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ABSTRACT
Sensor networks are especially useful in catastrophic or emergency
scenarios such as floods, fires, terrorist attacks or earthquakes where
human participation may be too dangerous. However, such disas-
ter scenarios pose an interesting design challenge since the sensor
nodes used to collect and communicate data may themselves fail
suddenly and unpredictably, resulting in the loss of valuable data.
Furthermore, because these networks are often expected to be de-
ployed in response to a disaster, or because of sudden configuration
changes due to failure, these networks are often expected to oper-
ate in a “zero-configuration” paradigm, where data collection and
transmission must be initiated immediately, before the nodes have
a chance to assess the current network topology. In this paper, we
design and analyze techniques to increase “persistence” of sensed
data, so that data is more likely to reach a data sink, even as network
nodes fail. This is done by replicating data compactly at neighbor-
ing nodes using novel “Growth Codes” that increase in efficiency
as data accumulates at the sink. We show that Growth Codes pre-
serve more data in the presence of node failures than previously
proposed erasure resilient techniques.
Categories and Subject Descriptors: E.4 [Coding and Informa-
tion Theory]: Formal models of communication
General Terms: Algorithms, Design, Experimentation.
Keywords: Network Resilience, LDPC codes.

1. INTRODUCTION
One of the motivating uses of sensor net technology is the mon-

itoring of emergency or disaster scenarios, such as floods, fires,
earthquakes, and landslides. Sensing networks are ideal for such
scenarios since conventional sensing methods that involve human
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participation within the sensing region are often too dangerous.
These scenarios offer a challenging design environment because
the nodes used to collect and transmit data can fail suddenly and
unpredictably as they may melt, corrode or get smashed.

This sudden, unpredictable failure is especially troubling because
of the potential loss of data collected by the sensor nodes. Often,
the rate of data generated within a sensor network greatly exceeds
the capacity available to deliver the data to the data sinks. With
so many nodes trying to channel data to the sink node, there is
congestion and delay in the neighborhood of the sink. This phe-
nomenon can be described as a funneling effect [11], where much
of the data trying to reach the sink is stalled. It is during this time
that data is especially vulnerable to loss if the nodes storing the data
are destroyed or disconnected from the rest of the network. Even if
state-of-the-art compression techniques such as distributed source
coding [33] or routing with re-coding are applied [8], there can be
a significant delay between the time a unit of data is generated and
the time at which it reaches the sink. We define the persistence
of a sensor network to be the fraction of data generated within the
network that eventually reaches the sink.

The goal of this paper is to investigate techniques to increase
the persistence of sensor networks. To our knowledge, this is the
first paper that concerns itself with this particular problem. Our
solutions are based on the observation that even though there is
limited bandwidth to forward data towards the sink, there still re-
mains sufficient bandwidth for neighboring nodes to exchange and
replicate one anothers’ information. While such replication does
not increase the rate at which data moves toward the sink, it does
increase the likelihood that data will survive as some of the storage
points fail.

We first focus on providing persistence in a sensor network that
is deployed to take a “snapshot” reading of a particular region: each
node’s primary task is to take a single reading and relay this read-
ing to a sink whose position (with respect to the node) is not nec-
essarily known. This scenario is likely in disaster settings where
getting an initial reading is essential, and nodes must be “dumped”
into the region with limited or no planning and configuration, and
where the topology may change rapidly due to node failures (burn-
ing up, getting crushed, etc.). Such networks can be thought of as
“zero-configuration”, where data collection and transmission must
be initiated immediately. Hence, nodes have little opportunity to
learn about specifics of the topology within which they are de-
ployed, aside from some limited information describing their im-
mediate surrounding area. Global information, such as the location
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or direction of a sink, or the complete sensor network topology are
unknown. Even if the nodes get to know the location and direction
of sink(s) and are able to setup a routing tree, node failures will re-
sult in frequent disruptions and cause the routing setup to become
invalid.

We design a novel data encoding and distribution technique that
we refer to as a Growth Code. This code is designed to increase
the amount of information that can be recovered at a sink node at
any point in time, such that the information that can be retrieved
from a failing network is increased. These codes are also easily im-
plemented in a distributed fashion - another important criterion for
sensor networks. The code grows with time: initially codewords
are just the symbols themselves, but over time, the codewords be-
come linear combinations of (randomly selected) growing group-
ings of data units. A well-designed code will grow at a rate such
that the size of the codeword received by the sink is that which is
most likely to be successfully decoded and deliver previously unre-
covered data.

In a distributed sensor network where the nodes employ Growth
Codes to encode and distribute data, the sink receives low com-
plexity codewords in the beginning and codewords of higher and
higher complexity later on. Identifying the optimal transition points
at which the code switches to higher complexity codewords is a
non-trivial task. We prove that such a code where the complexity
of codewords increases monotonically is optimal in recovering the
maximum amount of data at any time provided the transition points
are carefully chosen.

