
Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis

Yu-Chung Cheng, John Bellardo, Péter Benkö†

Alex C. Snoeren, Geoffrey M. Voelker and Stefan Savage

Department of Computer Science and Engineering
University of California, San Diego

ABSTRACT
The combination of unlicensed spectrum, cheap wireless interfaces
and the inherent convenience of untethered computing have made
802.11-based networks ubiquitous in the enterprise. Modern uni-
versities, corporate campuses and government offices routinely de-
ploy scores of access points to blanket their sites with wireless
Internet access. However, while the fine-grained behavior of the
802.11 protocol itself has been well studied, our understanding of
how large 802.11 networks behave in their full empirical complex-
ity is surprisingly limited. In this paper, we present a system called
Jigsaw that uses multiple monitors to provide a single unified view
of all physical, link, network and transport-layer activity on an
802.11 network. To drive this analysis, we have deployed an in-
frastructure of over 150 radio monitors that simultaneously capture
all 802.11b and 802.11g activity in a large university building (1M+
cubic feet). We describe the challenges posed by both the scale and
ambiguity inherent in such an architecture, and explain the algo-
rithms and inference techniques we developed to address them. Fi-
nally, using a 24-hour distributed trace containing more than 1.5
billion events, we use Jigsaw’s global cross-layer viewpoint to iso-
late performance artifacts, both explicit, such as management inef-
ficiencies, and implicit, such as co-channel interference. We believe
this is the first analysis combining this scale and level of detail for
a production 802.11 network.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Experimentation, Measurement, Performance

Keywords
Wireless networks, 802.11, measurement, monitoring

1. Introduction
In the last five years, wireless networks based on the 802.11 fam-

ily of standards have become ubiquitous in the enterprise. Inte-
gral wireless interfaces — now shipping in almost 90 percent of
notebook computers — combined with unlicensed spectrum and
inexpensive “access points” have made untethered Internet access
a reality in almost two-thirds of U.S. corporations, hospitals and

†Benkö is a visiting researcher at UCSD from the Traffic Analy-
sis and Network Performance Laboratory (TrafficLab) at Ericsson
Research, Budapest, Hungary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

college campuses [3, 4, 5, 9]. However, the reality of these de-
ployments can be quite complex. A large office building may have
hundreds of wireless users interacting with dozens of access points
under varying load and environmental conditions.

It is these interactions that make the dynamics of wireless net-
work behavior so interesting, and yet so difficult to measure. Un-
like their wired brethren, wireless networks are not well described
as either a single broadcast channel nor as a graph of links. Whether
any transmission is heard by a particular receiver is a function of
many distinct factors including the ambient environmental interfer-
ence, the sender’s transmit power, the distance to the receiver, and
the strength of any simultaneous transmissions on nearby channels
heard by that same receiver. Further complicating this morass is
the 802.11 media access control (MAC) protocol, which uses its
own inferences about the physical layer to defer, schedule and retry
transmissions. Finally, these networks are typically used to carry
Internet traffic based on the TCP protocol that carries its own set of
complex dynamics. It is no wonder that our understanding of these
systems tends to be limited to either small controlled environments
(“how much does interference between two radios impact through-
put”) or to large, but coarse measurements (“how long is the aver-
age TCP flow on a wireless network”).

It is our belief that developing a deeper understanding of the dy-
namics and interactions in production wireless networks requires
reconstructing their behavior in its entirety — measuring all frames
and delivery outcomes across all wireless nodes. In the wired net-
work this kind of measurement is typically achieved through pas-
sive monitoring, but in the wireless domain spatial diversity pre-
vents any single monitor from capturing more than a small subset
of traffic. Thus, extracting a global viewpoint requires many spa-
tially dispersed monitors working in concert.

In this paper, we approach this problem from a systems point
of view. We have developed a large-scale monitor infrastructure
that overlays a building-scale production 802.11b/g network with
over 150 passive radio monitors. These monitors in turn feed a
centralized system, called Jigsaw, that uses this data to produce
a precisely synchronized global picture of all physical, link-layer,
network-layer and transport-layer activity. We believe our principal
contributions are threefold:

• Large-scale Synchronization. We have designed and imple-
mented a passive synchronization algorithm that can accu-
rately synchronize over 150 simultaneous traces down to mi-
crosecond granularity. To accomplish this task at scale re-
quires predicting the impacts of individual radio clock skews
and leveraging frames overheard at multiple radios to oppor-
tunistically resynchronize.

• Frame Unification. We use this fine-grained synchronization
to combine the contents of all traces, merging duplicates and

39

constructing a synchronized single trace of all frame trans-
missions.

• Multi-layer Reconstruction. From raw frame data we recon-
struct a complete description of all link and transport-layer
conversations. To address the problem of missing data we
have developed a set of inference techniques to deduce the
presence, time placement, and even contents of missing data.
Our analysis uses transport-layer information to resolve ques-
tions such as frame delivery, that can be inherently ambigu-
ous at the link-layer alone.

The remainder of this paper is organized as follows: In Section 2
we review the important aspects of the 802.11 MAC protocol and
prior work in wireless LAN measurement. In Section 3 we describe
our measurement infrastructure and, in Section 4, we describe how
we merge and synchronize passive traces. Section 5 then explains
how we reconstruct link-layer and transport-layer viewpoints from
raw frame data. Section 6 evaluates the coverage of the monitor-
ing platform in the building. In Section 7 we demonstrate Jigsaw’s
capabilities through a set of measurements that exploit its global
wireless network perspective. Finally, Section 8 summarizes our
overall conclusions about constructing and using a large wireless
monitoring infrastructure.

2. Background and related work
In this section we offer a brief tutorial in the operation of the

802.11 protocol, followed by a description of previous 802.11 mea-
surement research.

The 802.11 media access control protocol is a CSMA/CA variant
that uses “virtual carrier sense” to support an RTS/CTS capability
and to protect multi-frame exchanges. When a node wishes to send,
it first validates that the channel is clear. If the channel stays idle
for a set period of time (DIFS) it transmits. Otherwise, it selects
a random backoff time in (0, N], and tries again. 802.11 also pro-
vides a link-layer retransmission facility. Thus when a station sends
a unicast packet, the protocol requires the receiver to respond im-
mediately with an ACK packet. If the sender does not receive an
ACK within a preset timeout, it doubles N, calculates a new (likely
longer) backoff time, and schedules a retransmission (retransmis-
sions are indicated with a special bit in each frame header). Each
frame carries a “duration” field that indicates the number of mi-
croseconds needed to complete the transaction (including any ac-
knowledgments that need to be sent) and each node will defer trans-
mission until this time has passed. Special RTS and CTS frames are
optionally used to ensure that any “hidden terminal” nodes will hear
the reservation request. Frames are addressed using 48-bit IEEE
MAC addresses, although some frames (such as ACK, CTS and
RTS) only specify the transmitter or receiver. Frames from the same
transmitter are distinguished using a 12-bit monotonically increas-
ing sequence number carried in each DATA or MANAGEMENT
frame. Special management frames (BEACON and PROBE) are
used to discover the presence and capabilities of access points,
while others (ASSOCIATION and AUTHENTICATION) are used
to specifically connect a client to an access point.

802.11 supports a wide range of physical-layer implementations
— the most popular being 802.11b (CCK modulation with coded
rates up to 11 Mbps) and 802.11g (OFDM, coded up to 54 Mbps).
Each client is responsible for choosing the rate to transmit each
frame and this choice is encoded in the PLCP header at a “slow”
rate (1-2 Mbps for 802.11b, 6 Mbps for 802.11g). However, “legacy”
802.11b radios are unable to decode the OFDM encoding of an
802.11g frame and can incorrectly sense the medium as idle. To
address this problem, 802.11g access points determine if they have

any 802.11b stations as clients. If so, they enable “802.11g protec-
tion mode” in which each 802.11g frame is preceded by a low-rate
CCK-coded CTS frame (CTS-to-self) that reserves the channel for
the time needed to complete the 802.11g transaction.

