
WiFiProfiler: Cooperative Diagnosis in Wireless LANs

Ranveer Chandra Venkata N. Padmanabhan Ming Zhang
Microsoft Research

ABSTRACT
While 802.11-based wireless hotspots are proliferating, users
often have little recourse when the network does not work or
performs poorly for them. They are left trying to manually
debug the problem, which can be a frustrating and disrup-
tive process. The users’ troubles are compounded by the
absence of network administrators or an IT department to
turn to in many 802.11 hotspot settings (e.g., cafes, airports,
conferences).

We present WiFiProfiler, a system in which wireless hosts
cooperate to diagnose and possibly resolve network problems
in an automated manner, without requiring any infrastruc-
tural support. The key observation is that even if a host’s
wireless link to an access point is not working, the host is
often within the range of other wireless nodes and is in a po-
sition to communicate with them (a little) peer-to-peer. We
leverage this ability to create a shared information plane,
which enables wireless hosts to exchange a range of infor-
mation about their network settings and the health of their
network connectivity. By aggregating and correlating such
information across multiple wireless hosts, we infer the likely
cause of the problem. Our implementation on Windows XP
shows that WiFiProfiler is effective in diagnosing a range of
problems and imposes a low overhead on the participating
hosts.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Misc.

General Terms
Management, Reliability

Keywords
Wireless networks, 802.11, fault diagnosis, peer-to-peer

1. INTRODUCTION
There has been a remarkable growth in the deployment

of 802.11-based wireless networks in offices, homes, airports,
cafes, and even across entire cities [26]. Despite this success,
it is not uncommon for users to experience connectivity or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’06, June 19–22, 2006, Uppsala, Sweden.
Copyright 2006 ACM 1-59593-195-3/06/0006 ...$5.00.

performance problems. When they do experience problems,
users often go through a frustrating and disruptive process
of manual debugging, say by tapping on the shoulders of
nearby users to compare notes or arbitrarily resetting their
wireless NIC or rebooting their computer. The users’ trou-
bles are compounded by the absence of network administra-
tors or an IT department to turn to in many 802.11 hotspot
settings (e.g., cafes, airports, conferences).

To address this problem, we present WiFiProfiler, a sys-
tem in which wireless hosts cooperate to help diagnose and
possibly resolve network problems in an automated manner.
The setting we consider is an infrastructure-based wireless
LAN (WLAN) with access points (AP) providing connectiv-
ity to the wired network. We do not assume or depend on
any special capabilities in this infrastructure, which makes
our work applicable in a wide range of WLAN settings.

Our key observation is that even if a host is disconnected
(i.e., its wireless link to an AP is not working), the host is
often within the range of other wireless nodes and is in a
position to communicate with them (a little) peer-to-peer.
We leverage this ability to communicate to create a shared
information plane, on which the cooperating wireless hosts
exchange a range of information about their network settings
and the health of their network connectivity. Examples of
such information include the networks and APs that hosts
are or are not able to connect to, whether they have been
able to obtain an IP address and if so how recently, and
whether they have been experiencing poor performance.

By aggregating and correlating such information across
multiple wireless hosts, we infer the likely cause of the prob-
lem (e.g., incorrect WEP key or port blocking at a firewall)
and in some cases help users resolve the problem themselves
(e.g., by suggesting an alternative network to connect to or
a different HTTP proxy setting). Even when the problem is
not resolved, we believe that telling the user the nature of
the problem is valuable, as it can significantly reduce user
frustration. For instance, a user who might have otherwise
tried fiddling with his/her computer in the hope of fixing the
problem can sit back and do other work if told that there is
a more widespread network problem that is not specific to
their computer.

The architecture of WiFiProfiler includes three compo-
nents. The sensing component comprises software “sensors”
running on each end host to passively monitor the health of
the host’s connectivity and its configuration across layers
(WiFi, IP, TCP, application). The communication com-
ponent enables communication among end hosts, whether
they are connected or disconnected. It gathers relevant in-
formation requested by the diagnosis component, which also
deduces the likely cause of the problem based on the infor-
mation gathered.

We have prototyped WiFiProfiler on the Windows XP
platform. A key goal for our design and implementation
has been to depend only on “standard” functionality, both
on end hosts (e.g., in terms of wireless NICs and drivers)
and the infrastructure (e.g., no special monitoring nodes).
While other design choices are clearly possible, we made our
choice with a view to easing deployment and facilitating user
adoption.

Our evaluation in an experimental testbed demonstrates
the effectiveness of WiFiProfiler in diagnosing a range of
problems and the low overhead it imposes on the participat-
ing hosts. The latter is critical since hosts may be reluctant
to expend significant resources to help their peers. WiFiPro-
filer demands much less of the peers than, for instance, past
proposals on using cooperative multi-hop routing to extend
the reach of wireless networks.

Our work is inspired by and builds on two bodies of work.
First, there have been proposals for pooling together in-
formation across end hosts to aid diagnosis, whether in a
networking context (e.g., [21, 23]) or otherwise (e.g., [24,
25]). In comparison, WiFiProfiler addresses a number of
additional challenges that are unique to the wireless con-
text, e.g., enabling disconnected clients to gather informa-
tion from peers with minimal overhead. Second, there has
been some work on management and diagnosis in wireless
LANs (e.g., [11, 12]). However, this prior work has been
geared to helping network administrators (typically in en-
terprises) manage their networks (e.g., detect rogue APs), by
leveraging a monitoring infrastructure. In contrast, WiFiPro-
filer focuses on problems that impact end users in hotspot
settings, without depending on any special infrastructure.
We believe that a key contribution of our work is in recog-
nizing and demonstrating the potential for cooperative di-
agnosis, which may be easier to realize in practice than al-
ternatives that require infrastructural support.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the problem context, including the nature
of faults that wireless users are likely to experience. We
present the design and implementation of WiFiProfiler in
Section 3 and an evaluation in Section 4. Our design focuses
on the basic functionality of cooperative diagnosis. We defer
the issues of security and incentives to the discussion in Sec-
tion 5. We present related work in Section 6 and conclude
in Section 7.

2. PROBLEM CONTEXT
We set the context for our work by briefly discussing the

architecture of wireless LANs and then considering the na-
ture of failures that might happen, including some that the
authors have themselves experienced in practice.

2.1 Wireless LAN Architecture
802.11-based WLANs comprise APs that connect the wire-

less cloud to the wired network. The APs typically have a
radio interface and a wired interface (e.g., Ethernet). Wire-
less clients typically communicate with an AP via a single
wireless hop, although it is possible to go multiple hops with
link-layer repeaters. The AP provides bridging or routing
functionality to connect the wireless clients to the wired net-
work. In our discussion here, we use the term wide-area
network (WAN) to refer to the wired network, including the
access link to the wireless subnet.

Although this basic picture is simple, several other net-
work mechanisms and components may be involved in pro-
viding connectivity, which we discuss in turn.

2.1.1 Wireless Security
The wireless network could employ a range of mechanisms

to restrict access, authenticate hosts before permitting them
to establish a link-layer association, and to encrypt the wire-
less transmissions. MAC filtering is a simple mechanism,
which allows APs to reject packets arriving on the wireless
interface unless their source MAC address is in an allowed
list. While MAC filtering can be defeated using MAC ad-
dress spoofing, this mechanism is still widely used because
of its simplicity.

Wired Equivalent Privacy (WEP) is a mechanism for key-
based authentication and encryption. The AP and wireless
clients share a key, which is typically configured manually.
The shared key could be used for authentication and/or en-
cryption. Even if authentication is “open”, the use of WEP
for encryption would prevent a client without the correct
key from communicating through the AP.

An alternative to WEP is WiFi Protected Access (WPA
or WPA2, which is a form of the IEEE 802.11i standard),
where a “master” key is set up either automatically using
802.1X (WPA enterprise mode) or manually by having the
user enter a passphrase (WPA personal or pre-shared key
(PSK) mode). The PSK mode is designed for home and
small office networks that cannot afford the cost and com-
plexity of an 802.1X authentication server.

2.1.2 DHCP
Once the client has successfully authenticated itself, it

must typically obtain an IP address using DHCP, since the
dynamic nature of wireless LANs makes static IP address
assignment difficult. In a single AP environment (e.g., a typ-
ical home network), the AP itself could serve as the DHCP
server. Alternatively, the DHCP server could reside on the
wired network, which is typical when there are multiple APs
on the same subnet.

DHCP is a simple broadcast-based protocol, which allows
a client to discover one or more DHCP servers, typically on
the local subnet, and request and receive an IP address lease.
The DHCP server typically also returns other configuration
information such as the IP addresses of the gateway and the
local DNS servers.

2.1.3 Firewall
The network could include a firewall for added security.

The firewall could be configured to filter inbound and/or
outbound traffic based on various criteria. Filtering based
on TCP/UDP port numbers is commonly employed since
the port number is often, even if not necessarily, indicative
of the application. However, filtering based on other criteria
is also possible.

2.1.4 Application-level Proxies
The network could include application-level proxies, whether

for performance reasons (e.g., caching) or for security rea-
sons (e.g., URL blocking). In particular, HTTP caching
proxies are often employed for web accesses. Typically, the
web browser is configured with proxy information, either
manually or automatically using Web Proxy Auto-Discovery
(WPAD). Less common are transparent proxies [16], which
are not visible to the browser.

2.2 Nature and Causes of Network Problems
Network problems can arise not only due to the wireless

medium but also because of the failure, malfunctioning, or
misconfiguration of the network mechanisms and compo-
nents noted above. We briefly consider the symptoms that

a client may observe and the underlying cause(s), as shown
in Figure 1.

No AP detected

No association

No IP address

E2E failure

Poor performance

Location/distance

H/W or S/W config.

Authentication

DHCP server

Firewall/proxy config.

WAN disconnection

Wireless congestion

WAN congestion

Figure 1: Problem symptoms observed at a client
and some of the associated causes.