We formally analyze Growth Codes and find close upper bounds
for the transition points. In a perfect source setting, where the sink
receives codewords that exactly fit a certain desired degree distri-
bution, we compare the performance of a degree distribution based
on Growth Codes with other well known distributions such as Soli-
ton and Robust Soliton [18]. Furthermore, we simulate various
distributed network scenarios (including some mimicking disaster
scenarios) to evaluate the performance of Growth Codes. We find
that in all the studied network scenarios, if the sensor nodes use the
encoding protocol based on Growth Codes, the sink node is able
to receive novel data at least as fast as any other protocol and in
most cases, is able to recover all symbols in less than half the time
compared to when no coding is used.

We then show how to extend growth codes to network settings
in which nodes must make periodic measurements of the existing
region. To this end, we provide the main features of a practical
implementation of Growth Codes. Using these features, we also
implement these codes on real mote-based sensor devices and per-
form experiments which show using Growth Codes results in much
faster recovery of distributed sensor data.

The rest of the paper is organized as follows: The next section
details some previous related work. In Section 3, we formulate the
problem and describe the network setting in which it is employed.
Section 4 describes the various solution approaches including the
novel approach based on Growth Codes and the encoding/decoding
algorithms used. In Section 5 we mathematically analyze the en-
coding protocol based on Growth Codes and prove interesting prop-
erties of the said protocol. We compare Growth Codes with other
coding schemes in a perfect source setting in section 6. In Sec-
tion 7, we describe the practical aspects of implementing Growth
Codes. We present simulation and experimental results in Sections
8 and 9 to study the performance of our protocol in various sensor
network settings. Section 10 describes how to handle sensor nodes
which generate data periodically. We conclude in Section 11.

2. RELATED WORK
Much of the coding work in sensor networks targeted towards

increasing the efficiency of data transmission to sink points uti-
lizes source coding, which takes advantage of spatial and temporal
correlations in data to compress the data to be delivered. Exam-
ples include systems like TSAR [25] and PRESTO [19] that use
wavelet compression to reduce the overheads in transmitting corre-
lated data. A local clustering scheme which is near-optimal across
a range of spatial correlations is suggested in [32] although they
ignore temporal correlations and losses in the network.

Our work, in contrast, can be viewed as a distributed channel
coding where coding is performed to more effectively recover from
stochastic losses of information (in our case, failing nodes). Most
work in this area is focused on efficiently recovering all data, and
for many of the schemes, data cannot be partially recovered. The
canonical coding scheme is the optimal block erasure Reed-Solomon
codes [17] which have been adapted for erasure-resilient data trans-
fer [21]. The high computational costs for encoding and decoding
these codes has pushed research in the direction of LDPC codes,
such as the class of Digital Fountain codes [16], that include Tor-
nado codes [20] and LT codes [18]. Byers et. al. optimize large
transfers in [14] using codes by having the source re-code data as it
learns from receivers what information they still require. Considine
et. al. [15] propose a heuristic for generating good degree distribu-
tions which can be used to construct low complexity erasure codes.
These schemes not only emphasize the recovery of all data, but are
also centrally encoded, and cannot be trivially applied in settings
where the data is distributed to begin with.

Distributed encoding schemes that aim to recover all data per-
mit nodes to re-code data en-route to the destination have also been
shown to be a more efficient means of communication [27]. A
particular area of recent interest is the application of network cod-
ing within multicast environments (e.g., [29, 9], where it has been
shown that simple linear codes are very efficient [24]. In [31, 5], a
coding scheme is constructed to facilitate recovery of popular data
by replicating coded versions of the data at multiple nodes. Katti
et. al. [3] propose that nodes guess what data other nodes already
have and exploit local coding opportunities to reduce the consumed
bandwidth.

Some studies try to combine source and channel coding. In [23],
a technique is presented that uses LDPC codes and source coding
across two or three correlated sources to improve the energy effi-
ciency of transmission in a sensor network. Marco et. al. [12] ex-
plore the tradeoff between efficient Slepian-Wolf coding and packet
losses. They introduce variations in the Slepian-Wolf distributed
coding to add some redundancy.

To our knowledge, the only work that focuses on partial recovery
is Priority Encoding Transmission [4] which prioritizes data and
provides reliable delivery of high priority data at low cost, at the
expense of increased overhead to also recover low priority data.
Drawbacks of this scheme in a sensor nets environment are the high
recovery cost for much of the (lower priority) data, and that there
is no known way to efficiently distribute the encoding process.

Directed Diffusion [10] uses dynamically chosen best paths and
in-network data aggregation in distributed sensing environments to
achieve energy and bandwidth efficiency.

3. PROBLEM SETUP
Our formulation consists of a sensor network whose general con-

figuration is similar to that considered in a large body of work. We
consider a network consisting of N sensor nodes where data sensed
by a node describing properties of its immediate sensing region is
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to be forwarded to a sink for further processing. The rate at which
the nodes as an aggregate generate data may greatly exceed the
communication capacity of the network such that forwarding be-
comes congested, and data must reside temporarily in the nodes
before being delivered to the sink. Furthermore, the majority of the
nodes cannot directly transmit to the sink, and hence other nodes
must act as intermediate forwarding agents of data. These interme-
diate nodes have some computational power to manipulate data in
transit, i.e., they can compress or recode data to increase delivery
efficiency [34, 33].

