

Software development for iblink

于逸尘 Yuyichen

2017.May

https://earn.adafruit.com/div-wearable-pi-near-eye-kopin-video-glasses

Iblink

Our 3D Printed design turns a pair of 'private display glasses' into a "google glass"-like form factor. It easily clips to your prescription glasses, and can display any kind of device with Composite Video like a Raspberry Pi.

A pair of these wearable video glasses sets you back about 100 bucks, and the 3d printed parts are a free download on thingiverse. This display uses composite video to connect to the Raspberry Pi its very plug and play.

Existing program

1、initialization

- $2\$ template creation

3 , eye tracking

4、 blink detection

Promblems

The image we get is not adapted to existing facial recognition programs

Facial recognition wastes a lot of computing resources

Advanced design

Template algorithm

Sampling in advance

Create templates

Real-time contrast

Template algorithm

Sampling in advance

 load a number of eye images which we have already known if they're open or closed

Create templates

• convert them into grayscale images and create an array to save the average value of samples

Real-time contrast

• Use the formula to measure the similarity to judge open or closed

Sampling in advance

 load one hundred open-eye images and the same number closedeye images

waste time/s

Create templates

Create templates

Create templates

Templates: Array1: stdopen(i,j) Array2: stdclosed(i,j) Nearly 15Mb each to memory for 1024X720 image ;

1	stdopen 💥												
H	720x1280 double												
	1	2	3	4	5	6	7	8	9	10			
1	18.2300	18.6700	18.7900	17.9100	17.3000	17.3300	18.0700	18.5900	18.3400	18.2900			
2	18.4300	18.9900	19.2100	18.6200	18.0600	17.9000	18.5000	18.8700	19.5200	18.9400			
3	18.0200	18.5200	19.0400	18.7300	18.4400	18.1800	18.6000	18.9900	19.2000	18.5300			
4	17.8500	18.2700	18.6400	18.3300	17.9300	17.7200	18.0700	18.2500	17.8100	17.5700			
5	18.4500	18.7200	18.7800	18.1400	17.6900	17.5300	17.8400	17.7900	17.8300	18.2000			
6	18.0400	18.4700	18.6000	18.0400	17.7400	17.8300	18.1800	18.2700	18.7900	19.1800			
7	17.3900	18	18.4900	18.2500	18.0500	18	18.3100	18.4900	18.7700	19.0600			
8	17.9600	18.6100	19.3000	19.0100	18.5700	18.0600	18.0900	18.1900	18.5000	18.7500			
9	19.4300	19.1000	18.6600	18.4900	18.6600	18.6200	18.6000	18.8300	18.7800	19.4000			
10	18.4000	17.9600	17.4000	17.5400	18.3800	18.8900	19.0900	19.1800	18.2900	18.7000			

Real-time contrast

The image to be measured should be input as grayscale information in array as well.

To calculate easily, we should do a histogram equalization.

Then we get the array img(i,j) containing each pixel points' grayscale information.

Using following formula will give us the similarity between the image to be

measured and the standards.

 $sim = \frac{\sum img(i,j) * std(i,j)}{\sum img^{2}(i,j) + \sum std^{2}(i,j)}$

Real-time contrast

sim1 and sim2 which is about the similarity of open-eye standard and closed-eye standard.

By comparing them, we can easily know if the eye image we get is open.

函数名称	<u>调用</u>	总时间	<u>自用时间</u> *	总时间图 (深色条带 = 自用时间)
blinkdetect	1	63.791 s	58.586 s	

20 samples need near 60s for 1024X720 image If we have template already, each decision takes 3s

Advanced design

Advantages

- Give up the face recognition part.
- Reduces the complexity of the software part and the use of resources. However, the
- More suited to hardware design

Disadvantages

- Template section needs preadded
- Need stable photo sources
- Extra memory for template storage

Future work

Solving standards storage issues

Translating existing matlab program into c++ program

Test programs on hardware and solving stability problems