2.2.1 Inability to detect an AP
The client may not hear beacons from any AP for sev-

eral reasons. It may be out of their range or suffering from
channel noise, both of which may be a function of the client’s
current location. There may also be software or hardware
incompatibilities that prevent the client from detecting the
AP; we discuss these in more detail below.

2.2.2 Inability to associate with an AP
Association refers to the establishment of a link-layer con-

nection between the client and the AP. There are several
reasons why association may fail.

First, the AP could be malfunctioning (e.g., not allowing
any client to associate). Second, the client’s wireless link
to the AP may be too lossy to permit successful associa-
tion. Third, security mechanisms such as MAC filtering or
WEP/WPA with shared key authentication would prevent
association unless the client’s MAC address is on the “al-
lowed” list and the client has the correct key.

Finally, software or hardware incompatibilities could pre-
vent the client from communicating with and hence associat-
ing with the AP. The client might have a buggy or outdated
driver for the wireless NIC. There might be incompatibility
between the wireless NIC and the AP hardware. For exam-
ple, the AP might be using the short preamble optimization
by default but the client’s NIC might not support it. Al-
though the WiFi Certification process [9] tests for interop-
erability, incompatibilities arise in practice, whether because
non-certified equipment is used or because not all features
are thoroughly tested. (For example, the U.S. National Sci-
ence Foundation alerts visitors to specific incompatibilities
arising from their wireless LAN infrastructure [8].) Indeed,
Intel has found it necessary to create a separate Wireless
Verification Program, over and above WiFi Certification, to
ensure the interoperability of its Centrino chipset with APs
from various vendors [5]. Note that even when there are
interoperability problems, the client may be able to com-
municate with some of its peers, given the diversity of peer
hardware/software configuration and the simplicity of such
communication (e.g., no dependencies on WEP, MAC filter-
ing, DHCP, etc.).

2.2.3 Inability to obtain an IP address
Even after it has associated successfully, there are sev-

eral reasons why the client may fail to obtain a dynamic IP
address via DHCP. First, the client may have an incorrect
WEP/WPA key or other setting, which prevents commu-

nication while not preventing association (for instance, be-
cause open authentication is used). Second, the AP’s wired
interface might be malfunctioning or disconnected, prevent-
ing communication with the DHCP server. Finally, the
problem might be at the DHCP server end, with the server
being down or having exhausted its pool of addresses. The
authors have encountered multiple instances of the latter
(e.g., at the Sigcomm 2004 and Infocom 2005 conferences).
Often wireless networks at conferences are set up hastily,
with the default address pool size of 255 addresses (i.e., a
/24 subnet, which is common in many DHCP server im-
plementations), which is inadequate when there are several
hundred attendees.

2.2.4 End-to-End Communication Failure
Obtaining an IP address is a necessary but not a sufficient

condition for successful end-to-end communication over the
wide-area network. While end-to-end communication failure
could happen for reasons such as a server being down or
disconnected, there are a number of reasons why a wireless
client, in particular, might experience partial or total end-
to-end communication failure.

First, DNS resolution might fail either because the client
has an incorrect local DNS (LDNS) server setting or because
there is a failure in the DNS infrastructure.

Second, a firewall might selectively block communication.
For example, the authors have encountered wireless hotspots
that block accesses to remote servers on SMTP port 25 (os-
tensibly as an anti-spam measure) and/or VPN ports (to
encourage “business” users to subscribe to a higher tier of
service).

Third, the network might require clients to use application-
level proxies (e.g., web proxies). A client may encounter a
failure either because it has a missing or incorrect proxy
setting, or because the proxy it is configured to use is not
functioning.

Finally, total communication failure might occur because
of disconnection of the wireless LAN (including the APs)
from the wide-area network, say because of equipment mal-
function or misconfiguration.

2.2.5 Poor Performance
It is possible that wireless clients experience poor perfor-

mance even if not hard communication failure. The poor
performance might be reflected as low throughput or high
latency for end-to-end communication. The problem could
either be in the wireless link or in the wide-area network.
The wireless link could be lossy because of a weak signal or
noise. The wireless medium or the WAN connection could
also be congested, sometimes because of a small number
of misbehaving users. For example, at the Sigcomm 2005
conference, the organizers had to make a general announce-
ment to ask the user(s) who were engaged in large eDonkey
downloads to desist from this activity because of the network
slowdown it was causing.

2.3 What a host can do in isolation
A wireless client that is experiencing problems like the

ones discussed above can learn something about the nature
of the problem based on local observations. For example, the
client can tell whether it has detected any wireless networks
or APs, been able to associate with a network or obtain an
IP address, or experienced partial or total wide-area com-
munication failure. However, local observations only provide
a limited view. For instance, a client that is unable to as-
sociate with a network would not be able to tell by itself
that it has an incorrect security setting (e.g., an incorrect

WEP key). A client that is unable to obtain a dynamic IP
address would not be able to tell whether it is a persistent
problem with the DHCP infrastructure or an intermittent
one. The limited view provided by local observations serves
as the motivation in WiFiProfiler to have wireless clients
“compare notes” to diagnose problems more effectively and
learn how they might resolve them.

3. DESIGN AND IMPLEMENTATION
We now present the design of WiFiProfiler, our system

for cooperative network fault diagnosis in wireless LANs.
Where appropriate, we also present specifics pertaining to
our implementation of WiFiProfiler on the Microsoft Win-
dows XP platform. The components of WiFiProfiler include:

1. Sensing: make local observations of network configu-
ration and health at the individual wireless clients.

2. Communication: enable peer-to-peer communica-
tion among wireless hosts within range.

3. Diagnosis: infer the likely cause(s) of the problems
experienced by clients and possible steps for resolution.

Before discussing each component in more detail, we note
two requirements that underlie our design, both of which
are motivated by the goal of facilitating the deployment and
adoption of WiFiProfiler. First, although peer cooperation
is a key element of WiFiProfiler, we seek to keep the burden
on the participating hosts minimal. We restrict the peers’
involvement to the “information plane” (i.e., for sharing net-
work information) rather than the data plane (i.e., for packet
forwarding). Second, we base our design on the capabilities
of off-the-shelf 802.11 hardware and the information that is
generally made available by wireless device drivers. While
there is no universal standard for 802.11 drivers, given our
target platform, viz. Microsoft Windows XP, we use the list
of mandatory APIs defined at [6] as the guideline. Not hav-
ing any specific dependencies on the wireless NIC hardware
or driver eases deployment.

3.1 Sensing
The goal of the sensing component is to make passive ob-

servations of the network health and the (relatively static)
network configuration information at the individual wireless
clients. We seek to keep the overhead on the client computer
as well as on the human user minimal. So, for instance, al-
though much information about the wireless medium can
be gleaned from operating the wireless NIC in RFmon or
promiscuous mode [11], doing so for an extended length of
time can impose a significant energy overhead. Further-
more, RFmon mode could affect the wireless connectivity of
clients. We choose to sacrifice the ability to do such detailed
sensing for the benefit of keeping the overhead minimal.

We are interested in observations across the layers of the
protocol stack, since these could, individually or in combi-
nation, have a bearing on the user’s network experience. We
categorize the sensing information as pertaining to the wire-
less, network, transport, or application layers. We discuss
these in turn.

3.1.1 Wireless Layer
We obtain information on the wireless configuration of the

client, the wireless networks in the vicinity, and the condi-
tion of the wireless channel.

The wireless hardware/software configuration comprises
relatively static information, which could have a bearing on

the (in)ability of the client to connect to a wireless network
because of incompatibilities between wireless NICs and APs.

• NIC model: the device ID of the host’s wireless net-
work interface card (NIC). The device ID is a globally
unique, vendor-defined identifier of the NIC model [3].
For example, the device ID of a built-in Centrino 802.11b
NIC is PCI\VEN_8086&DEV_1043&SUBSYS_25818086&
REV_04\4&16793A72&0&28F0.

• NIC name: a human readable description of the wire-
less NIC. For the above Centrino example, it is “Intel
PRO/ Wireless LAN 2100 3B Mini PCI”. While the
NIC model enables easy comparison across machines,
the NIC name is convenient when interfacing with the
user (e.g., when advising them to switch to a particular
kind of NIC).

• Driver version: the version of the wireless NIC driver
(e.g., “1.2.3.17” for the above Centrino NIC). This is
driver specific and we treat it as an opaque string.

Besides the above information, there is other static con-
figuration information (e.g., the power save setting) that
might be of some relevance. However, we do not consider
this information in our current implementation.

We obtain the list of wireless networks and APs in the
vicinity of the client, including the one that the client may
have connected to.

• BSSID list: the list of BSSIDs (basic service set iden-
tifiers) corresponding to the APs from whom beacons
have been heard. For infrastructure 802.11 networks,
the BSSID is the MAC address of the AP.

• SSID list: the SSID (service set identity) for each
wireless network, which is a human-readable identifier
of the network (e.g., “T-Mobile”). In general, there
could be multiple BSSIDs (i.e., APs) corresponding to
an SSID and a client can choose to associate with any
of them.

• RSSI list: the RSSI (received signal strength indi-
cation in dBm) corresponding to each BSSID. Drivers
typically report the average RSSI over a recent set of
frames, which is sufficient for our purposes.1

For the wireless network that the client is connected to,
we obtain information about the security settings that are
visible to the client. Note that certain settings (e.g., MAC
filtering) are made at the AP and are not visible to the
client.

• Security protocol: whether WEP is in use for au-
thentication and/or encryption. In general, we could
also obtain information pertaining to other security
mechanisms such as WPA, WPA-PSK (WPA in pre-
shared key mode), and 802.1X.

• Key/passphrase: the WEP key (or WPA-PSK pass-
phrase). Only a one-way hash of this information is
shared with peers to avoid exposing the key.

1We would ideally like to obtain the RSSI from only the
beacon frames, since that would give us a consistent sam-
ple. RSSI obtained from larger frames would tend to miss
low RSSI values since the corresponding frames may not be
successfully decoded. However, drivers vary in how they
perform sampling.

Finally, we obtain the following information pertaining to
the state of the wireless channel.