There are also some specifics to our formulation that distinguish
our environment from much previous work. We are concerned with
monitoring dangerous emergency or disaster areas, such as earth-
quakes, floods, or fires. Often, nodes must be deployed quickly in
response to the emergency, preventing an opportunity to statically
optimize the deployment. Even if the network is planned before-
hand, the disaster itself may significantly alter the network con-
figuration, making the pre-planned configuration obsolete. These
specifics translate to our problem as follow:
•Our initial study will assume that each node takes a single read-

ing at a single point in time, and the network objective is to deliver
as many of these readings as possible to the sink and as quickly as
possible.
• The network is “zero-configuration”, such that nodes must op-

erate knowing only about their immediate sensing environment: the
only topology information available to a node is its set of neighbors
with whom it can communicate directly. This is either because the
data is urgently needed, or nodes are expected to have extremely
limited lifetimes. The latter property not only leaves limited time
for the network to configure, but also induces rapid variation in
topology, which would likely obviate any configuration that was
constructed based on previous observations of topology.
• Our primary concern is the persistence of data: our goal is

to minimize the amount of data lost due to failures of nodes as
the emergency progresses (e.g., the fire spreads, rocks continue to
bombard an area, or flood waters continue to grow). Traditional as-
sumptions, like power conservation [22, 26] and optimized routing
[7, 36] are secondary issues and are not addressed in detail in this
paper.

3.1 Sensor Networks that Need Persistence
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Figure 1: Localized view of the network. In the beginning, the
nodes exchange degree 1 codewords, gradually increasing the
degree over time. Even when a node fails, its data survives in
the another node’s storage

Figure 1 depicts the sensor network from the point of view of
a single node at two different times. Each sensor node in the N -
node network is arbitrarily placed to sense its data, and connects
to a small subset of nodes with whom it can communicate directly.
There are sink locations where data can be collected, but in a zero-
configuration setting, these locations are almost always unknown
to the sensing nodes. The arrows in the figure indicate the commu-
nication between nodes in an attempt to move the data, hopefully
towards a sink. Initially the node has only copies of its own data,
but over time, it will also contain (encoded) copies of other nodes’
data, such that the failure of another node (in the figure, node 1)
does not necessarily result in the loss of that nodes’ data.

The type of disaster imposes a specific type of failure process of
nodes in the network. For instance, in a fire or flood, one would
probably expect node failures to be spatially and temporally corre-
lated, where a node is more likely to fail if its neighbor has recently
failed. In an earthquake or rock-storm, the failure process is proba-
bly best viewed as a sequence of randomly selected regions failing
over time, where all nodes within a region are within close spatial
proximity of one another and fail simultaneously, with different re-
gions failing at independent times.

The failure of nodes in a region translates to a loss of memory
in the global network, and any information stored in these failed
regions is lost unless it is duplicated elsewhere or is already deliv-
ered to the sink. Data that is retrieved via the information collected
at the sink is referred to as recovered data. In Figure 1, the nodes
exchange codewords that consist of original data or XOR’d con-
glomerates of original data. Later on, even though a node fails, its
data survives in the network.

At a high level, our goal is to try to find the best way to repli-
cate information in the sensor network to maximize the quantity of
recovered data at all times t, even as nodes fail in the network.

3.2 Network Description and Assumptions
Each node is equipped with some memory and processing power

so that there is room for replication of information. The “best” way
to replicate will depend on the capabilities of the various nodes,
as well as various properties of the data (e.g., spatial and temporal
correlation, priority, presumed accuracy). A sink node absorbs data
at a rate λs, where λs depends on the number of sensor nodes to
which the sink connects. In the network, the neighboring nodes can
exchange data at a second rate λe.

Since we are making a preliminary foray into the problem of per-
sistence, we believe it is most appropriate to thoroughly analyze the
basic design of a persistence protocol in a somewhat constrained
design space. Our analysis and description of the protocol makes
the following assumptions about the sensor networking environ-
ment, though later in the paper, we extend the protocol and show
experiments where these assumptions are relaxed.
•Node configurations are homogeneous: each node has a similar

memory size C. The data collected at each sensor has an identical
storage size of c, and we refer to this size-c data unit as a symbol.
Hence, a node can ideally store up to bC/cc symbols. We assume
for now that the codewords also require size c1.
• Data is not compressed, and all generated data is of equal im-

portance. This assumption ignores the potential spatial correlations
that often exist among sensed data [32, 13] as well as the likeli-
hood that some data generated is more important than others (e.g.,
at nodes closer to regions of anomalous activity).

1In practice, some additional “header” space is necessary to de-
scribe the set of symbols encoded in the codeword. We address this
issue in Section 7.
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4. THE BASIC PERSISTENCE PROCEDURE
Having laid out our preliminary network model in the previous

section, we are now ready to describe our basic persistence pro-
cedure. We divide the time into rounds. We emphasize that this
division is merely to facilitate the description and evaluation of
our techniques. The described techniques are easily extended to an
asynchronous environment as we show in Section 7. In each round,
neighboring nodes exchange information. Sink points attach to a
subset of network nodes and are able to retrieve a fixed amount of
information in each round.

• In every round, each node decides what information it must
transmit to its neighbor, and how the incoming information
from its neighboring nodes is stored.