Over the last decade, a progression of wireless network measure-
ment efforts have provided insight into the behavior, performance,
and reliability of wireless LAN technologies. Starting with small
studies focused on low-level channel behavior between pairs of
nodes [6, 7, 19] the field has expanded to cover a range of more
abstract characteristics (including application workloads, user ses-
sion duration, user mobility, increasingly larger environments etc.)
over ever larger environments (including university campuses [10,
11, 16, 18, 22, 23, 25, 26], industrial factories [24], corporate net-
works [2], and conference and professional meetings [1, 13, 14, 20,
21]). However, as measurement scale has increased, methodologi-
cal challenges have led most researchers to treat wireless networks
as a black box and instead base their analyses on wired distribution
network traffic and polled SNMP management data from APs. As
a result, existing measurement efforts have extensively character-
ized what user behavior and network performance wireless LANs
provide, but have provided little insight into why applications and
users experience such behavior and performance.

Recently, researchers have started addressing this question by
extending wireless network measurement to passively capture and
analyze link-level characteristics as well. Yeo et al. were the first to
explore the feasibility of using separate monitors for passive wire-
less network measurement using synthetic experiments on an iso-
lated 802.11 network [25, 26]. They use beacon frames to merge
traces of a single flow observed from three wireless monitors, and
demonstrate the utility of merging observations to improve mon-
itoring accuracy. Jardosh et al. analyze the link-level behavior of
traffic from a large IETF meeting using three monitors capturing
traffic on orthogonal channels [13, 14]. They characterize and cor-
relate retransmissions, frame size, and rate adaptation with relia-
bility. Finally, studies by Rodrig et al. and Mahajan et al. share a
number of the goals of our work [17, 21]. They use five distributed
wireless monitors to capture network events in a large conference
venue. Using this trace data they analyze various performance char-
acteristics of the 802.11 MAC protocol. Their work is distinguished
by their learning approach for automatically characterizing proto-
col interactions, while ours has focused on the problems of large-
scale online monitoring and complete multi-layer reconstruction.

Overall, our work substantially extends previous efforts in wire-
less network monitoring in terms of scale, performance, method-
ology, and analysis. Whereas previous efforts have used a small
handful of monitors [13, 21, 26], our measurement platform uses
over 150 monitors distributed throughout four floors of a 150,000-
square-foot building for extensive spatial and channel coverage.
Tracing at such scale, however, presents new methodological chal-
lenges, such as globally synchronizing events in time across sub-
sets of monitors as well as across channels; previous efforts either
focus on separate channels [13], do not merge traces among moni-
tors [21], or merge only a small number of traces offline using glob-
ally observed events [17, 26]. Such extensive on-line monitoring
capabilities also presents new opportunities for analysis, in partic-
ular the ability to observe a large wireless network from a global
perspective. Finally, our ability to unify this global view among
physical, datalink, network and transport layers creates the oppor-
tunity to study cross-layer interactions directly.

3. Data collection
Any data analysis is ultimately predicated on the quantity, qual-

ity and precision of data that can be collected. While we believe

40

1st Floor

2nd Floor

3rd Floor

4th Floor

Figure 1: UCSD CSE building floorplan. This building com-
prises roughly 150,000 square feet over four floors (and a
smaller basement, not shown). Circles indicate wireless sensor
pods, and triangles indicate production access points.

that our analysis techniques are mostly generic, many of our de-
sign decisions have been informed by the capabilities of our infras-
tructure as well as the unique problems presented by its scale. For
example, our approach to clock synchronization was driven by the
need to merge data from 156 simultaneous traces, spanning a wide
spatial and frequency range. In a smaller-scale environment a far
simpler approach would have sufficed. Thus, to better motivate our
constraints and opportunities, we use this section to describe our
monitoring environment and the hardware/software infrastructure
we have built to produce the raw traces for our analysis.

3.1 Environment
All of our measurement work takes place within the UCSD Com-

puter Science and Engineering building, a large four-story structure
shown in Figure 1. The building houses over 500 faculty, students
and staff members within roughly 150,000 square feet with a to-
tal interior volume well over 1 million cubic feet. Avaya AP-8 ac-
cess points (shown as triangles) provide production wireless ser-
vice, configured for both 802.11b and 802.11g service.1

Between and among these production APs we have deployed
a constellation of 39 wireless sensor pods (shown as pairs of cir-
cles).2 Each pod in turn comprises four independent radios, allow-

1In addition to the 39 production access points shown, the half-wing base-
ment (not shown) houses five additional APs. We occasionally observed
signals from 46 authorized APs from nearby buildings and 22 rogue APs
(mostly outside the building).
2Our monitoring infrastructure does not cover the left wing of the first floor,
which is not under our administrative control.

ing for simultaneous monitoring at four distinct center frequencies
— including all “non-overlapping” channels (1, 6 and 11) typically
used in 802.11b/g deployments. The density of deployment, com-
bined with this multi-channel capability, provides a “best case” sce-
nario for capturing global behavior. We are unaware of any produc-
tion wireless network monitored at similar scale.

3.2 Hardware
Concretely, each sensor pod consists of a pair of monitors set a

meter apart. This organization provides sufficient antenna separa-
tion for active measurement experiments, while still being proxi-
mate enough to abstract both monitors as a single vantage point for
passive monitoring. Each monitor consists of a modified Soekris
Engineering net4826 system board, and couples a 266-MHz AMD
Geode CPU, 128 MB of DRAM, 64 MB of flash RAM, a 100-Mbps
Ethernet interface, and two Wistron CM9 miniPCI 802.11a/b/g in-
terfaces based on the Atheros 5004 chipset. Each wireless inter-
face is connected, via shielded cable, to a separate external omni-
directional “rubber duck” antenna mounted six inches apart on an
aluminum enclosure. The antennas provide a signal gain of 2–3 dBi
at 2.4 GHz. Each monitor receives wired connectivity and power
through a port on an HP 2626-PWR switch (seven in total).3

Finally, trace data from all radios is sent via NFS to a single 2.8-
GHz Pentium server hosting 2 GB of memory and 2 TB of storage
(four 500-MB SATA disks in a RAID-0 configuration).

3.3 Software
Each monitor runs a version of Pebble Linux, using the MadWifi

driver to drive the Atheros-based wireless interfaces. We have made
significant modifications to the driver to support additional trans-
parency to the physical layer and to improve capture efficiency.

Driver modifications
While the standard madwifi driver only delivers valid 802.11 frames
(even in so-called “monitor mode”), our version captures all avail-
able physical layer events, including corrupted frames and physical
errors. Atheros hardware uses a 1 µs resolution clock to timestamp
each packet as it is received. Our driver slaves this timestamp facil-
ity to the clock of a single radio, thereby recording frames at both
radios using the same time reference.

Jigdump
A specialized user-level application called jigdump manages data
capture. Each monitor executes two jigdump processes, one per ra-
dio, that are responsible for putting the wireless interface into mon-
itor mode, “pulling” physical event records from the kernel, and
then transferring this data via NFS to a central repository. Jigdump
reads data records 64 KB at a time via a standard PF PACKET
socket, compresses them using the LZO algorithm to minimize
storage and I/O overhead (the two bottlenecks on our monitor plat-
form) and generates a metadata index record to facilitate subse-
quent accesses. Data and metadata are written to separate files via
NFS, creating a new file pair each hour. In steady state, the NFS
traffic across all 156 simultaneous feeds averages 2–10 MB/s.

4. Trace merging
Each individual trace represents a particular local vantage point

on wireless activity. To construct a global viewpoint it is necessary
to combine traces from all the radios into a single coherent descrip-
tion. This merging procedure must satisfy three key requirements:

3Soekris Engineering uses an incompatible implementation of the 802.3af
Power-Over-Ethernet standard and thus each system board is modified by
hand to allow the HP switch to drive it.

41

1. Unification. Several radios may receive a particular frame
which therefore appears in multiple traces. It is important
that we identify these “duplicates” as corresponding to a sin-
gle physical transmission. In some cases a received frame
may not even be a perfect duplicate (e.g., due to corruption
or truncation) yet it should still be associated with the same
transmission.