• Beacon loss rate: the fraction of 802.11 beacon frames
from the AP that are not received at a client. We use
this as an estimate of the frame loss rate on the wireless
link, in the absence of a direct indication of frame loss
from the wireless NIC (which typically uses link-layer
retransmissions to mask frame loss).

While it is advantageous to use the periodic beacon
frames for this measurement because it imposes no
overhead (since beacons are part of normal 802.11 op-
eration), their small size could introduce a bias. Fur-
thermore, although computing the beacons loss rate in
the driver should be trivial and some drivers do so [4],
not all drivers do. So we approximate it by having
the clients themselves broadcast UDP “beacons” and
measuring the loss rate of such beacons (inspired by
the effectiveness of ETX [17]). Although we do not do
so in our current implementation, information that is
relevant to WiFiProfiler could be piggybacked on these
beacons to increase their usefulness.

• Interface queue length: We sample the packet queue
length at the wireless interface on a continual basis. A
persistently backlogged queue might indicate conges-
tion although not necessarily (e.g., the backlog could
be because the link is very lossy, leading to significant
backoff at the MAC level). We rely on this indirect in-
dication of wireless congestion, since wireless NICs do
not expose information on the busyness of the wireless
medium (e.g., how often carrier sense finds the channel
to be busy).

3.1.2 Network Layer
We gather information on the IP-level connectivity of wire-

less clients. The goal is to enable a client to determine, for
instance, whether there is a DHCP server on the local sub-
net and how recently it has granted address leases to other
clients. Some or all of the information below could be null
depending on the state of connectivity of a client, for in-
stance, if it has not been able to obtain an IP address.

• IP address/subnet/mask: the IP address, subnet,
and netmask corresponding to the wireless interface.

• IP mode: whether the client’s IP address is assigned
statically or obtained dynamically using DHCP.

• DHCP information: the IP address of the DHCP
server from whom an address lease was obtained, and
the lease start/end times.

• LDNS information: the IP address(es) of the local
DNS server(s).

3.1.3 Transport Layer
We gather information at the transport layer to learn

about the health of end-to-end network connectivity over
the wide-area network. Even if the wireless subnet itself is
operating normally, end-to-end communication could be im-
peded by firewalls, or congestion on or disconnection of the
WAN link. While we would like to tell whether the WAN
is responsible for a problem, we do not attempt to diagnose
problems within the WAN itself (e.g., routing problems).

We obtain the following information pertaining to TCP:

• Failed connection attempts: the total number of
connection attempts and the number that failed.

• Packet retransmissions: the count of outgoing TCP
segments that are retransmitted.

• Server port numbers with successful TCP con-
nections: whether the client has been able to suc-
cessfully establish connections on a set of well-known
server port numbers (e.g., HTTP, SMTP, etc.). If the
client is never able to establish connections on certain
ports, it might be because a firewall is blocking access
to those ports.

We obtain the above information in a lightweight manner
by periodically polling (once per second in our implementa-
tion) the protocol state reported by the network stack. This
information includes the overall connection attempt and fail-
ure counts as well as the state of each active connection. If
a connection to a remote port reaches the ESTABLISHED
state or beyond (e.g., the TIME WAIT state), we infer that
a connection has successfully been established to that port.
On the other hand, if a connection is ever in SYN SENT
state but is never seen to be in the ESTABLISHED state
or beyond, we infer that the connection attempt must have
failed. Although we only sample the protocol state once
per second, this is sufficient in practice for sampling connec-
tions. When there is port blocking, the connection initiator
typically remains in the SYN SENT state for several sec-
onds, waiting for a SYN-ACK response, before giving up.
In the case of successful connections, the initiator typically
remains in the ESTABLISHED state and/or TIME WAIT
state for several seconds.

This lightweight procedure does not yield similar informa-
tion for UDP because there is no UDP connection state. On
Windows XP, we could infer the success or failure of UDP
communication to various ports based on a trace of TDI
events (which records Transport Driver Interface events [7]
such as the sending and receiving of datagrams) or a packet-
level trace obtained using the libpcap or netmon filter driver.
The latter would also enable us to glean more detailed in-
formation for TCP connections (e.g., the packet loss rate).
However, we do not obtain more detailed TCP information
or information pertaining to UDP in our current implemen-
tation.

3.1.4 Application Layer
At the application layer, we are interested in configuration

information that is of relevance to network communication.
In our current implementation, we focus only on web access,
given its dominance among networked applications:

• Web proxy setting: whether an HTTP proxy is be-
ing used and if so its host name and port number.

3.1.5 Summarizing Sensing Information
Each client obtains a snapshot of the above sensing infor-

mation periodically, by default once per second. Since the
volume of sensing information can grow to be large, we need
to summarize it to reduce the overhead of sharing it with
peers when needed. The summarization procedure varies de-
pending on the type of the sensed information. For configu-
ration information such as the NIC type, security settings, or
LDNS server IP address, the summary only contains values
from the most recent snapshot. For dynamic performance-
related information such as TCP connection failures and in-
terface queue length, we compute an aggregate metric over
a certain period (60 seconds for wireless-related information
and 300 seconds for TCP-related information). The aggre-
gation is based on computing an average (as for the TCP

REQUESTOR
169.254.68.190:5000

RESPONDER
(Stays connected)

Start AH network

SSID = “Help:169.254.68.190:5000”

2

1 Initialize Requestor3 Initialize Responder

4 Join Network,

Send Response

5 Stop Responder 6 Stop Requestor,

Resolve Problem

Figure 2: Steps in the communication process

connection failure rate) or on applying a threshold (as for
interface queue length, where we calculate the fraction of
samples corresponding to a non-empty queue). Finally, for
information such as the BSSID list and SSID list, we com-
pute the union of all distinct values seen in the recent past
(30 seconds by default, to accommodate channel scanning
delays).

3.2 Communication
The communication component of WiFiProfiler enables a

wireless client that is experiencing problems (the “requester”)
to request and obtain network health information from its
peers (the “responders”).

The problem of data sharing in WiFiProfiler is non-trivial.
The main reason is that the responder’s wireless card can
be associated to only one wireless network at a time. It
can only communicate with hosts that are connected to the
same wireless network or are reachable through the AP’s
wired backhaul. It cannot communicate with a disconnected
wireless client, even if it is within radio range. So, in order
to respond to the requester in another wireless network or
on a disconnected wireless network, the responder would
have to disconnect from its current network, associate to
the requester’s network, send out its response, and then re-
connect to its original network. During this time, the re-
sponder would not have connectivity to its original wireless
network. This would discourage connected machines from
using WiFiProfiler to help their peers.

The alternative is for all connected clients to send their in-
formation to a centralized location, such as an AP. However,
a disconnected client would not be able to retrieve the infor-
mation. Besides, this would require infrastructure support
that we want to avoid in WiFiProfiler.

The communication component of WiFiProfiler addresses
this problem by providing a framework for nodes to quickly
exchange information, even in the case when they are not
on the same network, or when they are disconnected. Fur-
thermore, it imposes very little overhead on the responder’s
primary connection. The responder does not see a signif-
icant drop in throughput. The low overhead also suggests
a minimal impact on battery lifetime, although we do not
present energy measurements in this paper.

The design of the communication layer is driven by two
observations. First, a disconnected node can initiate an ad
hoc network for exchanging information with the respon-
ders. Second, a responder can connect to the requester’s
ad hoc network without disconnecting from its primary net-
work. This is possible using two wireless NICs, or using
VirtualWiFi [15] over a single wireless NIC, as discussed
below.

Each client using WiFiProfiler has two network adapters:
a Primary Adapter and a Helper Adapter. The client uses
the Primary Adapter for its normal communication. It only
activates the helper adapter when network health informa-

tion needs to be exchanged with peers. This architecture
can be realized in two ways. If a client has only one wireless
NIC, we use VirtualWiFi to abstract the physical card as
two virtual wireless cards. We use one virtual card as the
primary adapter, and the other as the helper adapter. If a
client has two wireless NICs, we dedicate one of them as a
helper adapter.

In the rest of this subsection, we first describe the steps
of the communication protocol in detail. We then describe
its implementation for two cases: when a client uses Virtu-
alWiFi and when it has two wireless NICs.

3.2.1 Steps in the Communication Protocol
The communication protocol works as follows. If the re-

quester and responder are connected to the same network,
or are reachable through the AP’s wired backhaul, they ex-
change information using it. However, if the requester is
disconnected, then our communication protocol uses a dif-
ferent scheme. The steps of this protocol are illustrated in
Figure 2, and we describe them in detail below.

1. Initialize Requester: When a client experiences wire-
less network problems, it activates the helper network
adapter.

2. Start AH Network: The client then starts an ad hoc
network over the helper network adapter. The SSID of
the ad hoc network is set to: “Help:<IPaddr>:<Port>”
(up to 26 bytes long), as shown in Figure 2. IPaddr is
the IP address of the requester, and Port is the port
on which it is listening for responses. Our use of the
SSID for signaling is inspired by [11]. Note that we
could reduce the SSID length to 11 bytes by sending
only the last two octets of IPaddr (the first two are
implicitly set to 169.254, the autoconfig prefix) and
fixing Port to a default value.

3. Initialize Responder: Peers in the neighborhood of
the requester periodically scan for new wireless net-
works as part of normal operation (e.g., Wireless Zero
Configuration in Windows XP). Each peer parses the
SSID field of new ad hoc networks that it detects, and
checks to see if it matches the pattern described above.
If the SSID corresponds to a new requester, the peer
activates its helper adapter.

4. Join Network, Send Response: The responder
joins the ad hoc network set up by the requester, and
sets up a socket connection with the IP address and
port specified in the SSID. The responder then sends
the requested information on that socket.

5. Stop Responder: After sending its response to the
requester, the responder closes the socket connection
and stops the helper adapter.

6. Stop Requester: The requester stops when it has
received a sufficient number of responses to diagnose
the problem or if it times out. It shuts down the socket,
and stops the helper adapter, thereby tearing down the
ad hoc network.

