tj = 1) =
∏

i∈Sj0

(1− ri)
∏

j∈Sj1

ri

We decide the value of ti by comparing p (xj |ti = 0) and p (xj |ti = 1). Taking all the m into consid-
eration, we have

p (X|t, r) = p (X|r) =
m∏
j=1

max

 ∏
i∈Sj0

rj
∏

i∈Sj1

(1− ri) ,
∏

i∈Sj0

(1− ri)
∏

i∈Sj1

ri


ln p (X|r) =

m∑
j=1

max

∑
i∈Sj0

ln ri +
∑
i∈Sj1

ln (1− ri) ,
∑
i∈Sj0

ln (1− ri) +
∑
i∈Sj1

ln ri


=

m∑
j=1

n∑
i=1

1

2

 n∑
i=1

ln ri +

n∑
i=1

ln (1− ri) + |
∑
i∈Sj0

ln ri +
∑
i∈Sj1

ln (1− ri)−
∑
i∈Sj0

ln (1− ri)−
∑
i∈Sj1

ln ri|


=

1

2

m∑
j=1

(
n∑

i=1

ln ri (1− ri) + |
n∑

i=1

xij ln
ri

1− ri
|

)
.

We get reliability vector r from argmaxr ln p (X|r). Traditionally, to maximize p (X|t, r), an EM
algorithm is required. However, there is no need for iteration here. The reason is that future r won’t

change after we updating t based on current r . Specifically, the result of ri base on t is ||xi−t||1
m .

In this way, the object function can also be written as

argmax
t

n∑
i=1

(di ln di + (1− di) ln (1− di)) , where di =
1

m
||xi − t||1.

2 Opitimal Solution

Theorem 1. The optimal solution depends on the rank of the observed matrix.

Proof. content...

1



3 NP-hardness

Theorem 2. Finding the truth vector is NP-hard.

Proof. We prove the NP-hardness through reduction from exact 3-cover problem. The exact 3-cover
asks, given set U and S ⊆

(
U
3

)
, to decide if there exists S′ ⊆ S, where S′ is a partition of U .

Our proof can be divided into 3 parts. (1) We construct a graph based on U and S and define
function on the nodes. (2) We prove minimizing the sum of function of all nodes is NP-hard. (2)We
derive a matrix from the graph, and the value of object function of the matrix equals to the sum of
function in all nodes.

(1) We construct a graph G = (V,E) same as graph described in [3]. We creates a vertex si per
set Si and a copy of gadgets per elements uj . We links uj,k into Sj,k, where j1, j2, j3 are the indices
of the three sets containing uj .

We transform the undirected graph into a directed graph. The total degree of node v is denoted as
d (v) The in-degree and out-degree of the node v is denoted din (v) and din (v). We define a function
for v.

f (v) = − ()
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