2. Synchronization. While the monitors timestamp each frame
in each trace, the local clocks can vary significantly. To place
these frames in proper order, it is necessary to synchronize
all frames to a common reference time. Merely capturing
the logical order is not sufficient for performing fine-grained
analyses, such as inferring interference between simultane-
ous transmissions. Such studies require all frames to be syn-
chronized to at least the precision of a physical layer “slot
time” (20 µs for 802.11b and 802.11g).

3. Efficiency. To permit online applications, trace merging should
execute faster than real-time and scale well as a function of
the number of radios. Thus, we prefer an algorithm that can
merge traces in a single pass over the data.

Our approach, similar to Yeo et al.’s framework [25], exploits
the broadcast nature of wireless. Since wireless is fundamentally a
broadcast channel, multiple in-range receivers can potentially record
each transmission. Moreover, in an indoor environment, propaga-
tion delay is effectively instantaneous — less than 1 microsecond to
cover 500 meters at 2.4 GHz. Consequently, we can treat the time at
which a given frame is received by multiple monitors as a simulta-
neous event for all potential interactions. Thus, we can use frames
heard by multiple monitors as a common reference point to syn-
chronize the clocks at each monitor and globally order subsequent
events between traces. Subsequently, we can use these reference
frames to calculate global timestamps for subsequent events within
each trace by using local clocks to place the remaining frames in
relation to reference frames. Finally, we can unify identical frames
with the same timestamps, thereby creating a single global trace. In
the remainder of this section we describe Jigsaw’s synchronization
and unification algorithms.

Our synchronization approach is inspired by Elson et al.’s RBS
protocol for sensor networks, which shares many of the same as-
sumptions [8]. The two algorithms, however, diverge significantly
in implementation due to the differing demands of their applica-
tions: Jigsaw must be opportunistic in finding time references yet
permits a centralized implementation, while RBS mandates refer-
ence broadcasts but requires a distributed implementation. Most
importantly, RBS provides relative time synchronization between
pairs of sensors, while Jigsaw must accurately synchronize all traces
to a single global clock. Accomplishing this task involves two phases:
bootstrapping the synchronization algorithm to instantiate a single
universal time standard across all radios, and then maintaining this
standard during frame unification.

4.1 Bootstrap synchronization
Jigsaw bootstraps synchronization by finding reference points to

synchronize the radios of a set of individual monitors, and then syn-
chronizes among sets until it establishes a single — albeit imagi-
nary — coordinated time standard. We begin with the assumption
that all local clocks run at the same rate, and then consider skew.

Let ri denote the ith radio and let Ti represent the difference
between its clock and “universal time” — the global time reference
we hope to agree on. Let sk denote the kth reference frame used to
synchronize radios and let Ek be the set of pairs < ri, sk > such
that radio ri receives frame sk. Finally, let yik denote the local

value of ri’s clock when it received sk (defined if and only if <
ri, sk > is in Ek). Thus, when sk has been received, the universal
time can be defined as

Uk = yik + Ti.

To bootstrap synchronization, Jigsaw must find an assignment of
Ti for each radio. Once the offset Ti is available, Jigsaw can place
each frame sk into universal time by adjusting its timestamp yik.

Ideally Jigsaw could locate a single 802.11 reference frame sk

where Ek contains every radio. Then y1k could be picked arbitrar-
ily to represent the initial universal time. Unfortunately, we cannot
depend on such events in a large deployment since signal strength
decays with distance and no single frame likely covers an entire
building. Moreover, real deployments use multiple channels and a
frame transmitted on one channel may never be heard by a monitor
on another.

To overcome this problem, we synchronize transitively via over-
lapping subsets of radios that are each synchronized with each other.
For example, suppose radio r1 and r3 are too far apart to share any
reference frames, but each shares distinct reference frames with an
intermediate radio r2. If sA is a reference frame received only by r1

and r2, and sB is a reference frame only received by r2 and r3, then
y1,A +T1 = UA = y2,A +T2, and y2,B +T2 = UB = y3,B +T3.
Then T3 = y1,A − y2,A + y2,B − y3,B + T1. The more densely
the radio deployment, the more such transitive paths between r1

and r3 are likely to exist. However, to maximize the likelihood that
Tis are globally consistent — i.e., (Tj −Ti) plus (Tk −Tj) equals
(Tk − Ti) — we try to maximize the overlap between paths by
minimizing the number of distinct reference frames.

Our protocol works as follows. Jigsaw examines the first sec-
ond of data from each trace.4 For each frame sk in every monitor’s
trace, Jigsaw checks if it was also received by any other radios. If
Jigsaw finds an identical frame heard by some radio ri, it adds ri

into Ek. Note that not all 802.11 frames are good references for
synchronization. For example, ACK frames to the same destination
are always identical, some stations always use zero sequence num-
bers on probe frames, and frame retransmissions cannot be distin-
guished from one another. Thus, Jigsaw only uses “unique” frames
for all synchronization activities. Generally, these are DATA frames
that do not have the retransmit bit set.5

For every radio trace, Jigsaw picks the set Ek that contains the
maximum number of radios and adds it into the synchronization set
G. Jigsaw stops filling G when G contains an instance of each ra-
dio. Then, for each radio ri, Jigsaw performs a breadth first search
in G to reach r1. Recently, Karp et al. [15] have discussed ways
of picking the optimal paths for a similar problem, but we have
found that most paths from r1 to ri are precise enough in prac-
tice (± 10 µs). While there usually exists at least one path between
any arbitrary two radios on the same channel (if not, the original
one-second window could be widened or more sets Ek added to G,
but we have never had need to do this), Jigsaw is unlikely to find
a path between radios on strongly disjoint channels. To fully syn-
chronize across channels we exploit the fact that our monitors use
a single local clock to timestamp frames received on both of their
radios. Thus, in this particular context local timestamps for frames
on one channel can be directly related to timestamps on another —
effectively bridging a path between them.

4In this case, “the first second” refers to true time (UTC) as measured by the
system clock on each monitor. Each monitor maintains their system clock
within milliseconds using the NTP protocol and records this value in its
traces. This is the only point at which the system clock time is ever used.
5Some Intel 802.11 implementations incorrectly retransmit data without the
retransmit bit set, but thankfully this is rare.

42

Figure 2: Jigsaw visualization of synchronized trace. Time ap-
pears on the x-axis in us and individual radios (only six shown
here) on the y-axis. At roughly 400 us a client sends a data
frame that is heard by all six radios. However, radio “p4450” is
too far away (signal strength of -88 dBm); the data frame is cor-
rupted and the subsequent ACK is not received. However, more
than enough radios are present to construct a jframe for both
parts of the frame exchange. At 2000 us a different client sends
and it is heard by a different set of radios. Note that p5218 is
too far away to even synchronize with the preamble.

4.2 Frame unification
After bootstrap synchronization, Jigsaw processes all traces in

time order and unifies duplicate frames, called instances, into a sin-
gle data structure called a jframe. Each jframe holds a (universal)
timestamp, the full contents of the frame and the identity of the ra-
dios that heard each instance. Figure 2 provides an example of this
source data as it is being unified. As part of the unification process,
Jigsaw also aggressively resynchronizes the clocks between each
trace to account for skew and drift. We describe the evolution of
our algorithm below.

Basic unification
For each radio trace Jigsaw maintains an instance queue sorted in
time order. The simplest unification approach is to linearly scan
the head of all radio queues and group the instances with the same
timestamps and contents. More concretely, Jigsaw will select the
first valid frame (i.e., FCS was successful) as the representative
instance and then perform content comparisons to find instances
among the candidates. To quickly prune false negatives, Jigsaw
compares frame length, rate, and FCS fields first and short-circuits
the comparison on failure. For partially received or corrupted frames,
Jigsaw cannot perform a full content comparison and simply matches
on the transmitter’s address field (but these frames are not directly
used for any higher-layer reconstruction, and any rare false matches
will have little impact).

However, there are two problems with this approach. First, for
large deployments the linear scan can have tremendous overhead.
In our environment, most jframes contain 10 or fewer instances
and yet we have over 150 simultaneous traces whose queues must
be checked. To minimize this overhead, Jigsaw instead populates a

single priority queue sorted by time with the earliest instance from
each trace. To create a jframe, Jigsaw simply pops this queue until
the timestamp of the next instance differs by a significant amount
and groups the popped instances according to their content (it is still
crucial to compare frame contents since it is possible that distinct
frames may be transmitted simultaneously). Thus, the time to cre-
ate a new jframe is linear in the transmission range of a particular
frame, not the number of radios in the system.