This scheme creates a new plane for exchanging network
health information, even across wireless clients that are con-
nected to different networks or are disconnected.

3.2.2 Communication Protocol using VirtualWiFi
When a machine has only one wireless NIC, WiFiProfiler

uses VirtualWiFi to simultaneously connect the responder to
its primary and helper wireless networks. VirtualWiFi [15] is
a virtualization architecture for wireless network cards that
allows a user to simultaneously connect to multiple wireless
networks using a single wireless card. It comprises a kernel
driver and a user-level service (i.e., daemon). The driver
abstracts a single card into multiple virtual wireless cards,
where each virtual card corresponds to a different network
that the user wants to connect to. Each virtual card main-
tains the association state for the corresponding wireless net-
work, such as the SSID and the network mode. The Virtu-
alWiFi driver also has mechanisms for loading the state of a
virtual card onto the physical wireless card. The user-level
service implements a network-hopping scheme that switches
the physical card across multiple wireless networks, activat-
ing the corresponding virtual adapter each time. The time
slice devoted to each virtual card is configurable. The details
of the virtualization architecture and its implementation, in-
cluding how it uses IEEE 802.11 Power Save Mode (PSM)
to avoid packet loss, appear in [15].

However, VirtualWiFi takes around 15 seconds [14] to add
a virtual adapter for a network. This overhead is unaccept-
able for a responder. In our implementation, we modified
VirtualWiFi to reuse a virtual adapter across many wire-
less networks. So the wireless state of the virtual adapter
(e.g., SSID and network mode) is changed dynamically from
the user level. WiFiProfiler uses this scheme to initialize
two virtual adapters during installation: a Primary Virtual
Adapter and a Helper Virtual Adapter. The state of the pri-
mary adapter is set to the user’s primary wireless network.
The helper adapter’s state is initially set to a default value.
The VirtualWiFi service is stopped so that the user is on
the primary network.

The communication protocol performs the following steps
when used with VirtualWiFi. Upon disconnection, the re-
quester activates its helper virtual adapter and configures
it with the appropriate parameters (e.g., the “help” SSID
noted above), to start the ad hoc network. When a re-
sponder detects an ad hoc network with the “help” SSID, it
activates its helper adapter and configures it with the SSID
of the requester’s ad hoc network. The VirtualWiFi service
starts switching the physical card across the primary and
helper networks. The responder sets the helper adapter’s
SSID and mode to that of the requester’s ad hoc network.
After sending its response, the responder unbinds its helper
adapter from the physical NIC, by stopping the VirtualWiFi
service. Note that the software stack corresponding to the
helper adapter is still preserved. Finally, the requester stops
the ad hoc network by activating its primary adapter.

All the above steps require ioctl calls to be made to the
VirtualWiFi driver. These operations are quite lightweight
and complete within a few milliseconds.

3.2.3 Communication Protocol using Two NICs
When a machine has two NICs, WiFiProfiler uses one of

them as the helper adapter, thereby avoiding the need to
disturb the connection on the primary adapter. Since the
helper adapter is useful only when the client is responding
to a request, we disable it during normal operation to save
battery energy.

WiFiProfiler assigns a static IP address to the helper
adapter, even though it is not connected on any network.
It does so for two reasons. First, it allows the requester to
set its IP address in the beacon in Step 2 of Figure 2. Sec-

ond, it allows the responder to quickly set up its network
stack in Step 4. Note that both these issues do not arise for
VirtualWiFi where the software stack corresponding to the
helper virtual adapter is always maintained, even when the
adapter is not bound to the physical NIC [15].

The communication protocol performs the following steps
when using two NICs. Upon disconnection, the requester en-
ables its helper adapter. It uses ioctl calls to set the mode
and SSID of the ad hoc network. The primary adapter on
all clients keeps scanning the wireless channels for the re-
quester’s beacons. Upon detecting a requester, the respon-
der activates the helper adapter. The helper adapter then
scans all the channels to locate the requester’s network. Af-
ter discovering the network, it issues an ioctl to join the
ad hoc network. After sending its response, the responder
disables its helper adapter.

Disabling and enabling a network adapter incurs a signif-
icant overhead in Windows XP. These operations are much
more heavyweight than the ioctl calls used by VirtualWiFi,
as discussed in Section 4.2.

3.2.4 Other Issues
A key consideration for the communication component is

to keep the overhead on the responders low. We accomplish
this through several means.

First, we summarize the sensing information at a node in
1200 bytes, which fits in a single packet. As a result, we are
able to keep the request-response protocol simple — there
is only a single request type and a single response type, viz.,
one that asks for and returns the full sensing information.
The requester’s beacons on the helper ad hoc network serve
as an implicit request for peers to return their full sensing in-
formation (i.e., information across all layers). The compact
message size obviates the need for separate request/response
message types for different kinds of problems (e.g., wireless
association problem, TCP connectivity problem, etc.).

Second, we use UDP for communicating the response back
to the requester, which minimizes overhead on the respon-
der, especially in the case where the requester is discon-
nected. Given the compact size of the response, the respon-
der needs to send just a single packet and then can leave the
ad hoc network. Since the (disconnected) requester remains
on the ad hoc network continuously, there is a high likelihood
of it receiving the UDP packet sent by the responder. While
TCP would provide full reliability, it entails a longer wait for
the responder. Multiple round-trips would be involved for
connection setup and the data-ack exchange. Each round-
trip could take long if the responder uses VirtualWiFi to
switch between the ad hoc network and its primary network
in the interim.

Third, we limit the rate at which nodes respond to re-
quests for help. This provides protection from a malicious
requester who sends requests constantly to deplete the re-
sources of the responders and degrade their performance.
We also have responders wait for a random length of time be-
fore switching to the ad hoc network and responding. Doing
so is advantageous in dense network settings, where there is
a large number of potential responders. Once the requester
has received the requisite number of responses, it can ter-
minate its request by leaving the ad hoc network, thereby
stopping its beacons requesting help. So other potential re-
sponders do not have to incur the overhead of switching to
the ad hoc network and responding. In our implementation,
we rate limit responses to one per minute and also pick a
waiting time uniformly distributed between zero and one
minute before responding. Thus the requester is assured of

receiving responses within a minute, which is still quick from
the viewpoint of helping a user who is experiencing network
problems.

There are further optimizations that we plan to consider
in future work. A responder could monitor local network
activity and switch to the ad hoc network and send its re-
sponse only when there is a relative lull in activity. This
would reduce the impact on the responding user’s network
activities.

Responders could also cache responses they may have re-
ceived in response to a recent request and relay these to the
new requester. This, coupled with the random wait men-
tioned above, would limit the number of responders who
incur the overhead of responding, while still providing the
requester with sufficient information. This idea could be ex-
tended to have the requester first contact other disconnected
nodes (say using a special SSID to signal to such nodes) to
retrieve information that the latter may have themselves re-
cently obtain from their peers (both connected and discon-
nected nodes). This would avoid imposing on the connected
nodes repeatedly.

Finally, in our current design, we only seek responses from
one-hop neighbors. That is, there is no relaying of requests
or responses. This works well in dense wireless LANs, where
there is a large number of potential responders within range
that could provide information that is relevant to the net-
work problem that the requester is encountering. However,
if there is an inadequate response, the requester could send
a fresh request and have it relayed over multiple hops. We
defer this enhancement to future work.

3.3 Diagnosis
The diagnosis component uses the information aggregated

from the peer nodes to infer the likely cause of the problem.
In some cases, this component also suggests ways of resolv-
ing the problem. The user initiates diagnosis when he/she
is experiencing network problems. His/her client host de-
termines the problem symptoms (e.g., association failure)
automatically based on local information and then proceeds
to diagnose the problem using information from peers. We
use a simple GUI to interface with the user.

We consider the problem symptoms and associated causes
described in Section 2.2. Except for our discussion in Sec-
tion 3.3.1 below, we assume that WiFiProfiler-enabled clients
are present in the vicinity of the requester and respond to
its request for help. Nevertheless, the number of peers from
whom the requester is able to obtain information may be
small, often in the single digits. This limited number of
samples may not be amenable to statistical analysis and in-
ference techniques. So we consider a rule-based procedure,
which allows us to draw conclusions based on observations
made at a small number of peers. We start with checks per-
taining to the problems that have the most severe impact
and then proceed to the less severe problems. The basic
observation underlying our diagnosis procedure is that the
extent of a problem across clients (e.g., whether it affects
only a subset of clients or all clients) is often indicative of
the nature of the problem.

3.3.1 Inability to detect an AP
The client host may be unable to detect beacons from any

AP for several reasons: (a) there are no APs in its vicinity,
(b) there are APs in its vicinity, but their beacons are not
detected at the client’s current location, (c) incompatibil-
ity between the client’s wireless NIC or driver and the AP
hardware is preventing the client from successfully receiving

beacons, or (d) the client’s wireless NIC is not functioning.
Based on the aggregated information from peers, we di-

agnose the problem using the following steps in order:

1. If the client does not hear from any peers, it is likely
that either there are no WiFiProfiler-enabled clients
in its vicinity or the client’s wireless NIC is not func-
tioning. If the client is able to sniff the medium, and
this reveals the presence of other wireless traffic yet no
response is received, it is likely that none of the clients
in the vicinity supports WiFiProfiler; otherwise, NIC
malfunction is the likely culprit. We assume that the
user has determined through out-of-band means (e.g.,
a visual check of their surroundings) that they are in a
WiFi-enabled location, thereby discounting the possi-
bility that the absence of wireless traffic is due to their
isolated location.

2. If a peer with the same wireless NIC type and driver
version reports seeing beacons, it is likely that the
client’s current location is preventing it from hearing
beacons.

3. If all the peers, if any, that have the same wireless
NIC type as the client and are receiving beacons have
different version(s) of the driver, it likely that either
the client’s wireless driver or its location is the cause
of the problem.

4. If the only peers that are receiving beacons have dif-
ferent wireless NIC types, it is likely that either the
client’s NIC type, its wireless driver version, or its lo-
cation is the cause of the problem.