• In every round, each sink collects new codeword symbols
and decodes this information to retrieve the original data.

Initially, a node fills its memory with copies of its own data. In
each round, a node has the opportunity to move or replicate code-
words that exist in its memory to another node. Since the location
of the sink is unknown, and since all data is of equal importance, we
use a simple algorithm where a node randomly chooses a neighbor
and a random codeword in its memory and exchanges this code-
word with one of the codewords stored in the selected neighbor’s
memory. The only caveat to this exchange is that each node keeps a
copy of its original data (this copy will be used in the encoding pro-
cess described later). Periodically (perhaps once every M rounds,
or perhaps M times a round), the sink samples codewords from
nearby nodes. Unless otherwise specified, we assume M = 1, i.e.,
that λs = λe.

To increase the efficiency of data recovery at the sink, nodes can
choose to encode the data to be sent. We consider several coding
variants:

No coding: Nodes simply exchange the original symbols. The
sink is likely to receive many duplicates. In the well studied Coupon
Collectors’ Problem [30], it has been shown that if the N original
symbols are generated uniformly randomly, the sink needs to re-
ceive approximately O(NlogN) symbols to recover all N original
symbols.

Random Linear codes [35]: Here, the N original symbols are
assumed to be elements of some finite field and each codeword
is a linear combination of all N symbols, with the coefficients
also being members of the same finite field. However, the encod-
ing/decoding computational complexity of these codes is very high
and hence, as mentioned in Section 2, they are impractical in our
sensor network setting.

Erasure codes: Nodes can store and exchange codeword sym-
bols formed using erasure codes. These can either be optimal era-
sure codes such as Reed-Solomon [17] or erasure codes based on
sparse bipartite graphs such as Tornado [20] or LT codes [18] which
trade efficiency of the code for fast encoding/decoding time. Con-
sidering the low computational power that sensor nodes have and
the limited time they will have available to perform the encoding,
only codes like LT Codes which have fast encoding/decoding algo-
rithms are practical in our scenario.

Each codeword is an XOR of a subset of the N original symbols.
The number of symbols which are XOR’d together is referred to as
the degree of the codeword. These codes choose the degree of each
codeword to fit a pre-determined degree distribution π which is a
probability distribution over the degrees lengths.

A simple XOR encoder based on the degree distribution π works
as follows:

1. Choose a degree d, where d = i with probability πi.

2. Randomly choose d distinct symbols out of the N symbols
x1, . . . , xN . Construct the codeword symbol by XOR-ing
the d symbols.

It has been shown that if the sink receives an expected number
of little more than N such encoded symbols, it can decode all of
the N original symbols with high probability. One of the simple
degree distributions used in LT codes is the Soliton distribution [18]
which requires the sink to receive exactly N codewords to recover
all N symbols. Unfortunately, this distribution has a high variance
which means that there is a non-negligible probability that the sink
will need many more codewords in practice. Robust Soliton is a
modified form of Soliton distribution and performs much better in
practice. We emphasize two drawbacks in applying these codes to
our domain here:
• It is not straightforward to implement the encoding process in

a distributed setting such that the appropriate degree distribution is
obtained.
• These codes are not designed to maximize the amount of infor-

mation recovered by the sink when only a small number of code-
words are received, but are attempting to minimize the number of
codewords needed to retrieve all data. We will show that Growth
Codes out-perform their Soliton counterparts in this aspect.

4.1 Growth Codes

Sink

Recovered Symbols

x1

x3

Sink

Recovered Symbols

x2⊕x3

x5⊕x8

x1
x3

x5

In the 

beginning:

Later on:

Figure 2: Growth Codes in action: The sink receives low degree
codewords in the beginning and higher and higher degree later
on

Growth Codes is a linear coding technique that encodes infor-
mation via a completely distributed process. The technique not
only ensures that the sink is able to recover all N of the data from
only a little more than N codeword symbols, but also that data is
efficiently recovered when only a small number of codewords is
received.

We motivate the development of Growth Codes using the follow-
ing toy problem. Consider a sink that is attempting to collect data
over a series of rounds. The data can be XOR’d together to gener-
ate fixed-size codewords. Suppose the sink can select the degree2

of the arriving codeword, but the set of symbols that form the code-
word are selected uniformly at random. Also suppose the sink’s
goal at any time is to maximize the expected number of symbols
it has recovered by that time. At any time t, given the collection
of codewords the sink has already received, what should the sink
choose as the degree of the next arriving codeword?

Clearly, for the first codeword, the degree should be one. Such
a codeword will produce one symbol whereas any codeword of
2Once again, the degree of a codeword is the number of symbols
XOR’d together to form the codeword
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higher degree will produce no symbols. If the total number of sym-
bols N is large, then the sink will also do well to request that its
second received codeword be of degree one. If the sink contin-
ues to request codewords of degree one, eventually a point will be
reached where a codeword of higher degree will very likely be de-
codable given the information received, and another codeword of
degree one will very likely contain data that has already been re-
ceived. It is not hard to follow this logic through to see that as
more codewords are received, the “best” degree for the next code-
word continues to grow. We will explore this phenomenon more
formally in the next section.