The second problem is that each radio’s clock skews over time.
The 802.11 standard mandates an accuracy of at least 100 PPM
(0.01%) and our experience is that Atheros hardware has far better
frequency stability in practice. However, even good clocks even-
tually diverge. If the time offset between clocks becomes great
enough, then some instances of a given frame may not be correctly
merged into the same jframe. To mitigate this problem, we pop in-
stances from the priority queue until the timestamp at the head of
the queue exceeds some time offset threshold with respect to the
candidate instances — i.e., a “search window.” Some of these addi-
tional frames may have identical content with the other candidates
and Jigsaw will group them into the jframe, while the others are in-
serted back into the priority queue. Jigsaw uses the median instance
timestamp as the universal timestamp for the resulting jframe.

Figure 3 illustrates the process of unification for two frame trans-
missions (dark and white circles). The figure shows the frames re-
ceived by five radios Ri. Each column Ri corresponds to the queue
of frames for that radio; in this example, three radios receive each
transmission. Time flows down each column. Although a frame
transmission is simultaneous, we represent skew among radios as
circles at different time offsets. Figure 3a shows Jigsaw searching
the radio queues within its search window defined by a time offset.
It then compares frame contents, determines that they all are iden-
tical, and, as shown in Figure 3b, unifies the frames into a jframe
timestamped using the time offset of the median offset frame R1.

Clock adjustment
While the search window can accommodate slight variations in
instance timestamps, it is inadequate to combat skew in the long
term. Hence, we leverage the unification procedure to simultane-
ously resynchronize traces. When Jigsaw unifies a set of frame in-
stances the variance between their local instance timestamps and
the jframe’s universal timestamp represent how much each clock
now differs (again, it is critical that we only use unique frames to
drive this synchronization). The difference between this value and
the timestamps on each instance represents a correction factor —
positive or negative — that Jigsaw then uses to bring each of the
associated traces back into synchronization. Figure 3b shows this
correction as an adjustment of the time offsets for the frames in the
queues of R2 and R3, aligning the dark frames across radios to the
offset of R1 and effectively adjusting the offset of the white frame
in the queue of R2.

A tradeoff can be made between accuracy and the overhead of
resynchronizing by placing a threshold on the minimum group dis-
persion — the difference between the earliest and latest timestamp
for a frame instance — before resynchronizing. Figure 3a illustrates
the group dispersion for the first frame transmission as the differ-
ence in time offsets between the frame in the queues of radios R2

and R3. In our implementation we set this threshold to 10 µs. (Note
that this does not limit the synchronization accuracy to 10 µs.)

Managing skew and drift
If resynchronization happened frequently and uniformly across all
traces, then it would be straightforward to maintain very tight syn-
chronization bounds. However, there are frequently extended peri-

43

R1 R2 R3 R4 R5

(a) (b) (c) (d)

Key
Frame 1 =
Frame 2 =

Search Window

Group
Dispersion

R1 R2 R3 R4 R5

Jframe

R1 R2 R3 R4 R5

Search Window

R1 R2 R3 R4 R5

Ti
m

e

Jframe

Figure 3: Unification and synchronization for two frame transmissions (dark and white) among five radios. Jigsaw (a) uses a search
window to identify candidate frames for unification among radio queues; (b) unifies identical frames into a jframe timestamped with
the median offset frame, and correspondingly adjust the time offsets of the other radio queues to account for skew; (c) adjusts offsets
on other radio queues to account for their skew, and uses the search window for the next set of frames; (d) unifies the white frames
into the next jframe.

ods (although rarely over 100 ms since this is roughly the period
between AP beacon frames) during which a particular radio may
not observe any frames in common with others. During these times
the synchronization of this radio’s observations is only guaranteed
by the accuracy of its own local clock. Thus, the slope of its skew
with respect to universal time will determine how quickly it will
lose synchronization without readjustment. In practice, we have
found that, with large numbers of radios, unless the search window
is made dangerously large (100s of milliseconds) correct synchro-
nization is lost quickly. However, many of these problems can be
eliminated by incorporating measurements of per-radio clock skew
into the synchronization algorithm. Thus, Jigsaw pro-actively ad-
justs the local timestamp of each instance to compensate for the
clock skew on the radio receiving it. In addition, for large numbers
of radios we have also found it important to compensate for clock
drift — the change in skew over time — by using an exponentially
weighted moving average of past skew measurements to predict fu-
ture skew on a per-instance basis.

Figure 3c represents Jigsaw adjusting the skews of radios R4

and R5 by shifting the frames at the head of their queues. Jigsaw
then repeats the unification process for the next set of frames in
its search window, identifying the three white frames as identical.
In Figure 3d, Jigsaw unifies them into a jframe timestamped with
the median offset frame at R5. For this jframe, however, the group
dispersion is below the resynchronization threshold, and Jigsaw re-
duces overhead by skipping resynchronization for these frames.

Thus, Jigsaw can use almost every new data frame for contin-
ual resynchronization. This approach presents several key advan-
tages compared to approaches that simply use reference beacons
to synchronize [25]. First, in large environments it is not possi-
ble to identify frames heard by all monitors and thus time syn-
chronization must be transitive. Having more synchronization ac-
tions will almost always increase synchronization accuracy since
the impact of clock skew is minimized. Second, since clients are
mobile, their traffic creates a richer set of synchronization opportu-
nities — touching pairs of radios that might never be directly syn-
chronized otherwise. Finally, more clock samples allow for better
management of skew and drift and therefore accuracy. In small-
scale environments these factors may be minor. As the number of
monitored radios increases, however, variability in skew, drift and
workload conspire to raise the probability of a synchronization loss.
This additional robustness becomes critical at a modest increase

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

%
 J

fr
am

es

Dispersion Value (us)

Figure 4: CDF of group dispersion across all frames.

in complexity. Jigsaw’s synchronization and unification code totals
roughly 4,000 lines of C++.

Figure 4 illustrates the current accuracy of our algorithm using a
10-ms search window. The graph shows the CDF of group disper-
sion values calculated for every jframe processed from 156 radios
over a 24-hour period. For 90% percent of all jframes, the worst
case time offset between any two radios is less than 10 µs, and
99% see a worst case offset under 20 µs. While the details of this
graph are a function of individual clock characteristics, the network
workload, and the number of clocks being kept synchronized, we
believe it demonstrates that fine-grained broadcast synchronization
is achievable in a building-scale environment.

We emphasize Jigsaw’s synchronization is designed for short-
term 802.11 timing analysis. Jigsaw’s calculated universal clock
may diverge over time with respect to a true time standard. In fact,
at the end of a day-long trace, Jigsaw’s universal clock may be tens
of seconds different than wall clock time. We are not concerned
about minor drift between universal time and wall-clock time, how-
ever, because all of our analyses use universal time as the reference,
so the calculations are internally consistent. Furthermore, such ac-
curacy is sufficient for us to annotate the date and time in our results
for diurnal interpretation.

5. Link and transport reconstruction
Having constructed a single global view of each observed physi-

cal event, the next task is to reconstruct each link-layer and transport-

44

CTS?

new TxAttempt (TA)

Data/Mgmt?

add JF to TA

TA’s duration

covers JF?

ACK?

JFrame (JF)

TA has

seq number?

queue

TA

TA is unicast?

R1

compute seq delta

seq delta == 0

R2

seq delta == 1

R3 R4

prev. TxAttempt (TA)

YESNO

Figure 5: Simplified finite state machines used to assemble indi-
vidual jframes into transmission attempts (left) and to compose
transmission attempts into complete frame exchanges (right).

layer conversation in its entirety. In principle, this reconstruction
is straightforward since Jigsaw provides a time-ordered list of all
frames and each frame contains up to 200 bytes of payload that
can be used to identify MAC addresses, IP addresses and TCP port
numbers. In practice, however, missing data and vantage point am-
biguities complicate this reconstruction process. Thus, Jigsaw must
use inference to help reconstruct these higher-layer descriptions.