The resolution of the above problems would involve user
action to change NICs, install a new driver, or change loca-
tion.

3.3.2 Inability to associate with an AP
The client host may be unable to associate with an AP

because: (a) the AP employs a security mechanism such as
MAC filtering or WEP with shared key authentication (or
other mechanisms such as WPA), (b) the wireless link is too
weak at the client’s current location to permit the two-way
exchange needed for association, (c) incompatibility between
the client’s wireless NIC or driver and the AP hardware is
preventing the client from associating successfully.

Based on the aggregated information from peers, we di-
agnose the problem using the following steps in order:

1. If the client’s authentication configuration does not
match that of its peers who have successfully asso-
ciated, this inconsistency is the likely cause of the
problem. The client might be configured to use open
authentication when shared key authentication is re-
quired, or vice versa. Or the client might have an
incorrect WEP key. Note that this can be determined
without exposing the key, by exchanging and compar-
ing one-way hashes of these quantities. Nevertheless,
doing so raises the possibility of dictionary attacks, a
point we discuss in Section 5.1.

2. If the client is experiencing a significantly higher bea-
con loss rate than its peers who have successfully as-
sociated, it is likely that the weak link resulting from
the client’s location is the cause of the association fail-
ure. However, as noted in Section 3.1.1, not all drivers
provide beacon loss rate information and our alterna-
tive procedure of using broadcast packets only works

for clients that have associated. So instead we check
whether the RSSI at the client is significantly lower
than that at the peers that have successfully associ-
ated.

3. If a peer with the same wireless NIC type and driver
version has associated successfully, the client’s prob-
lem is likely due to MAC filtering at the AP, which is
not directly detectable at the client. Even if no such
peer is found but there is a pair of peers with (mutu-
ally) matching NIC type and driver versions such that
one of them is able to associate successfully while the
other is not, that would indicate MAC filtering is being
used (assuming that the authentication configuration
or beacon loss rate checks above did not indicate a
problem for this pair of peers). Note that even if these
checks fail, MAC filtering remains a potential cause,
as noted next.

4. If the above checks have not narrowed down the cause,
the possible causes of the problem are the client’s NIC
type, its wireless driver version, MAC filtering, or AP
malfunction.

The resolution of the above problems would involve user
action to set the correct authentication key/passphrase, change
location, change NICs, install a new driver, or have the op-
erator register the NIC’s MAC address with the MAC filter.

3.3.3 Inability to obtain an IP address
Once it has associated, the client may fail to obtain an

IP address because: (a) it has an incorrect WEP encryption
setting, which is preventing communication with the AP, (b)
there is a hardware malfunction or disconnection at or close
to the AP that is preventing communication with the DHCP
server, or (c) the DHCP server is down or out of addresses,
and so is not responding to fresh DHCP requests.

Based on the aggregated information from peers, we di-
agnose the problem using the following steps in order:

1. If the client’s WEP encryption configuration does not
match that of its peers who have associated success-
fully, this inconsistency is the likely cause of the prob-
lem. The checks performed are akin to those for au-
thentication configuration in Section 3.3.2 above.

2. If one or more other peers is in a similar state (i.e., has
associated successfully and has the correct encryption
configuration but has been unable to obtain an IP ad-
dress) and none of the peers has obtained a DHCP
lease since the failed attempts by the client and the
other affected peers, that would indicate a problem
in reaching the DHCP server, either because of gen-
eral connectivity problems or because of DHCP server
problems.

3. If at least one peer reports having performed wide-area
communication successfully in the recent past, that
makes general connectivity problems less likely to be
the root cause. So failure or address exhaustion at the
DHCP server would be the likely cause.

The resolution of the above problems would involve user
action to set the correct encryption configuration informa-
tion, or operator action to resolve the DHCP server problem
or hardware malfunction/disconnection problem.

3.3.4 End-to-End Communication Failure
End-to-end communication can fail either because of DNS

resolution failure or because of end-to-end connectivity prob-
lems. The client can determine locally which of these two
kinds of failures it is experiencing.

A DNS resolution failure could happen because (a) the
client has an incorrect local DNS (LDNS) server setting, (b)
the LDNS server is down or unreachable, or (c) there is a
general problem with DNS that is not specific to the local
wireless network.

Based on the aggregated information from peers, we di-
agnose the problem using the following steps in order:

1. If a peer with a different LDNS server setting reports a
high success rate for DNS resolution attempts and no
peer with the same LDNS server setting reports a high
success rate, the problem is likely due to an incorrect
LDNS server setting at the client.

2. If all peers report a high failure rate for DNS reso-
lution, with no response from the LDNS server, it is
likely that the server is down or unreachable.

3. Otherwise it is likely that there is a general DNS prob-
lem (say because of misconfiguration or WAN connec-
tivity issues) that is causing DNS resolution failure.
Given the limited number of peers and hence limited
degree of sharing, we are not in a position to narrow
the problem down, say to identify the particular do-
mains, if any, for which peers are consistently experi-
encing DNS resolution failures.

Resolution would involve the user changing the client’s
LDNS setting, if that is the cause of the problem. Otherwise
operator intervention would be needed to look into the state
and configuration of the LDNS server.

If there is end-to-end communication failure despite suc-
cessful DNS resolution, the cause could be (a) an incorrect
application proxy setting or an application proxy that is
down or disconnected, (b) a firewall that is blocking access,
or (c) a connectivity problem between the wireless LAN and
the wide-area network.

Based on the aggregated information from peers, we di-
agnose the problem using the following steps in order:

1. We diagnose problems pertaining to the application
proxy setting (only the web proxy setting, in our cur-
rent implementation) in a manner similar to the pro-
cedure used for diagnosing problems with the LDNS
setting.

2. If the client and its peers are consistently experiencing
failures when communicating on specific ports (only
TCP ports, in our current implementation) but have
been able to successfully communicate on other ports,
it is likely that a firewall is blocking communication
on the affected ports. We focus on port-based block-
ing since it is commonly employed to block specific
applications. Also, there is a greater likelihood of a
shared experience among the wireless peers if there is
blocking of accesses to certain well-known ports (e.g.,
if access to the SMTP port were blocked, peers ac-
cessing SMTP servers would be affected regardless of
which server they access) than if the firewall were using
a different policy for blocking (e.g., blocking accesses
to certain remote addresses).

3. If at least one peer is able to communicate on the prob-
lematic port, it is likely either the specific remote host
that the client is trying to communicate with is un-
reachable or that a firewall policy other than port-
based blocking is in effect.

4. If no peer reports successful end-to-end communica-
tion, it is likely that there is a connectivity problem
between the wireless LAN and the wide-area network.
While it is possible that this problem is AP-specific
(i.e., affecting clients associated with one AP but not
those associated with other APs on the same wireless
LAN), it is unlikely to be so since AP-specific problems
would likely have manifested themselves as DHCP or
DNS failures.

Resolution would involve the user changing the proxy set-
ting, if that is the cause of the problem. Otherwise operator
intervention would be needed to address the firewall config-
uration or WAN disconnection issues.

3.3.5 Poor performance
The client may experience poor network performance be-

cause (a) its wireless link is weak, (b) the wireless medium is
congested, or (c) there is a WAN problem (e.g., congestion
or routing instability).

Based on the aggregated information from peers, we di-
agnose the problem using the following steps in order:

1. If the beacon loss rate at the client is significant, a
weak wireless link is the likely cause of poor perfor-
mance. However, as noted in Section 3.1.1, the “bea-
cons” in our current implementation are just broadcast
packets transmitted by the individual wireless nodes.
As such, an individual node does not know how many
beacons have been transmitted in all or how many were
lost on the hop from the source node to the AP, making
it difficult for it to compute the beacon loss rate. In-
stead, we have each peer report the number of beacon
packets it has received in the recent past. If the num-
ber of beacons received by the client is significantly
lower than the highest count reported by a peer, we
infer that the wireless link to the client is weak and is
the likely cause of poor performance.

2. If one or more peers reports persistent queuing at its
wireless interface but none of them reports a weak
wireless link, the wireless medium is likely congested.
The check that the wireless link is not weak is nec-
essary because otherwise MAC backoff might account
for the queuing even when the wireless medium itself
is not congested (Section 3.1.1).

3. Otherwise, either there is a WAN problem or there is
wireless congestion but none of the peers is transmit-
ting fast enough to experience any local queuing (i.e.,
they are all only downloading, causing persistent queu-
ing at the AP’s wireless interface, unbeknownst to the
clients).

If the wireless link or medium is the cause of the prob-
lem, resolving the problem would involve the user changing
his/her location or switching to a less congested AP or net-
work, which may be operating on a different, less congested
channel. If there isn’t a different AP or network to switch to
or if the problem is not wireless related, operator interven-
tion would be needed to resolve the problem (e.g., to shut
off a bandwidth hog, like the eDonkey user at Sigcomm 2005
noted in Section 2.2.5).

3.3.6 Discussion
We now discuss a couple of issues pertaining to the diag-

nosis procedure. First, there is inherent uncertainty in the
diagnosis is some cases. For example, in the absence of di-
rect information from the infrastructure, it is impossible to
definitely establish that a particular MAC address is being
filtered. We can only make an informed conjecture that this
is happening because it is common practice and other fac-
tors (e.g., NIC type, driver version, etc.) have been ruled
out based on information from peers. Nevertheless, we be-
lieve that it is useful to provide users with a short list of
potential causes, even if a single definitive cause cannot be
determined.

Second, there is the possibility of conflicting information
being provided by peers. Assuming that peers report infor-
mation accurately (we defer discussion of deliberate decep-
tion to Section 5.1), any disagreement in the information
provided by peers would be resolved as part of the diagno-
sis procedure discussed above. For example, in the case of
association problems, if two peers with identical NIC type
and driver version report association success and failure, re-
spectively, the requester can rule out incompatibility of the
NIC type or driver version as a possible cause.

