@) Y FELY

3
e’ SHANGHAL JIAO TONG UNIVERSITY

2006

A Coding Framework for Distributed
Computing with Two Types of Servers

Jiasheng Xu
2017/5/27

Outline:

1.

Introduction
-- Coded Distributed Computing
-- MapReduce
Existing Problem
-- Straggling Servers
New Scheme
-- Description
-- Results
-- Analysis
Reference

&) Introduction

; Coded Distributed Computing (CDC)
-- Significantly reduce the communication

load via coding and some extra computing.

MapReduce:
File 1 Fi[g(Fille 3 / FilelM
\ N\
Map Server 1 Server 2 Server K
Shuffle
Server 1 Server 2 Server K
Reduce l j j

xl, xz, eee eeecee XX ,xN_l, xN

Concepts of Coded MapReduce

K servers

Settings: M input files N output results

Definitions:

Computation load (r): the total number of files computed
across the K servers in the Map phase, normalized by the

number of files M.
(It can be interpreted as the average number of servers that

map each file)

Communication load (L): the number of bits communicated by
the K servers during the Shuffle phase, normalized the total
number of bits in all intermediate values

Servers 3 K=3
Results y 7 N=3
K1l K2 K1

Vaxr Vay Vaz
VB x» VBy» VB

K3

vAx’vAy’vAzl
vi’va’sz

vi1va1sz1
va’vByvaz

(1) (1)

//} A,z®vB,y

2 Sel N\
(2) (2)

Vg OV

K3

The information transmitted in the Shuffle phase is

1 1.5 1
X — = . = —_ = -
3 > 1.5, L 5 "2 | | o
For uncoded scheme, transmitted information is 3,
3 1
| =—==
9 3
Results for general cases:
L () 1 1 r U:E- - _ | | igxzﬁlzﬁzﬁg Gnrnpuling:
n=r(1-9
coded r K 07t | -

1. The system achieves a reduction
In L through repetitive
computation.

Communication Load (L)

2. Repetitive computation and 0
coding enable multicast

opportunity, allowing the system to
achieve a coding gain.

5]
Computation Load (r)

Existing Problem

Straggling Servers: Some servers in the system may encounter
unpredictable failure and perform badly in computing.

In some prior works, codes are applied to alleviate the
effects of stragglers by using more servers to compute.

—> W, A, «— AX

 S— :
AX

—> W, As+A, < (A+A)X

Example for matrix multiplication

New Scheme

A different scheme for distributed computing which solves
straggling problem.

Features:

1. Asymmetric design for all three phases of MapReduce
2. A reduction of communication load by factor r

Settings:
M input files, N output results,
K servers (AK fast servers, others are slow servers)

Definitions for L and r remain the same

Central idea: assign different amount of computing tasks to
different types of servers

(Fast servers and slow servers have different functions)

e/ Computation load for fast and slow servers: r*, 1
Map phase (r =1"+1)

The fraction of files computed In We aim to achieve:
fast servers: u
r* 1 B
U1 = 1K | 75%)
slow servers:
1 . _ A
Ha = r=1P

Shuffle phase Only slow servers are responsible for sending
messages, fast servers receive the messages.

Reduce phase Only fast servers compute Reduce functions
and get final results.

M=6, K=5, N=3

(1=0.6, p=1.33)
r*=2
=21
18 9
Uncoded scheme:
=61
18 3

reduced by a factor
r=r*+1=3

Coding enables multicast,
so that a reduction of L is
achieved

General description for our proposed scheme

Map Phase Assignment. For simplicity, we denote a = AK and b = K— AK as the number of
fast and slow servers, respectively. Each server assigned with Reduce tasks reduces h results in the
Reduce phase, so we have N=ha. For large N, h is an integer.

Assume M is large, we evenly partition all files into b(f} disjoint sets and map each set to a tuple
of subset consisting of r* fast servers and a slow server, which can be marked as (i, A), whereiis
one of the index of slow servers, and A is a cardinality-r* subset of the set consisting of all fast
servers’ indices. We denote the set of files that is mapped to (i,A) by B, ,.

We let every server belonging to (i,A) maps all files in B; ; in the Map phase, for all possible
sets (i,A) and B, ,.

Shuffle Phase Assignment. We denote V; , . as a variable that contains all the intermediate
values for reduce output function n from all files in B; ,. In this phase, each slow server will
multicast the following messages: Find a subset of fast servers & whose cardinality is r*+1, slow
server i will multicast Y;s £ $k551‘}53[k}_kﬂ where k; is the ji» reduce function that server k has to
compute, to all the fast servers in §, for every j € [h]. This procedure continues until all possible
subsets & have been found.

Reduce Phase Assignment. Each fast server will compute their assigned Reduce tasks, the
intermediate values needed for reduction are derived from either the Map phase or the Shuffle

phase.

Results and Analysis

The communication load under our proposed
scheme is given as follows:

*

1 r
L = r*+1 (1 N AK)

Results for Conventional Coded MapReduce

1 r
L(T) =;(1—E)
. Not only alleviate the straggling effect, but also enable
coding opportunities like the prior schemes.

. The scheme is valid for arbitrary system parameters, e.g.
A, PB.

. When the proportion of fast servers A is small, a lower L
IS achieved compared with the conventional schemes.

Reference

[1] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed computing,”
e-print arXiv:1604.07086, Apr. 2016, submitted to IEEE Trans. Inf. Theory.
[2] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” 53rd
Allerton Conference, Sept. 2015.

[3] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” arXiv preprint
arXiv:1609.01690, 2016.

[4] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” CoRR,
abs/1512.02673, 2015.

[5] R. Tandon, Q. Lel, A. Dimakis, and N. Karampatziakis, “Gradient
Coding,” arXiv preprint arXiv:1612.03301, 2016.

[6] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to Optimally
Allocate Resources for Coded Distributed Computing?” arXiv preprint
arXiv:1702.07297, 2017.

[7] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867, Mar. 2014.

>
8
o
o
d
-
3