5.1 Link-layer inference
In reconstructing link-layer conversations, Jigsaw first identifies

each transmission attempt from a sender (illustrated on the left
side of Figure 5). For example, a CTS-to-self packet, a subsequent
DATA frame and the trailing ACK response may all be part of the
same attempt. To group these together automatically we first use
the MAC address: DATA frames carry the address of the sender
explicitly, CTS-to-self frames (used for 802.11g protection) do as
well and ACK frames indicate the recipient’s address. As well, we
use the Duration field, carried in CTS and DATA frames, to deduce
the future time in which an ACK, if sent, must have been received.
This timing analysis is especially critical when frames are missing
from the trace since otherwise we might risk assigning an ACK for
a missing DATA frame to an earlier observed DATA frame. At the
conclusion of this analysis stage, collections of one to three jframes
are associated into a single transmission attempt.

We then group transmission attempts into frame exchanges —
complete sets of transmission attempts (including retransmissions)
that end in a link-layer frame being successfully delivered or not.
Since 802.11 implements ARQ for unicast frames, a frame ex-
change may involve multiple transmission attempts. Normally it is
sufficient to simply group nearby transmission attempts that share
the same frame sequence number. However, when portions of trans-
mission attempts are missing (e.g., CTS and ACK, but not DATA),
then we must deduce the presence or absence of this missing data
based on the subsequent behavior of the sender and receiver.

We implement our inferences using a finite-state machine captur-
ing the visible aspects of the transmitter’s MAC state in addition to
several heuristics (e.g., that DATA is more likely lost than ACKs).
We do not make inferences about frames for which we have no
direct information (i.e., sequence gaps greater than one) but our
experience is that these situations occur rarely in our traces. Space
does not permit a complete description of all inference rules, but we
sketch a simplified version of our state machine (shown on the right
side of Figure 5). Broadcast and multicast frames (shown as R1) are
never retransmitted, so transmission attempts and frame exchanges
are identical. Frames without sequence numbers (e.g., ACKs) are
queued until more data becomes available to resolve their posi-
tion. Unicast frames with sequence numbers are further classified
based on the change in the 802.11 frame sequence number since
the last transmission attempt from the same sender. Deltas of zero
(R2) indicate retransmissions and both transmission attempts are
coalesced into a single frame exchange. If the sequence number is
incremented by 1 (R3), we can infer that a new frame exchange
has begun, but it is ambiguous how precisely to assign the queued
transmission attempts.

Thus, we use a number of heuristics based on empirical mea-
surements (e.g., almost all frame exchanges can complete within
500 ms, acknowledgments are less likely to be lost than data, the
coded rate of a frame never increases in response to a loss, retrans-
missions usually have the retransmission bit set, etc.) to decide this
issue. If the sequence increment is more that one (R4), we make
no inferences, we flush the queue (these transmission attempts are
unassigned) and assign the current transmission attempt to a new
frame exchange. Overall, 0.58% of the transmission attempts and
0.14% of the frame exchanges in our traces require some form of
inference.

Finally, one of the most important questions we wish to infer is
whether a particular frame exchange was successful. Unfortunately,
the vantage point of a passive monitor does not allow this to be
determined unambiguously: if, after transmitting a DATA frame,
we see an ACK, we can feel confident that the data was delivered.
However, if we never see an ACK, it is ambiguous if the frame was
lost or if we simply did not observe the ACK. However, we can
disambiguate this situation by using transport-layer information.

5.2 Transport inference
Our transport-layer analysis takes frame exchanges as input and

reconstructs individual TCP flows based on the network and trans-
port headers. We use a variant of Jaiswal et al.’s analysis (designed
for wired passive monitors) to then infer connection characteristics
(e.g., RTT, RTO, fast retransmissions, segment losses, etc.) [12].
However, the passive wireless context has two ambiguities that dif-
fer from the wired environment. First, we may process frame ex-
changes in which it is unclear if the frame was actually delivered (as
described previously). However, we can frequently use the transport-
layer side effects of this frame as an oracle to determine what truly
happened. For example, a data frame carrying a new TCP segment
will cause subsequent TCP acknowledgments to “cover” its TCP
sequence space. Thus, observing a covering TCP ACK proves that
the link-layer frame containing the associated data was actually de-
livered. The second problem is that existing analyses assume that
monitors are lossless (that is, they observe all packets that are deliv-
ered between endpoints). In the wireless content, even with many
different monitors, sometimes a frame exchange is completed but
not observed at all by a monitor. However, if we observe a TCP ac-
knowledgment that covers an TCP sequence hole, we can infer that
the packet was correctly delivered. Thus, it is usually possible to
infer the presence of any single packet omission at the TCP layer.

45

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 J

F
ra

m
es

% Stations

CSE Client
CSE AP

Figure 6: Coverage of frames transmitted by clients and APs.

6. Coverage
A fundamental challenge with distributed wireless monitoring is

obtaining effective coverage of all network transmissions. Monitors
must be carefully placed to maximize the probability of “hearing”
all clients and APs. Even so, the vantage point of a monitor is dis-
tinct from those it is monitoring and thus some network transmis-
sions may go unobserved due to attenuation, noise, interference,
etc. In this section we present two experiments that empirically
evaluate the coverage of our monitoring platform, and a third syn-
thetic experiment to evaluate the sensitivity of these results to the
number of radio monitors used.

To establish the coverage of our link-layer monitoring capabil-
ity, we performed a controlled experiment comparing our results
against an “oracle”. Using a wireless laptop, we generated a net-
work workload at various locations throughout the building. The
workload was a combination of Web browsing on the Internet, in-
teractive ssh sessions to wired hosts, and scp copies of large files
(producing both short and long flows as well as small and large
packets). We generated this workload at three locations in each
wing of each floor. During the experiment the laptop recorded all
link-layer events it generated and observed from its associated APs.
Conversely, we used the monitoring platform to simultaneously ob-
serve the laptop’s communications. Comparing these two versions
of events, the monitoring platform observed 95% of all link-level
events generated by the laptop. The coverage in this experiment is
consistent with smaller-scale studies using similar wireless moni-
toring methodology: [13] reports a coverage of 80–97%, [21] re-
ports 90%, and [26] reports 97%.

Next, we compared the frame exchanges captured in a day-long
trace of the wireless network (described in more detail in the next
section) with a second trace of the same traffic captured on the
wired distribution network. We restricted the comparison to the set
of flows that could be possibly observed at both vantage points;
the monitor for the wired network, for example, does not observe
traffic sent from one wireless host to another. For every packet in
every flow in the wired trace that would result in a unicast DATA
packet on the wireless network, we checked to see if the packet
also appeared in the wireless trace. Overall, the coverage is excel-
lent. For the 10 million unicast packets in the wired trace, 97% of
those packets also appear in the wireless trace. This high coverage
is particularly encouraging since the trace includes distant clients
connected to the building APs from the administrative wing on the
first floor, locations lacking monitors.

Figure 6 shows the results of this experiment in more detail.

Configuration

0

10

20

30

40

50

60

70

80

90

100

%
 F

ra
m

es
 C

ov
er

ed

APs
Clients

9999
92

9898

71

9494

68

39 Pods 30 Pods 20 Pods

Figure 7: Coverage of frames transmitted by APs and clients
for various configurations of sensor pods in the building.

Across all stations in the wireless access network, it shows the per-
centage of unicast DATA frames transmitted by the stations that
appear in the wired trace that also appear in the wireless trace. It
also separates the stations into clients and APs. The graph shows
that, for many stations (46% of clients, 40% of APs), the moni-
toring platform captured all of their transmitted frames. And, for
most stations (78% of clients, 94% of APs), the platform captured
over 95% of their transmitted frames. The clients with substantial
missing frames were located in rooms that consistently lack good
coverage by the monitoring platform. We also see that coverage
differs depending on station type: the monitoring platform captures
a higher fraction of packets transmitted by APs than by clients be-
cause our sensor pods are purposely placed in AP proximity, while
wireless clients are dispersed throughout the building.