4. EXPERIMENTAL EVALUATION
We now present an experimental evaluation of the various

components of WiFiProfiler. Our testbed consists of a sub-
net with a D-Link DWL-7100AP access point providing con-
nectivity between a wired server host and wireless clients.
We keep this subnet isolated from our corporate network,
to avoid creating a “rogue” AP. The wired host runs a web
server, in addition to providing firewall functionality using
the Internet Connection Firewall (ICF) feature in Windows.
The D-Link AP itself provides DHCP service. We used 7
laptop-class wireless clients: 5 Compaq Evo N800c laptops
(Pentium-4 2GHz, 512 MB) and 2 Toshiba Protege 3500
Tablet PCs (Pentium-III 1.33 GHz, 1 GB). The machines
were equipped with built-in 802.11 NICs. In addition, we
used Cisco Aironet 340 and Orinoco 802.11ag ComboCard
Gold PCMCIA NICs for some of our experiments. We set
the AP to 802.11b mode for all of our experiments.

4.1 Evaluation of sensing
The key questions with regard to sensing are its accuracy

and the overhead it imposes on the wireless host. We discuss
each of these in turn.

Much of the information that is sensed by WiFiProfiler
pertains to static or dynamic configuration (e.g., the authen-
tication settings, whether the client has a DHCP address,
etc.). The discrete nature of this information means that its
accuracy is guaranteed (modulo software bugs). So we focus
our discussion here on sensing information pertaining to the
quality of the wireless link, where there is more uncertainty.

4.1.1 Sensing the quality of the wireless link
WiFiProfiler needs to sense the quality of the wireless link

between a client host and the AP it is associated with in
order to present the appropriate diagnosis (and resolution
advice) to a user who is experiencing poor end-to-end per-
formance. If the link is weak and lossy, we would like to
advise the user to change his/her location to improve their
connectivity to the AP. On the other hand, if the wireless
medium is congested, the user should switch to a different
AP or network on a non-overlapping channel, if available. If
congestion on the wired network is culprit, switching wire-
less connectivity would not help, unless doing so also changes

NIC Metric Location
A B C D E F

Compaq RSSI (dBm) -34 -62 -77 -80 -82 -93
BLR (%) 0.3 1.2 3.3 7.0 19.5 27.7

Toshiba RSSI (dBm) -27 -60 -77 -83 -84 -95
BLR (%) 0.4 0.6 2.0 5.0 11.2 37.5

Cisco RSSI (dBm) -37 -67 -82 -87 -89 NA
BLR (%) 1.3 2.2 5.5 61.9 90.0 NA

Orinoco RSSI (dBm) -41 -74 -86 -88 -89 NA
BLR (%) 1.2 2.5 43.4 IA IA IA

Table 1: The received signal strength (RSSI) and beacon

loss rate (BLR) measured at different locations and with dif-

ferent NICs. The measurement data is unavailable when the

client has no association (NA) to the AP. The BLR metric

cannot be meaningfully computed even when the client has

intermittent association (IA).

the WAN connectivity.
Accurately sensing the quality of the wireless link is chal-

lenging because wireless drivers typically do not expose in-
formation on the link loss rate and the link busyness. In
fact, carrier sensing and link-layer retransmissions in 802.11
are performed in the wireless NIC and are thus masked from
the host software. Also, the wide range in the nature of end-
to-end communication that clients may be engaged in (web
browsing versus bulk downloads, remote versus local servers,
etc.) makes it difficult to meaningfully compare end-to-end
communication performance information obtained through
passive monitoring. So we investigate how effectively we can
sense link quality using information that is available, viz.,
the received signal strength (RSSI) and the beacon loss rate
(approximated using broadcast UDP packets with 4-byte
payloads as the “beacons”, per Section 3.1.1).

In the first experiment, we examine the relationship be-
tween RSSI and the beacon loss rate (BLR). We place a
client at 6 different locations in our office building (labeled
A through F), at increasing distances from the AP. Since the
NIC hardware/driver could have an impact on the measure-
ments, we repeat our measurements with 4 different wireless
NICs: the built-in Compaq and Toshiba NICs as well as the
external Cisco and Orinoco NICs.

Table 1 shows the RSSI and BLR measured at the 6 lo-
cations. While the trend is similar for the 4 NICs, there
are noticeable differences in the actual RSSI and BLR val-
ues. Indeed, some NICs are even unable to associate with
the AP at certain locations. These differences are not un-
expected given the disparity in the RF circuitry, antenna
design, manufacturing tolerances, and sampling performed
by the driver. However, in all cases the BLR exceeds 5%
when the RSSI drops below -80 dBm. So -80 dBm could
be used as a threshold for deciding when the wireless link
is significantly lossy. This would be useful, for instance, if
the BLR were not available. Note, however, that a stronger
RSSI does not necessarily mean that the link is not lossy,
because of noise or interference.

In Table 2, we report the TCP throughput (with the
Toshiba NIC) in the AP-to-client direction measured using
a 16 MB ttcp transfer. We find that the throughput drops
sharply when the BLR exceeds 5%. In fact, at higher BLRs,
the 16 MB transfer does not even complete. This again
is consistent with the thresholds for a “lossy” link noted
above. Note that BLR is an optimistic measure because of
the relatively small size of the beacon packets. Large data
packets are likely to suffer a higher loss rate under similar
circumstances.

Thus we conclude that the BLR and/or RSSI can serve

NIC Metric Location
A B C D E F

RSSI (dBm) -27 -60 -77 -83 -84 -95
Toshiba BLR (%) 0.4 0.6 2.0 5.0 11.2 37.5

Thruput (KB/s) 565 572 451 147 IC IC

Table 2: The TCP downlink throughput at various loca-

tions with the Toshiba WLAN NIC. The RSSI and BLR in-

formation is repeated from Table 1 for easy reference. “IC”

indicates that the TCP remained incomplete because of ex-

tremely poor performance.

0

5

10

15

20

25

10K 100K 1M

Download Size (in bytes)

T
im

e
(i

n
 s

ec
o

n
d

s)

VwiFiPSM DL Time VwiFi DL Time DL time

Figure 3: Impact of the communication protocol on
web page download time at the connected client.
The VwiFiPSM bar is missing in the 10 KB case
because the download finished too quickly for us to
be able to reliably interpose VirtualWiFi switching
during the download.

as an effective, even if not perfect, indicator of link lossi-
ness. This permits us to correctly distinguish between per-
formance degradation due to link lossiness from that due to
congestion.

4.1.2 Overhead of sensing
We consider the overhead that sensing imposes on the

client host. If sensing is to be an ongoing process in WiFiPro-
filer (which offers the benefit of reducing diagnosis latency
compared to on-demand sensing), it is important that the
overhead be low, in terms of both CPU usage and network
performance impact.

In our current implementation of WiFiProfiler, the sens-
ing component gathers a snapshot every second. In addition,
it scans other wireless channels every 10 seconds to discover
other APs as well as peers seeking help. Despite these ac-
tivities, we find that the overhead is negligible. The sensing
component uses under 1% of the CPU even on the slower
(1.33 GHz) Toshiba laptops. Also, there is no measurable
impact on network performance (as quantified by the ttcp
throughput for a 16 MB transfer). Nevertheless, other com-
ponents of WiFiProfiler — the communication component
in particular — could impose a greater overhead, so we turn
to it next.

4.2 Communication Layer Performance
In this subsection, we evaluate the performance of the

communication component of WiFiProfiler. We first quan-
tify the overhead of providing help on a client’s network
performance. We then microbenchmark various steps of the
communication protocol at the responder. Finally, we look
at the total time taken for the request-response exchange to
complete.

We evaluate the communication protocol for all combina-

Initialize Responder Send Packet Stop Responder

VWiFiI 0.039 (0.042) 0.064 (0.030) 0.004 (0.004)
VWiFiII 0.079 (0.046) 1.434 (0.058) 0.007 (0.008)
Two NICs 5.614 (0.520) 5.271 (1.186) 5.861 (2.222)

Table 3: Time (in seconds) at the responder to complete

each step of the communication protocol. The standard de-

viation is presented in braces.

tions of the requester and the responder using VirtualWiFi
or two NICs. When using VirtualWiFi, we set the time spent
on the helper network to 500 ms and that on the primary
network to 800 ms, in each cycle. In our experiment, we
disconnect the requester from its primary wireless network,
and have it initiate the request process. A responder node
placed in the vicinity of the requester then goes into helping
mode, sends a 1200-byte response to the requester (the typ-
ical size of the sensing state in our current implementation),
and then exits the helping mode.

4.2.1 Impact of Providing Help on the Responder
We first evaluate the overhead of providing help on the

responder’s network performance, by measuring its impact
(compared to when it is not in helping mode) on the time
to complete web downloads of three different sizes: 10 KB,
100 KB, and 1 MB. We set up a web server on the local
wired subnet and use the WiNE network emulator [10] to
introduce an additional round trip latency of 75 ms between
the responder and the web server. Upon hearing beacons
from the requester, the responder first issues a wget request
before starting to help. This corresponds to the worst case
scenario where the wget download coincides with the pe-
riod when the responder is engaged in WiFiProfiler helping
activities.

We present download time results for three different cases
in Figure 3. In the first case (marked as “DL time” in
the figure), the responder uses separate primary and helper
NICs. So the time for the wget download via its primary
NIC is unaffected by the WiFiProfiler helping activity. This
serves as a baseline for comparison. In the second case
(marked “VWiFiPSM DL time”), the responder uses Vir-
tualWiFi to emulate both the primary and helper adapters.
Furthermore, the AP implements IEEE 802.11 Power Save
Mode (PSM), which VirtualWiFi leverages to have packets
buffered at the AP when it is on the helper ad hoc network
(and hence unable to receive packets on its primary net-
work). This ensures that the responder does not lose any
packets due to VirtualWiFi switching. However, it does in-
cur an additional delay, since it will not receive the buffered
packets until it is back on the primary network, which takes
about 800 ms.2 The impact of this delay is greatest if it
occurs during TCP’s slow start phase, since it delays TCP’s
window growth. The third case (marked “VWiFi DL time”)
is when the AP does not implement PSM, so packets from
the web server would be lost when the responder is on the
helper ad hoc network. Nevertheless, the impact on the
download time is acceptable in all cases: about 500 ms for
the small downloads, and 2-3 seconds for the large down-
loads. Note again that our experiment considers a pes-

2The responder is on the helper ad hoc network for 500 ms,
followed by around 300 ms to switch back to the primary net-
work. Although the switching might complete faster, Virtu-
alWiFi requires nodes using PSM to provide an estimate of
the switching time as a multiple of the beacon period (100
ms).