Figure 2 depicts the working of the Growth Codes protocol. The
sink node receives low degree symbols in the beginning from which
it is able to immediately recover data. Later on, the sink received
higher degree symbols which are more efficient in recovering more
data.

In a completely distributed sensor network setting such as ours,
where the nodes have limited storage and meager computational
resources, a suitable encoding protocol is one which is easily im-
plementable by the nodes and which is also efficient in terms of the
number of symbols that can be recovered by the sink for a given
number of received codewords.

Growth Codes are novel in that the codewords used to encode a
fixed set of data change over time. Codewords in the network start
with degree one and “grow” over time as they travel through the
network en-route to the sink. This results is the the sink receiving
codewords whose degree grows with time. Using such a design,
if the network is damaged at any time and the sink is not able to
receive any further information, it can still recover a substantial
number of original symbols from the received codewords.

In order to facilitate formal specification of the procedure for en-
coding and decoding Growth Codes, we must first introduce some
terminology we will use:

DEFINITION 4.1. Given a set X of original symbols and a code-
word symbol s of degree d, the distance of s from set X , dist(s, X),
is the number of symbols out of the d symbols XOR’d together to
form s, which are not present in X .

The decoder, D, that we use for our Growth Codes (to be imple-
mented at the sink) will perform its decoding in an identical fash-
ion to what is traditionally used in all Sparse Bipartite graph-based
coding schemes such as LT Codes and Tornado Codes. This will al-
low us to fairly compare the performance of Growth Codes to prior
coding schemes:
• Let A be the set of codewords received and X be the set of

symbols already decoded (where X is initially 0).
• If there exists any codeword s for which dist(s, X) = 1, then

decode the missing symbol encoded in s (by XOR’ing s with the
symbols in X that were used to generate s), and add that symbol to
X .

The decoding process used by the sink is an online version of
decoder D such that the codewords are decoded on-the-fly as they
are received and the codewords which cannot be decoded at the
moment are stored for later use. We note that symbols whose dis-
tance is greater than 1 from X could potentially be combined to
extract data symbols using sophisticated but more computationally
expensive techniques (e.g., gaussian elimination).

A sequence of increasing values, K1, . . . , KN are hard-coded
into the nodes prior to their deployment. The value of Ki indicates
the point in time (i.e., the number of rounds after the data was gen-
erated) where such data should be encoded in codewords of degree
no less than i. If after time Ki, a codeword of degree smaller than
i is to be exchanged with a neighbor, the sending node will XOR

the codeword with its own data symbol prior to exchanging it. In
case the codeword already contains the data symbol of the sending
node, nothing is done and the codeword is exchanged as is. Even-
tually, after being exchanged from node to node, the codeword will
be exchanged by a node whose data symbol is not contained in the
codeword. Then, that data symbol can be XOR’d into the codeword
and its degree increased.

5. GROWTH CODES FOR DISTRIBUTED
ENCODING AND ONLINE DECODING

In this section we prove some basic properties of Growth Codes
which are critical in finding good values for the degree transition
points, {Ki}, the points in time where the code should increase
in degree. The “best” time for a network depends not only on the
way the coders are implemented, but also on the topology of the
network. Since we are designing codes for a zero-configuration
network, topology information is not available. Hence, our codes
will be designed under the assumption that when the sink receives
a codeword of degree d, the data contained in that codeword is
uniformly drawn at random. If the sensor network performs a good
“mixing” of data prior to the data reaching the sink, this assumption
is not unreasonable.

Solving for the optimal transition points is non-trivial for the de-
coder D described in the previous section. The difficulty is that the
decoder maintains a memory of previously received codewords that
could not be used at the time of their arrival, but can be used later
on as further codewords arrive and additional data symbols are de-
coded. For tractability of the analysis, we will consider a restricted
decoder that throws away any codewords it receives which cannot
be decoded immediately, and does not maintain them for later use.

Due to lack of space, all the proofs are omitted but are available
in our technical report [6].

5.1 Restricted Decoder
We define a decoding algorithm that is less powerful than de-

coder D. One might never use this decoder in practice, but it is used
here since it is simpler to analyze and will help us prove bounds on
the transition times Ki of Growth Codes.

A decoder is fed a sequence of symbols, s1, s2, . . . , sk. For a
decoder α, we define α(s1, s2, . . . , sk) to be the number of sym-
bols that α can decode when fed the sequence s1, s2, . . . , sk in that
order.

DEFINITION 5.1. Decoder S, given a fixed sequence of code-
word symbols s1, s2, . . . , sk, works as follows: Initially the set X
of recovered symbols is empty.

1. Let i = 0.

2. From the remaining symbols, choose symbol si of the lowest
degree. If dist(si, X) = 1, decode a new symbol and add to
set X .

3. If dist(si, X) = 0 OR dist(si, X) > 1, throw si as unus-
able.

4. Increment i and go to step 2. Repeat until all symbols have
been considered.

Decoder S is more constrained than decoder D: S considers code-
words in a fixed order only and throws away all codewords which
cannot be decoded immediately (but could be of use to D at a later
point in the decoding process). More formally, this can be stated as
follows:
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LEMMA 5.2. Given a sequence of symbols σ = s1, s2, . . . , sk,
and a reordering of these same symbols σ′ = s′1, s

′
2, . . . , s

′
k. Then

D(s1, s2, . . . , sk) ≥ S(s′1, s
′
2, . . . , s

′
k) for any sequence σ and

any reordering σ′ of that sequence.