Finally, we evaluate the extent to which our deployment of sen-
sor pods is necessary to achieve good coverage in our building. In
this experiment, we successively reduce the number of sensor pods
that contribute to the unified wireless trace. We then determine the
resulting coverage of frames that appear in the wired trace that are
captured in the reduced wireless trace. To reduce processing time
for each configuration, we calculate coverage of traffic generated
between 11am and 1pm—the peak hours of wireless traffic in our
building. We manually choose pods to remove based upon “visual
redundancy” of pod locations in the building: we remove pods at lo-
cations that appear to have overlapping coverage by other pods as
seen in building floor plans. Rather than determine an offline opti-
mal pod selection that maximizes coverage knowing the trace con-
tents, this reduction method reflects the level of knowledge avail-
able when placing pods for the first time (indeed, it is precisely
the algorithm we used for building our infrastructure—simply with
fewer pods).

Figure 7 shows the sensitivity of coverage to the number of sen-
sor pods. A pair of bars shows the coverage of unicast frames trans-
mitted by APs and clients that appear both in the wired trace and
in the resulting wireless trace for a particular pod configuration.
Each pair of bars corresponds to three different monitoring con-
figurations of all 39 pods (156 radios), 30 pods (120 radios), and
20 pods (80 radios); reducing to 10 pods creates partitions in the
synchronization bootstrap trees, preventing complete trace unifica-
tion. Coverage of AP frames remains good (94%) even operating
a third of the original pods due to the ability to have few obstruc-
tions between pods and APs (since both are typically mounted in
corridors). Coverage of client frames, however, drops dramatically
(from 92% to 71% to 68%) as we reduce the number of sensor
pods. From these results, we conclude that we need the full set of
pods to achieve good coverage of client transmissions in our build-

46

Start 1/24/06 @ 00:00
Duration 24 hours

Radio Monitors 156
Total APs 107
Our APs 39

Other APs 68
Our Clients 1,026

Total Events 2,700 M
Physical Errors 338 M (13%)

CRC Errors 956 M (35%)
Valid Frames 1,410 M (52%)

Jframes 530 M
Jframe Events 1,580 M
Events/Jframe 2.97

Table 1: Summary of trace characteristics.

ing; in fact, we plan to improve client coverage further by adding
additional pods where the monitoring platform has poor coverage.

Based upon the coverage measured in these experiments, we
conclude that the monitoring platform provides sufficient coverage
to perform detailed analyses of traces captured using the platform.

7. Analyses
In this section we perform a series of analyses on a trace of the

building’s wireless network captured by the monitor platform. We
focus on preliminary analyses that exploit the global perspective af-
forded by distributed monitors. Our goal is not to be exhaustive, but
rather to illustrate the unique capabilities of a global synchronized
viewpoint. In future work, we intend to develop a comprehensive
portfolio of analyses and use them to drive more complex opera-
tional questions (e.g., what are the root causes of transient outages
and performance degradations) and research questions (e.g., how to
better optimize wireless protocols and their interactions with other
protocol layers).

We start by summarizing high-level characteristics of the trace,
and then examine the effects of interference, the effects of 802.11g
protection mode in networks with both 802.11b and 802.11g clients,
and distinguishing link-layer and wired effects on TCP loss rate.

7.1 Trace summary
We start by summarizing the high-level characteristics of our

trace and then show network activity over time. Table 1 presents
the characteristics of the trace we use for our analyses. The trace
captures traffic for the entire day of Tuesday, January 24, 2006, a
typical workday in our building. Just as APs within buildings are
not isolated, buildings themselves are not isolated: we observe traf-
fic associated with more than twice as many APs in surrounding
buildings than in this one. For the subsequent analyses, though, we
focus only on the traffic generated by clients associated with our
APs; our monitors cannot capture traffic from external APs with
good coverage due to their remote location. We see 1,026 unique
client MAC addresses associated with our APs during the day.

Throughout the day the monitors observe over 2.7 billion events.
Over 47% of these events are physical or CRC errors. This high
percentage is not surprising given transmissions observed by dis-
tant monitors just beyond reception range, the presence of both co-
channel interference (hidden terminals) and broadband interference
(microwave ovens), etc. Jigsaw unifies 1.58 billion events (valid
frames and a subset of associated error frames) into 530 million
jframes, for an average of 2.97 events per jframe. In other words,
on average the monitoring platform makes three observations of
every observed transmission of a valid frame in the network.

Figure 8 shows network activity as a time series throughout the
day at the granularity of one minute. Figure 8(a) shows the number
of active clients and APs per one-minute time slot as a stacked bar
graph. We define an active client as one that is communicating with
an AP or is actively establishing an association. An active AP is
one communicating with an active client (an AP only sending out
beacons, for example, would not be active). Activity exhibits an
expected diurnal pattern. Most clients are active from late morning
(10am) until late afternoon (5pm), with many clients active in the
early morning and well into the night. The number of active APs
grows as more clients become active throughout the building. The
clients active overnight are likely wireless devices without user ac-
tivity, such as wireless laptops left running with applications that
produce background traffic.

Figure 8(b) shows the amount of traffic per one-minute time slot
as a stacked bar graph of four traffic categories. “Data” counts
both unicast and broadcast data frames, and “Management” counts
various management and control traffic (RTS/CTS, ACKs, asso-
ciation, etc.). Although the number of active clients is relatively
smooth over time, the traffic generated by those clients is much
more bursty. Many of the bursts start on an hour or half-hour time
boundary, likely indicating laptop usage during meetings and talks
in the building. Since most management and control traffic relates
to data traffic, it closely tracks the amount of data traffic.

We also separate out two explicit categories of management traf-
fic because of their high prevalence: “Beacon” shows the amount of
periodic AP beacon traffic, and “ARP” shows the amount of ARP
broadcast ARP traffic. Because APs broadcast beacon traffic inde-
pendent of activity, beacon traffic is constant throughout the day.
ARP traffic is more interesting. In addition to legitimate use, out-
side scans and worms generate ARP traffic as they probe unallo-
cated IP address space. However, it appears that the largest source
of ARP is due to an 802.11 management server from Vernier that
uses regular ARPs to track the liveness and network location of reg-
istered clients. However, the important aspect of ARP traffic is that
it is broadcast. Because 802.11 APs are designed to act as transpar-
ent bridges all ARP “who-has” broadcasts from the wired network
are also broadcast on the wireless channel. Since broadcast frames
are always encoded at the lowest rate they make highly inefficient
use of the medium. Indeed, if we examine our trace strictly from an
air time perspective, broadcast traffic (primarily ARP and Beacons)
regularly consumes 10% of the channel as seen by any given mon-
itor. Finally, because they are delivered to all APs at the same time,
they are broadcast on all APs on all channels at roughly the same
time as well — likely interfering with themselves in the process.

Indeed, all network-layer broadcast traffic has this side effect, in-
cluding client DHCP requests and application broadcasts.6 More-
over, aspects of this traffic scale with the size of the network or
the size of the user population while the capacity of the channel
remains constant. Thus, we argue that applications should use mul-
ticast instead of broadcast on 802.11 networks and 802.11 APs
should be modified to perform selective filtering of non-unicast
traffic. Finally, to eliminate the implicit synchronization caused by
wired broadcasts, APs should add random jitter to the transmission
time for broadcasts frames received from the wired network.

7.2 Interference
In this section, we analyze the extent of transmission interfer-

ence experienced by nodes in our trace. Since the platform moni-
tors orthogonal channels, adjacent-channel interference is rare and

6One particularly egregious example (almost 100,000 frames in our trace) is
the Mac version of the MS Office suite. As part of an anti-piracy mechanism
the software regularly broadcasts its license information to UDP port 2222.

47

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

N
um

be
r

of
 A

ct
iv

e
N

od
es

Time (hour:min), January 24 2006

Clients
APs

(a) Active Clients and APs

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Jf

ra
m

es
 (

x1
00

0)

Time (hour:min), January 24 2006

Data
Managment

ARP
Beacon

(b) Traffic Breakdown

Figure 8: Time series of network activity throughout the day in one-minute intervals.

co-channel interference from hidden terminals is likely the domi-
nate cause of interference. As a result, the distributed monitoring
platform provides the key ability to observe co-channel interfer-
ence. By providing a global perspective on the network, we can
simultaneously detect a transmission from a sender to a receiver,
hypothesize that the transmission was lost, and detect that a third
node was transmitting at the same time as the sender. With only a
single vantage point, it would be very difficult to detect and corre-
late such simultaneous transmissions.