1.732 1.540

31.139

26.327

5.542

3.956

0.010

0.011

0.0080.008

18.726

27.157

0

5

10

15

20

25

30

35

40

45

Req:2R Resp:2R Req:2R Resp:VW Req:VW Resp:2R Req:VW Resp:VW

T
im

e
(i

n
 s

ec
o

n
d

s)

Stop Requestor
Receive Data
Initialize Requestor

Figure 4: Time for the communication protocol to
complete when the requester is waiting for one re-
sponder. 2R: Two Radios (NICs), VW: VirtualWiFi

simistic case where the responder is in the middle of a down-
load when it starts helping. The overhead would be lower
(or even zero) if the helping happened during a less busy (or
idle) period, per the optimization noted in Section 3.2.4.

4.2.2 Time Taken at the Responder
We now study the time taken by the responder to com-

plete each step of the communication protocol, shown in Fig-
ure 2. Table 3 presents these numbers for two cases: when
the responder is using VirtualWiFi and when it is using two
NICs. In more than 45 runs when the responder used Virtu-
alWiFi, around 50% of them finished within 150 ms, while
the rest took around 1.5 seconds to complete. We denote
these scenarios by VWiFiI and VWiFiII respectively. The
reason for the difference, as evident from the table, is the
time to send the response packet to the requester. Virtual-
WiFi sends the packets as soon as the card finishes switching
to a network. In our experiments, we found this time to be
highly variable. If switching takes longer than 500 ms, Vir-
tualWiFi would have switched back to the primary network,
and so the response would be delayed by one cycle until the
responder reconnects to the helper network.

When using two NICs, all steps take significantly longer at
the responder. Enabling and disabling the helper NIC (i.e.,
turning on and off the physical device) takes a few seconds,
as compared to starting and stopping a service for Virtual-
WiFi, which only takes tens of milliseconds. Furthermore,
the time to send a packet is also significant for the two NIC
scheme. The helper NIC has to associate to the network,
and initialize the network stack. It might even have to wait
for the requester to initialize its network stack. Only then
can it send the response packet. Note that we see this de-
lay despite manually assigning an IP address to the helper
adapter. The “Send Packet” step would take much longer
if the adapter were to wait for an autoconfig IP address.
VirtualWiFi does not incur this latency because it always
maintains the network stack, including an IP address, for
the virtual helper adapter.

4.2.3 End-to-End Latency of the Comm. Protocol
We now look at the the latency of each step in the commu-

nication protocol at the requester. The results for all pos-
sible combinations of the requester and the responder using
either VirtualWiFi or two NICs is presented in Figure 4.

The communication protocol takes the longest time to
complete when both the requester and the responder use
two NICs. Initializing and stopping the requester requires
enabling and disabling the helper adapter. Both these oper-
ations take a few seconds to complete. The time to receive a

response includes the time taken for the responder to detect
the requester’s ad hoc network (~18 seconds), for it to en-
able its helper adapter (~5 seconds), for its helper adapter
to scan for the requester’s ad hoc network, for the respon-
der to join the ad hoc network, and for the requester and
the responder to initialize their network stacks and to ex-
change data. The total time taken for these operations is
approximately 32 seconds.

If the responder uses VirtualWiFi, the total time taken is
less than the time taken with two NICs. This is so because
the responder saves on the following steps: time to enable
the helper adapter, scanning again on the helper adapter
and initializing the network stack at the responder. How-
ever, this saves only about 5 seconds on average since the
requester still waits for the responder to join its network
before initializing its network stack.

The results are better when the requester uses Virtual-
WiFi. Here the responder goes through the same steps de-
scribed for the two NIC case. However, the time to receive
the data is smaller because the requester initializes its net-
work stack before the responder joins the network. The over-
all time taken at the requester is also small because it does
not spend time enabling and disabling the physical adapter.

Finally, we get the best results when both the requester
and the responder use VirtualWiFi. In this case, the biggest
overhead is the time to receive data. This delay is incurred
at the responder, which has to scan across channels, looking
for the requester’s beacons.

4.3 Diagnosis Performance
In this section, we evaluate the performance and effec-

tiveness of WiFiProfiler in diagnosing problems in wireless
networks. Using our testbed, we inject different types of
faults and see if WiFiProfiler running on the wireless clients
makes the correct diagnosis under each scenario. Here are
the faults we inject:

• No beacon: Place a disconnected client far from the
AP with some other clients in the middle, i.e., within
range of the AP as well as the disconnected client.

• MAC filtering: Filter a client’s MAC address at the
AP.

• Incorrect WEP key for authentication/encryption:
Enable authentication/encryption and configure a client
with the wrong WEP key.

• DHCP problem: First let 3 clients get IP addresses
from the DHCP server, then turn off the DHCP server
before the other 3 clients come online.

• Port blocking: Have different clients attempt com-
munication on various well-known ports (TCP ports
21 (FTP), 22 (SSH), 23 (Telnet), 25 (SMTP), and 80
(HTTP)), but configure the firewall to block accesses
to port 80 (HTTP). Our goal is to mimic a practical
setting, where a group of clients is collectively commu-
nicating across a range of well-known ports (e.g., some
users may be browsing the web while others may be
sending email).3

• Wireless congestion: Create congestion by having
4 clients upload data and 2 clients download data si-
multaneously via the same AP.

3In the event that none of the clients attempts any commu-
nication on certain ports, passive sensing would not yield
any information on the connectivity on those ports.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h

Time (second)

Figure 5: Queue length (in packets).

Port 80 blocked

Port 80 blockedPort 80 blocked

MAC Filtering

Too far from AP

Access Point

Figure 6: Setup for testing simultaneous diagnosis
of faults.

We first inject one type of problem in each experiment.
We repeat each experiment three times. Since we are inter-
ested in measuring the actual response time, we disable the
random one-minute waiting time (noted in Section 3.2.4)
for these experiments. In all of the experiments, WiFiPro-
filer is able to correctly identify the cause of the problem
and the total time taken for diagnosis is under 40 seconds.
Thus WiFiProfiler is much more responsive (and much less
disruptive) than manual diagnosis, which could take several
minutes, if not longer.

We now consider the wireless congestion scenario in more
detail. When the wireless link is congested, we expect to
observe queueing at the wireless interfaces of clients who
are uploading data. There would not be such queuing if the
congestion were elsewhere in the network. Figure 5 shows
the output queue length at one of the clients that is up-
loading data. As expected, we find that the queue length
at such a client is always non-zero, which indicates wireless
congestion. We want to emphasize that WiFiProfiler can
detect congestion as long as the congestion leads to queue-
ing on at least one client (and that client does not have a
weak wireless link, as noted in Section 3.3.5). But when all
the clients are only downloading data, WiFiProfiler will not
detect congestion since it has no knowledge of queueing at
the AP.

Finally, we study the effectiveness of WiFiProfiler in diag-
nosing multiple simultaneous problems. We set up 5 clients
and an AP as shown in Figure 6. The first client is placed far
from the AP, such that it receives no beacons. The second

client is placed between the first client and the AP, such that
it can both receive the beacons from the AP and communi-
cate with the first client. But its MAC address is filtered by
the AP. The remaining 3 clients are placed close to the AP
and attempt to send HTTP requests. However, we configure
the firewall to block access to port 80.

As expected, the first client diagnoses the problem as “no
beacon” and is prompted to change its location because it
knows of at least one peer (the second client) who is receiving
beacons. The second client diagnoses the problem as “MAC
filtering” because it knows of peers that are able to associate
with the AP that it is unable to associate with. The remain-
ing three clients deduce that port 80 is blocked since their
HTTP requests have never succeeded while communication
on other ports has. All of these diagnoses are made within
40 seconds. Thus even in an environment where each client
is affected by a different problem, WiFiProfiler is able to
quickly and correctly identify the problem(s) affecting the
individual clients.

5. DISCUSSION
We now discuss some issues and concerns pertaining to

WiFiProfiler and directions for future work.

5.1 Security Issues
There are several security issues pertaining to WiFiPro-

filer: denial-of-service (DoS) attacks launched by clients pre-
tending to be in trouble, clients that mislead their peers by
reporting bogus information, and the potential for leaking
sensitive information.

We mitigate the DoS threat in our design by limiting the
frequency with which a client is willing to help its peers (and
incur the attendant overhead), as noted in Section 3.2.4.

Addressing the threat of bogus information is more chal-
lenging. We could alleviate this problem by basing diagno-
sis on information obtained from a larger number of peers.
However, this procedure is susceptible to a Sybil attack [18],
in which an adversary pretends to be multiple distinct nodes,
using MAC address spoofing and varying its transmit power
to defeat attempts to identify or locate it. In future work,
we plan to investigate countermeasures based on the obser-
vation that it is hard for an adversary equipped with an
off-the-shelf NIC to listen on multiple MAC addresses si-
multaneously.

Finally, WiFiProfiler runs the risk of leaking sensitive in-
formation. For example, revealing the one-way hash of a
WEP key opens up the possibility of a dictionary attack
on the key. Likewise, revealing the NIC driver version risks
inviting attacks that take advantage of vulnerabilities that
are specific to that driver version. In ongoing work, we are
looking to determine the sensitivity of various pieces of in-
formation shared by WiFiProfiler based on whether it can
be obtained via passive sniffing, and separately using zero-
knowledge protocols (e.g., [19]) to share the bare minimum
information needed for diagnosis.