Decoder S works on a sequence of symbols sorted in non-decreasing
order of their degrees. One can also view S as a decoder oper-
ating in an environment where codewords arrive in the order of
non-decreasing degree.

5.2 Finding the best-degree codewords for de-
coder S

Let us consider our decoder S which does not maintain previ-
ously received codewords. When attempting to decode, it can only
utilize the data that it has received previously and the next arriv-
ing codeword. The following lemmas address the “best” degree
that the next codeword should have as a function of the number of
already-decoded data symbols.

LEMMA 5.3. Let ρr,d be the probability of successfully decod-
ing randomly chosen a degree d symbol when r symbols have al-

ready been recovered. Then ρr,d =
( r

d−1)(N−r)

(N
d )

.

Let Ri represent the number of symbols recovered by a sink
when codewords of size greater than i provide a greater likelihood
for providing recovery than those of degree less than i. We will
show that, for decoder S,

R1 =
N − 1

2
, . . . , Ri =

iN − 1

i + 1
∀i∈[1,N−1]. (1)

LEMMA 5.4. ρr,i ≥ ρr,i+1 as long as r ≤ Ri = iN−1
i+1

The above result validates our earlier intuition that when the
number of recovered symbols is small, low degree codewords are
better and as the number of recovered symbols increases, higher
degree codewords are better.

The result proves that before R1 = N−1
2

symbols have been
recovered, degree 1 codewords are the most useful. After that until
R2 symbols have been recovered, degree 2 codewords are the most
useful and so it goes.

LEMMA 5.5. If ρr,i < ρr,j for some i < j, then ρr′,i < ρr′,j
for any r′ > r

This result basically states that once degree j codewords have
become more useful than lower degree codewords, they will re-
main so even when more symbols are recovered. This monotonicity
property is essential for Growth Codes which start with low degree
codewords and switch to higher and higher degree codewords with
time.

5.3 Properties of Decoder D
Now we consider some properties of the offline version of de-

coder D, which can then be applied to the online version of decoder
D to help design Growth Codes.

THEOREM 5.6. When using decoder D to recover r symbols,

such that r ≤ R1 =
N − 1

2
, the optimal degree distribution has

symbols of only degree 1.

THEOREM 5.7. When using decoder D to recover R1 =
N − 1

2
data units, the expected number of encoded symbols required is

K1 =

R1−1X
i=0

N

N − i
.

Theorems 5.6 and 5.7 show that if most of the network nodes
fail and a small amount of the data survives, then not using any
coding is the best way to recover maximum number of data units.
We generalize these proofs in Theorems 5.8 and 5.9.

THEOREM 5.8. To recover r symbols such that r ≤ Rj =
jN − 1

j + 1
, the optimal degree distribution has symbols of degree no

larger than j

Let

Kj = Kj−1 +

Rj−1X
i=R(j−1)

�
N
j

��
i

j−1

�
(N − i)

(2)

THEOREM 5.9. To recover Rj =
jN − 1

j + 1
symbols, at most Kj

symbols are required in expectation

5.4 A New Degree Distribution based on Growth
Codes

According to the analysis in section 5.3, we observe that it is
best to use only degree 1 symbols to recover the first R1 sym-
bols, only degree 2 symbols to recover the next R2 − R1 symbols
and so on. Furthermore, an expected number of K1 encoded sym-
bols are required to recover R1 symbols, an expected maximum
K2 codewords (recall that K1 is the exact expected number while
{Ki, i > 1} are upper bounds on the expected number of code-
words required) are required to recover R2 symbols and so on.

This suggests a natural probability distribution on the degrees of
the encoded symbols. In particular, if we need to construct a total
of k encoded symbols, we should have K1 degree 1 symbols so
that we can recover an expected R1 symbols from them, K2 −K1

degree 2 symbols so that we can recover an expected R2 − R1

symbols from them and so on as long as the k symbols are not yet
received. A degree distribution can thus be defined as

π̄∗(k) : π∗i = max(0, min(
Ki −Ki−1

k
,
k −Ki−1

k
)) (3)

We call this the Growth Codes degree distribution.
In the encoding and data exchange protocol based on Growth

Codes, sensor nodes can construct codewords that fit the desired
degree distribution π̄∗(k). By choosing the degree transition points
as K1, K2, . . . etc, the nodes generate codewords according to the
distribution π̄∗(k) where k varies with time. If a sink node receives
1 codeword per round, it will receive degree 1 codewords for the
first K1 rounds, followed by degree 2 codewords until round K2

and so on. If there are multiple sink nodes and they receive many
codewords per round, then just by scaling the values of Ki, the
desired effect can still be easily achieved.