We define an interference event as a unicast transmission from
a sender s to a receiver r in which one (or more) interferers i si-
multaneously transmit and cause the transmission from s to r to
fail. Based upon events in the trace, our goal is to estimate what
fraction of these simultaneous transmissions causes a loss due to
interference. Note that packet transmissions are distinct from frame
exchanges; a successful frame exchange might experience multiple
transmission losses and recover using link-level retransmissions.

We measure simultaneous transmissions when the trace contains
more than one transmission overlapping in time during which s
transmits a packet to r. We infer that the transmission from s failed
to reach r when we do not observe an ACK from r. At this point,
though, when a loss happens we cannot say for certain that a par-
ticular simultaneous transmission was the true cause of the loss. It
may be the case that a node in a remote part of the building just hap-
pened to have transmitted at the same time that a transmission from
s to r was lost; i.e., the loss may have been caused by any number
of reasons entirely unrelated to the remote node’s transmission.

We can, however, infer when losses are likely due to simultane-
ous transmissions. In particular, we can infer the conditional proba-
bility Pi of a simultaneous transmission causing interference given
that there is a simultaneous transmission from s to r. We can in-
fer Pi based upon the losses between s to r when simultaneous
transmissions both do and do not occur. Informally, if we assume
that the background loss rate is constant regardless of the number
of transmissions, we can attribute the losses between s and r dur-
ing simultaneous transmissions accordingly: If s and r experience
few losses in the absence of simultaneous transmission, the more
likely the losses they experience during simultaneous transmission
are due to interference.

More formally, let I be the event that interference causes a lost
transmission from s to r, and L be the event that the transmission
from s to r was a background loss due to some other cause (e.g.,

range, obstacles). Let S be the event that there is a simultaneous
transmission from at least one other device i when s transmits to
r. Note that I and L are independent events. For the case where no
multiple simultaneous transmissions occur, P [I |¬S] is obviously
0. Unfortunately, when there are multiple transmissions we cannot
empirically distinguish between I,L, or (I ∪ L) upon observing
a loss. We can, however, calculate the probability of interference
when there is more than one simultaneous transmission as follows:

Pi = P [I |S] = P [(I ∪ L)|S] − P [L|S] + P [(I ∩ L)|S].

We can calculate this conditional probability based upon events
measured in the trace. For a given (s, r) pair, let n be the number
of transmissions from s to r, n0 ≤ n be the number of transmis-
sions from s to r without a simultaneous transmission from another
node, and nl

0 be the number of n0 transmissions lost. Likewise, let
nx be the number of transmissions from s to r with a simultaneous
transmission, and nl

x be the number of nx transmissions lost.
Then we can measure P [(I ∪ L)|S] empirically as nl

x/nx. Ob-
serving that L is independent of S, the case of simultaneous trans-
missions, we have P [L|S] = P [L|¬S] = nl

0/n0 and P [(I ∩
L)|S] = P [I |S] · P [L]. A bit of algebra then reveals:

Pi = P [I |S] = [(nl
x/nx) − (nl

0/n0)]/(1 − nl
0/n0).

Given Pi, we can then estimate the expected number of losses dur-
ing simultaneous transmissions between an (s, r) pair that are due
to interference. Examining all transmissions between all sending
and receiving pairs, we can estimate the extent to which interfer-
ence occurs in our network.

We restrict our analysis to the 536 (s, r) pairs that exchange at
least 100 packets to provide confidence in our statistical estimates.
These (s, r) pairs comprise 82% of all (s, r) pairs in the trace. All
such pairs experience losses with at least one simultaneous trans-
mission. Normalizing these losses according to the background loss
rate of each pair according to the above formula, we estimate that
88% of these (s, r) pairs experience loss due to interference from
another node. Whose transmissions are being interfered with? Of
those (s, r) pairs experiencing interference, the sender s is split
roughly equally between APs (56%) and clients (44%).

Does interference have a significant impact on the overall trans-
missions from senders to receivers? Again, note that lost transmis-
sions may increase frame exchange times due to retransmissions,
but not necessarily result in a failed frame exchange. To answer

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

%
 (

s,
 r

)
P

ai
rs

Interference Loss Rate

Figure 9: Interference loss rate X across (s, r) pairs.

this question, Figure 9 shows the interference loss rate as a CDF
across all (s, r) pairs. We define interference loss rate X as the
fraction of all transmissions (i.e., regardless of whether there was a
simultaneous transmission or not) from s to r that were lost due to
interference; alternatively, it is the probability that a transmission
from s to r is lost due to interference:

X = Pi ∗ (nx/n)

As a baseline, the average background transmission loss rate is
0.12. In comparison, the results in Figure 9 show that many (s, r)
pairs experience minor interference: 50% of (s, r) pairs experience
an interference loss rate of 0.025 (a 2.5% probability of a trans-
mission lost due to interference), or less. Yet a noticeable fraction
of (s, r) pairs suffers considerably from interference: 10% of pairs
experience an interference loss rate of at least 0.1, and 5% at least
0.2. A few (s, r) pairs experienced terrible interference with an in-
terference loss rate higher than 0.5. Note that it is possible for Pi to
be negative; in these cases (11% of pairs), we truncate X to 0.

7.3 802.11g protection mode
Next we analyze the use of 802.11g protection mode in the net-

work. We find that the protection policy by our APs is overly con-
servative, potentially reducing performance for 802.11g clients. We
then take advantage of the global perspective provided by the dis-
tributed monitoring platform to estimate the number of 802.11g
clients that would benefit from using a more practical 802.11g pro-
tection mode policy.

During busy periods, we found a high rate of CTS control frames
in the trace. Investigating further, we determined that these are pri-
marily CTS-to-self frames used for 802.11g protection (Section 2).
Since protection mode increases delay and reduces throughput for
802.11g clients, APs should only use protection mode when any ac-
tive 802.11b clients are in range. The APs in the network implement
this protection policy, but with an overly conservative timeout. An
AP will not turn off protection until an hour has passed without
sensing an 802.11b client in range.

In this analysis, our goal is to identify which APs in the trace are
using protection mode that unnecessarily impacts 802.11g clients;
we refer to these APs as overprotective APs. We can identify the
set of APs using protection mode based upon CTS-to-self client
transmissions to those APs. Then, using the global perspective of
the unified trace, for each AP using protection mode over time we
can infer whether any 802.11b clients are in range of that AP af-
ter a more practical timeout of one minute. If no 802.11b clients
are in range, then the AP is overprotective. Using observed probe
responses, we infer whether any 802.11b clients are in range of an

 0

 10

 20

 30

 40

 50

08:00 10:00 12:00 14:00 16:00 18:00

N
um

be
r

of
 S

ta
tio

ns

Time

Over-protective APs
Over-protected .g Clients

Active .g Clients

Figure 10: Overprotective APs and active 802.11g clients dur-
ing the busy period of the trace.

AP using protection mode. APs send these frames after they receive
a corresponding probe request from a client. Our monitor density
allows us to capture these responses throughout the building and
create a reasonable estimate for a client’s transmission range.

Figure 10 shows the impact of overprotective APs on 802.11g
clients in the network for the duration of the trace. It shows (1) the
total number of overprotective APs that use protection mode unnec-
essarily, (2) the total number of active 802.11g clients associated
with these APs, and (3) the total number of active 802.11g clients
in the network. During busy periods of many active clients, the
number of overprotective APs decreases as more 802.11b clients
become active. Similarly, the number of 802.11g clients increases
and, during these busy periods, 25–50% of them are associated with
overprotective APs.

A more practical protection policy would provide two benefits
to clients in the network. First, the 802.11g clients associated with
overprotective APs could potentially improve their throughput sub-
stantially. With large frames transmitted at 54 Mbps without the
need for CTS-to-self, these clients could potentially improve their
throughput by a factor of two.7 Of course, this result is an upper
bound: not every 802.11g client would be able to transmit at full
rate, and multiple clients would still contend for the channel. How-
ever, we have found that the network is rarely at maximum utiliza-
tion, even during the busiest periods. As a result, 802.11g clients
should be able to benefit, especially when performing bulk trans-
fers and the wireless network is the bottleneck hop in their path.