5.2 Incentives for Participation
Since WiFiProfiler imposes a low overhead on clients, it

can be left running all the time with little cost to the in-
dividual but potentially significant benefit to the commu-
nity of wireless users as a whole (although we are yet to
conduct a user study to quantify the benefit). By running
WiFiProfiler, a client not only provides help to others but
can also receive help from others when it is experiencing
problems. While there is scope for cheating (e.g., a selfish
node can seek help when needed but not respond when help

is sought), we believe that this risk can be minimized by in-
cluding WiFiProfiler as a standard system component that
users are unlikely to tamper with (in much the same way
that the majority of TCP stacks are conformant, despite
the incentives for cheating).

5.3 Opportunities for Broader Participation
There are opportunities for broadening participation in

WiFiProfiler, making the system more effective. First, al-
though we have chosen Microsoft Windows XP as the plat-
form for our implementation, there is little about WiFiPro-
filer that is OS platform-specific (other than information
on the wireless driver version). Hence, information sensed
by WiFiProfiler can be meaningfully shared across clients
on different OSes, thereby increasing the opportunities for
sharing.

Second, WiFiProfiler could be used for long-term “profil-
ing” of wireless hotspots in cafes, airports, etc. Network
health information, say indexed by the BSSID, could be
shared widely, enabling a client to warn the user when he/she
is trying to connect to a network that is known to be prob-
lematic.

Finally, the wireless network can be used to share infor-
mation about non-wireless-related problems. For example,
hosts in an apartment that has suffered a disconnection of
its access link could use a wireless network to learn about
the state of connectivity of hosts in nearby apartments that
may be served by the same DSL or cable modem provider.

6. RELATED WORK
Of most direct relevance to our work is previous work on

fault diagnosis in wireless LANs. Commercial wireless LAN
vendors provide network diagnosis capability using special-
ized hardware sensors (sometimes incorporated within the
AP itself) to monitor the wireless medium [1, 2]. [11] uses
wireless clients and enhanced APs to do the sensing and
feed information into a back-end server for analysis. [12]
uses wired desktops machines equipped with wireless NICs
for sensing.

All of these previous solutions focus on the network oper-
ator’s view. Their architecture incorporates specialized sen-
sors and/or equipment on the wired network for monitoring
and diagnosis. Their focus is on problems of interest to net-
work operators, e.g., detecting unauthorized (“rogue”) APs,
detecting RF holes in a wireless LAN deployment, and locat-
ing disconnected clients. While this approach is suitable for
enterprises and university campuses with dedicated IT de-
partments, it is less appropriate for hotspots settings where
there may be no IT department to monitor the network. In
contrast, our focus in WiFiProfiler is on the end user view-
point, with the goal of enabling users to help themselves. As
such, we only depend on cooperation among wireless clients,
without any special support from the wireless or wired in-
frastructure. The problems of interest are those directly
affecting end users (e.g., incorrect WEP key setting) rather
than those that pertain to general network health (e.g., the
presence of rogue APs).

There are also some specific differences between [11] and
our work. The clients in [11] were assumed to be equipped
with special “Native WiFi” NICs and drivers that provide
raw access to 802.11 frames and also enable snooping on
wireless traffic in promiscuous mode. The former is used to
support the “client conduit” mechanism, in which a discon-
nected client beacons like an AP to obtain connectivity via
a connected client. In contrast, our approach in WiFiPro-
filer is to avoid dependence on special hardware or driver

support; indeed, even promiscuous mode is not widely or
correctly supported, so we do not depend on it. The Virtu-
alWiFi mechanism allows peer-to-peer communication in a
device- and driver-independent way.

There is much prior work on network diagnosis in wired
networks, typically in wide-area networks (WANs). Active
probing using tools such as ping and traceroute has been
used for narrowing down the location of failures such as
routing loops or lossy links in wide-area paths [20,22]. Other
work has considered simultaneous active probing from mul-
tiple vantage points to leverage the diversity that this pro-
vides [27]. While such probing is useful for diagnosing wide-
area network problems, it is not as useful in a wireless LAN
setting, where, for instance, a disconnected client would not
be able to probe beyond the local host. The location of
the problem, viz. the last hop, may be evident but not the
underlying cause.

End-host-based techniques have been developed to dis-
cover the local layer-2 network topology [13]. If this topol-
ogy information were extended to include physical location,
it could be used by WiFiProfiler, for instance, to direct users
to a different physical location with better wireless connec-
tivity.

The idea of aggregating passive observations made at end
hosts to diagnose problems and improve user experience has
been applied before, both in networking and non-networking
contexts. In the networking context, SPAND [23] proposed
pooling together information on download performance to
help clients make an informed replica selection decision. Net-
Profiler [21] proposed pooling together network failure ob-
servations across clients to help diagnose WAN problems
(e.g., determine whether a problem is ISP-specific). WiFiPro-
filer shares this basic idea of leveraging passive observations
made at end hosts. However, the wireless setting is unique
in the opportunity it provides even disconnected clients to
share information with their peers. The nature of problems
considered by WiFiProfiler and the level of detail of its di-
agnoses (e.g., incorrect WEP key) distinguish it from prior
work such as [21] that focused on inferring just the location
of the failure in the WAN.

Aggregation and correlation of configuration information
across end hosts has also been used to diagnose non-networking
problems [24, 25]. The basic approach is to apply statis-
tical analysis on system configuration data (e.g., registry
settings in Microsoft Windows) and changes thereof to infer
the settings that are likely responsible for the observed prob-
lems. The focus is on black box analysis of a large volume of
configuration information to identify errors, independent of
their semantics. In contrast, WiFiProfiler leverages specific
knowledge of the wireless networking domain to make se-
mantically meaningful diagnoses based on a limited volume
of relevant information received from peers.

7. CONCLUSION
We have presented WiFiProfiler, a system for enabling

wireless clients to diagnose network problems by leverag-
ing the cooperation of their peers within range. Based on
our implementation on Windows XP, we have shown that
WiFiProfiler can effectively diagnose a range of faults while
imposing a low overhead on the participating clients. We
believe that WiFiProfiler provides a generic framework that
could be extended to diagnosing faults other than the spe-
cific ones discussed in this paper.

Acknowledgments
We thank our shepherd, Ramón Cáceres, the anonymous
MobiSys 2006 reviewers, and Christian Huitema and Jawad
Khaki at Microsoft for their insightful feedback.

8. REFERENCES
[1] AirTight Networks. http://www.airtightnetworks.com/.
[2] Aruba Networks. http://www.arubanetworks.com/.
[3] Device Identification Strings.

http://msdn.microsoft.com/library/en-
us/DevInst d/hh/DevInst d/idstrings a974863f-a410-4259-
8474-b57a3e20d326.xml.asp.

[4] Intel pro/wireless 2915abg network connection.
http://support.intel.com/support/wireless/wlan/pro2915abg/.

[5] Intel Wireless Verification Program.
http://www.intel.com/standards/execqa/qa0104cha.htm.

[6] Microsoft Windows 802.11 Wireless LAN Objects.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/NetXP r/hh/NetXP r/217wirelessoid bca9862e-feea-406f-
b11d-ea01859bfbd3.xml.asp.

[7] Microsoft Windows Transport Driver Interface (TDI).
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/NetXP d/hh/NetXp d/nettdidriv 27c4b7c0-7e21-441d-
bb08-335d48204a06.xml.asp.

[8] NSF Computer Security Policy – Prerequisites for Wireless
Access.
https://www.fastlane.nsf.gov/documents/security/computer
policy.jsp#wifi, updated November 2005.

[9] Wi-Fi Alliance. http://www.wi-fi.org/.
[10] Wireless/Wired Network Emulator (WiNE).

http://research.microsoft.com/users/qianz/testbed.htm.
[11] A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and

Techniques for Diagnosing Faults in IEEE 802.11 Infrastructure
Networks. In MOBICOM, 2004.

[12] P. Bahl, J.Padhye, L. Ravindranath, M. Singh, A. Wolman,
and B. Zill. DAIR: A Framework for Troubleshooting
Enterprise Wireless Networks Using Desktop Infrastructure. In
Hotnets-IV, 2005.

[13] R. Black, A. Donnelly, and C. Fournet. Ethernet Topology
Discovery without Network Assistance. In ICNP, 2004.

[14] R. Chandra. A Virtualization Architecture for Wireless
Network Cards, Sep. 2005. Ph.D. Thesis, Cornell University.

[15] R. Chandra, V. Bahl, and P. Bahl. MultiNet: Connecting to
Multiple IEEE 802.11 Networks Using a Single Wireless Card.
In INFOCOM, 2004.

[16] I. Cooper, I. Melve, and G. Tomlinson. Internet Web
Replication and Caching Taxnomy. RFC 3040, IETF, Jan.
2001.

[17] D. De Couto, D. Aguayo, J. Bicket, and R. Morris.
High-Throughput Path Metric for Multi-Hop Wireless Routing.
In MOBICOM, 2003.

[18] J. Douceur. The Sybil Attack. In IPTPS, March 2002.
[19] R. Fagin, M. Naor, and P. Winkler. Comparing Information

Without Leaking It. CACM, May 1996.
[20] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.

User-level Internet Path Diagnosis. In SOSP, October 2003.
[21] V. N. Padmanabhan, S. Ramabhadran, and J. Padhye.

NetProfiler: Profiling Wide-Area Networks Using Peer
Cooperation. In IPTPS, February 2005.

[22] V. Paxson. End-to-End Routing Behavior in the Internet.
IEEE/ACM ToN, 5(5):601–615, October 1997.

[23] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared Passive
Network Performance Discovery. In USITS, 1997.

[24] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. Wang.
Automatic Misconfiguration Troubleshooting with
PeerPressure. In OSDI, 2004.

[25] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
C. Yuan, and Z. Zhang. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management and
Support. In USENIX LISA, 2003.

[26] Wireless Philadelphia Executive Committee. Wireless
Philadelphia. http://www.phila.gov/wireless/.

[27] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.
PlanetSeer: Internet Path Failure Monitoring and
Characterization in Wide-Area Services. In OSDI, 2004.