6. PERFECT SOURCE SIMULATION
MODEL

Growth Codes degree distribution as defined in Equation 3 grows
monotonically in complexity with time and hence gives itself nicely
to an implementation in a distributed environment (where the source
data is distributed to begin with) as described in Section 4.1. It is
difficult to compare Growth Codes with other well known degree
distributions such as Soliton since it is not clear how these distri-
butions can be implemented in a distributed scenario. The data
symbols are inherently distributed to begin with and it is impossi-
ble to generate a truly random codeword of a specific degree unless
all symbols are first aggregated at a single node. This problem is
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Figure 3: Comparing the performance of various degree distri-
butions in a perfect source setting. N is chosen to be 1000

bypassed in the Growth Codes protocol by gradually increasing the
degrees of codewords generated in a completely distributed man-
ner.

For sake of comparison, let us assume it is possible to implement
any degree distribution in a distributed setting so that the sink re-
ceives codewords exactly following this distribution. We now eval-
uate how the Growth Codes degree distribution compares to other
well know degree distributions in such a scenario. We call this the
perfect source simulation model since we generate codewords ac-
cording to a specific degree distribution and assume that all these
codewords are received at the sink.

We have the following scenario: There is one source and one
sink. The source has all symbols x1, . . . , xN . It constructs code-
words according to some degree distribution π, i.e., a codeword of
degree d is constructed with probability πd and every codeword of
degree d with uniform probability. The sink receives the codewords
one by one and decodes them on the fly. If the sink cannot decode a
codeword at any time, it is stored for later use when more symbols
have been recovered. Note that the Growth Codes degree distribu-
tion as defined in Equation 3 changes with time, so that higher and
higher degree codewords are generated as time goes on. We want
to evaluate how much data can be recovered by the sink for a given
number of received codewords. The sink uses the online version of
decoder D as described in Section 4.1 to recover data on the fly.

We compare with the Soliton and Robust Soliton distributions
where the values of Robust Soliton parameters c and δ are chosen
to be 0.9 and 0.1 respectively as suggested by the authors in [18].
To assess the advantage of using coding if at all, we compare with
a no coding scheme where each codeword is a randomly selected
degree 1 symbol.

Figure 3 depicts the number of symbols recovered at the sink for
any given number of codewords received according to the corre-
sponding degree distribution. The results are from a mean of 100
simulation runs. The topmost curve plots the theoretical bound on
the maximum number of symbols that could be recovered by that
point in time (i.e., the min(k, N)) where k is the number of code-
words received at any point.

If no coding is used, the sink is able to decode a substantial num-
ber of symbols in the beginning. As more symbols are recovered,
the Coupon Collector’s effect kicks in and the no coding is not as
good any more. Soliton and Robust Soliton accumulate a lot of
high degree codewords which cannot be decoded until a substan-
tial number of symbols have been recovered. This is why we see

a sudden jump in the curve for Robust Soliton. For maximum data
recovery at any time, it is easy to see that Growth Codes perform
the best.

7. PRACTICAL IMPLEMENTATION OF
GROWTH CODES

Up to now, we have made some rather strong assumptions about
the sensing network environment to facilitate the presentation and
evaluation of Growth Codes. Here, we address several of the limi-
tations

7.1 Removing the notion of a “round”
Our previous description of Growth Codes required nodes to ex-

change information over a series of rounds. There is, however, no
explicit need for synchronizing multiple exchanges. All that is nec-
essary is that the degree distribution “grows” at approximately the
right rate. The rate at which the codes grow (especially initially)
is slow enough that even if the time at which nodes initialize (i.e.,
sense their data and attempt to exchange data with other nodes)
varies, we expect little variation in the results. Our TOSSIM-based
simulations and experiments demonstrate this claim.

7.2 Coefficient Overhead

1 id1

logN bits

Figure 4: Structure of a coefficient when no coding is used

As alluded to earlier, each codeword, regardless of whether it
contains original (degree one) symbols or a bona fide XOR of orig-
inal symbols, must include a coefficient that descibes the symbols
from which it is formed. We assume that each sensor node has a
unique ID, and that it prepends this ID to its symbol. A codeword
of degree i must therefore contain i of these IDs for the decoder
(sink) to know how to decode the packet.

0 degree id1 id3id2

7 bits

m bytes

logN bits

1

7 bits N bits

0 0 0 0 0 0 10 0 1 0 1 1 1

(a) d log(N) < N
(b) d log(N) ≥ N

Figure 5: Structure of a coefficient with multiple degree code-
words

• No coding: When no coding is used, each codeword is al-
ways degree 1. As shown in Figure 4, only a single ID is
necessary to specify the coefficient. The first bit is always 1
and the last log(N) bits specify which symbol makes up the
degree 1 codeword.
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• With Coding: When codewords can be more than degree
1, they can be specified in two ways: in a bit format and in
log(N) format. The first byte specifies how the remaining
bytes are constructed. The first bit of the first byte is 1 if
the coefficient is specified in log(N) format and 0 when it is
specified in the bit format.

When the degree d of a codeword is low (in particular, less
than N

log(N)
), less space is consumed by listing the IDs of the

d symbols that make up a codeword. In this case, the coef-
ficient is constructed in the format as shown in Figure 5(a).
The d symbol identifiers each of size log(N) are packed into
as few bytes as possible.