Second, reducing the use of CTS-to-self reduces the possibil-
ity of exposed terminals in the network, which could improve the
performance of the network. Like ARP and other low-rate short
frames, CTS frames have relatively high penetration and can re-
serve the channel across a larger space than necessary when trans-
mitting data frames at high rates.

7.4 TCP loss rate inference
Using the TCP reconstruction algorithm described in Section 5,

we assemble all flows that complete a handshake (eliminating port
scans and connection failures). From these flows we then calculate
the loss rate using a variant of Jaiswal et al.’s approach [12]. Then,
by analyzing the frame exchanges making up each TCP segment
we are able to determine if each loss — as seen by TCP — is due

7CTS: 248 µs (our APs send CTS at 2 Mbps with the long preamble), SIFS:
16 µs, MSS TCP at 54 Mbps: 248 µs, SIFS: 16 µs, ACK: 28 µs, backoff
(with g): 16/2*20, backoff (with b/g): 32/2*20. The potential performance
improvement is (248 + 16 + 248 + 16 + 28 + 32/2 ∗ 20)/(248 + 16 +
28 + 16/2 ∗ 20) = 1.98.

49

 80

 85

 90

 95

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 T

C
P

 fl
ow

s

Flow Loss Rate

Wireless
Internet

Figure 11: TCP loss rate.

to a lost 802.11 frame or some subsequent loss in the wired net-
work. Figure 11 illustrates this data, showing — as expected —
that the wireless component of TCP loss is dominant. What is im-
portant about this analysis is less the result itself than the capability
to easily examine interactions between layers in our global trace.

8. Conclusion
Network research comes to understand the artifacts it has created

slowly — by careful instrumentation, monitoring and analysis. Pro-
duction 802.11 wireless networks have so far escaped the level of
detailed analysis experienced on the wired network – largely be-
cause of the difficulty in monitoring the wireless environment. To
address this problem we have built a system called Jigsaw that uni-
fies traces from multiple passive wireless monitors to reconstruct a
global view of network activity in a production 802.11 network. We
have described the algorithms used to scalably synchronize traces,
unify common frames, and reconstruct the link- and transport-layer
conversations embedded in those frames. To demonstrate our ap-
proach, we have deployed a large-scale instance of Jigsaw using
over 150 monitors and used a 24-hour trace captured by our mon-
itoring infrastructure to demonstrate complex interactions such as
co-channel interference that would otherwise be difficult to ana-
lyze. Finally, for all its complexity, Jigsaw is only a building block.
Our current work focuses on exploiting its capabilities to precisely
answer the more salient questions that originally motivated our in-
terest: “Why is the network slow?” and “How should it be fixed?”.

For those interested in using or contributing to our efforts, the
Jigsaw hardware specification and software are available for down-
load at http://wireless.ucsdsys.net.

Acknowledgments
A number of individuals contributed to make this paper possible.
Among them, Ryan Brown created the visualization of the UCSD
CSE building, Greg Chesson of Atheros provided critical insight
into the Atheros PHY implementation, Gordon Hamman arranged
for all of our sensors to be wired and installed, Jim Madden sup-
ported the operational needs of our network measurement efforts
and Bill Young helped us coordinate our technical activities within
the department. We would also like to thank John Zahorjan for his
insightful feedback, and the anonymous reviewers for their valu-
able comments. Finally, Michelle Panik provided detailed feed-
back and copy-editing of earlier versions of this paper. This work
was supported in part by the UCSD Center for Networked Sys-
tems (CNS), the Sloan Foundation, Ericsson, NSF CAREER grant
CNS-0347949 and by U.C. Discovery CoRe grant 01-10099 as a
Calit2-sponsored research project.

9. REFERENCES
[1] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan.

Characterizing User Behavior and Network Performance in a Public
Wireless LAN. In Proceedings of ACM SIGMETRICS, 2002.

[2] M. Balazinska and P. Castro. Characterizing Mobility and Network
Usage in a Corporate Wireless Local-Area Network. In Proceedings
of USENIX MobiSys, 2003.

[3] Campus Computing. 2005 National Survey of Information
Technology in U.S. Higher Education, 2005.

[4] E. Daley. Enterprise LAN Grows Up, 2005.
http://www2.cio.com/analyst/report3401.html.

[5] Dell’Oro Group. Wireless LAN Five Year Forecast Report, 2006.
[6] D. Duchamp and N. F. Reynolds. Measured Performance of a

Wireless LAN. In Proceedings of IEEE LCN Conference, 1992.
[7] D. Eckardt and P. Steenkiste. Measurement and Analysis of the Error

Characteristics of an In-Building Wireless Network. In Proceedings
of ACM SIGCOMM, 1996.

[8] J. Elson, L. Girod, and D. Estrin. Fine-Grained Network Time
Synchronization using Reference Broadcasts. In Proceedings of
OSDI, 2002.

[9] Gartner. Market Share: Wireless LAN Equipment Worldwide, 2005.
[10] T. Henderson, D. Kotz, and I. Abyzov. The Changing Usage of a

Mature Campus-wide Wireless Network. In Proceedings of ACM
Mobicom, 2004.

[11] F. Hernández-Campos and M. Papadopouli. A Comparative
Measurement Study of the Workload of Wireless Access Points in
Campus Networks. In Proceedings of IEEE PIMRC, 2005.

[12] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Inferring TCP Connection Characteristics from Passive
Measurements. In Proceedings of IEEE Infocom, 2004.

[13] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M.
Belding-Royer. Understanding Congestion in IEEE 802.11b Wireless
Networks. In Proceedings of ACM IMC, 2005.

[14] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M.
Belding-Royer. Understanding Link-Layer Behavior in Highly
Congested IEEE 802.11b Wireless Networks. In Proceedings of
ACM E-WIND, 2005.

[15] R. Karp, J. Elson, D. Estrin, and S. Shenker. Optimal and Global
Time Synchronization in Sensornets. Technical Report
CENS-TR0012, CENS, UCLA, 2003.

[16] D. Kotz and K. Essien. Analysis of a Campus-wide Wireless
Network. In Proceedings of ACM Mobicom, 2002.

[17] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the
MAC-level Behavior of Wireless Networks in the Wild. In
Proceedings of ACM SIGCOMM, 2006.

[18] M. McNett and G. M. Voelker. Access and Mobility of Wireless PDA
Users. Mobile Computing and Communications Review, 9(2), 2005.

[19] G. T. Nguyen, R. H. Katz, B. Noble, and M. Satyanarayanan. A
Trace-Based Approach For Modeling Wireless Channel Behavior. In
Winter Simulation Conference, 1996.

[20] K. N. Ramachandran, E. M. Belding-Royer, and K. C. Almeroth.
DAMON: A Distributed Architecture for Monitoring Multi-hop
Mobile Networks. In Proceedings of IEEE SECON, 2004.

[21] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan.
Measurement-based Characterization of 802.11 in a Hotspot Setting.
In Proceedings of ACM E-WIND, 2005.

[22] D. Schwab and R. Bunt. Characterising the Use of a Campus
Wireless Network. In Proceedings of IEEE Infocom, 2004.

[23] D. Tang and M. Baker. Analysis of a Local-Area Wireless Network.
In Proceedings of ACM Mobicom, 2000.

[24] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz. Measurements of a
Wireless Link in an Industrial Environment using an IEEE
802.11-Compliant Physical Layer. IEEE Transactions on Industrial
Electronics, 43(6), 2002.

[25] J. Yeo, M. Youssef, and A. Agrawala. A Framework for Wireless
LAN Monitoring and its Applications. In Proceedings of ACM WiSe,
2004.

[26] J. Yeo, M. Youssef, T. Henderson, and A. Agrawala. An Accurate
Technique for Measuring the Wireless Side of Wireless Networks. In
Proceedings of USENIX/ACM WiTMeMo, 2005.

50

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