When the degree is high (higher than N
log(N)

), less space is
consumed by reserving a bit for each of the N possible sym-
bols that form a codeword. As shown in Figure 5(b), a 1 bit
signifies the presence of a particular component and 0 speci-
fies the absence.

If the size of a symbol is large, then these overheads are negligi-
ble. However, they are clearly less negligible when the data sizes
are small. However, we note that Growth Codes grow slowly, and
the degree of the codeword is, for the majority of the time, fairly
small. In Section 10, when we consider how to forward from nodes
that generate data periodically, we will demonstrate how to further
reduce the amortized cost of these coefficients.

8. EXPERIMENTS ON A GRID NETWORK
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Figure 6: Data recovery on a 5x3 grid network. The sink node
is in the middle of the grid

In this section, we introduce a C-simulator that we wrote to eval-
uate the performance of the various coding schemes. In addition,
we use TinyOS [2] and the accompanying simulator TOSSIM to
simulate a network of nodes with our implementation of the Growth
Codes protocol. Finally, we use micaz motes from Crossbow [1] to
test the protocol in a real setting. We also perform experiments
to compare with routing, we use MultiHopRouter, a routing proto-
col included in TinyOS for mote-based sensor networks. We mod-
ify the Surge application (which uses MultihopRouter to setup and
maintain a forwarding tree) to simulate a network of nodes which
use this forwarding tree to route data towards the sink node.

Because no distributed encoding schemes exist for the Soliton
distributions, we can only compare how Growth Codes achieve
faster data dissemination to the sink node(s) compared to when no
coding is used in the network.
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Figure 7: Data recovery in the event of node failures on a 5x5
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Our purpose in presenting the results of the experiments and sim-
ulations is twofold. Firstly, we demonstrate that relaxing some of
the assumptions of our abstract model does not result in a degra-
dation of performance. Indeed, the simulation results of our round
based C-simulator with the modeling abstractions present match
closely with the results obtained with TOSSIM and the motes ex-
periment. Thus, introducing real devices, a MAC protocol and
nodes with limited memory and computational power does not dis-
tort the bigger picture of the performance of Growth Codes. After
establishing the fidelity of our C simulator, we employ it to per-
form larger simulations in later sections, where we are not limited
by the size of our physical testbed or the vagaries of the TOSSIM
simulator. Secondly, our claims on the benefits of Growth Codes in
a zero-configuration setting are substantiated.

In Figure 6, we see how the various schemes compare. The net-
work consists of 15 nodes arranged in a 5x3 grid topology. The
radio range is set such that a node can communicate only with its
x- and y- axis neighbors (and not diagonally). The middle node on
the grid is the sink. Using Growth Codes, each nodes sends one of
its codeword symbols to a random neighbor every 1 second. We
observe that both the TOSSIM and the C simulator as well as the
micaz motes are able to transmit all data to the sink in about 40 sec-
onds. With multihop routing, each node sends its data towards the
sink every 1 second, but it takes a while for the forwarding tree to
be established. If the next-hop for a node has not been established,
the node broadcasts its data. We observe that the sink receives data
from it 4 neighbors fairly quickly but after that there is a huge lag
during which time the routing is being setup. This maybe an ar-
tifact of the particular implementation of MultiHopRouter used in
TinyOS, but since this is the only suitable routing protocol available
on TinyOS we use it for comparison purposes. We aim to compare
with better routing protocols available on the TinyOS platform in
future.

We now look at how node failures affect data recovery and how
Growth Codes can recover from them. We use a 5x5 grid topol-
ogy and assume that nodes generate new data every 300 seconds.
Using routing, after the forwarding tree has been established, the
nodes can get their data across very quickly. Later on, at t=600
seconds, when new data is generated one of the nodes close to the
sink fails. At t=650, three more nodes which were routing through
the already failed node also fail before they have a chance to re-
establish their paths to the sink. This results in their data never
reaching the sink and as can be observed from Figure 7, the curve
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never reaches the maximum data recovery of 25. On the other hand,
the Growth Codes allows data to be recovered from the three nodes
mentioned above by disseminating their data to other neighboring
nodes. While the experiment is designed to highlight the advan-
tage of Growth Codes, such scenarios are likely to be common in
large sensor networks where nodes fail with a fair degree of regular-
ity. Growth Codes perform well with minimal reliance on transient
components, e.g., optimized routes, that take a long time to recom-
pute once broken. It is this ability that makes them particularly well
suited for large-scale sensor networks.

Note that in the above experiments, we organize micaz motes
into a grid topology by algorithmic means, i.e. by modifying the
implementation so that each node is aware of and can communicate
with only the nodes adjacent to it in the grid topology. Nodes phys-
ically arranged in a grid formation still show erratic radio connec-
tivity and hence it is difficult to impose a grid topology by means
of physical placement alone.

9. GROWTH CODES IN A DISTRIBUTED
SETTING

In the following sections, we look at how fast Growth Codes can
help the sink recover data in a completely distributed environment.
We evaluate the efficacy of the coding technique both as a func-
tion of the underlying topology and as a function of the size of set
of failed nodes. We compare with a random “diffusion” scheme
where nodes randomly exchange data with their neighbors just as
in Growth Codes but no coding is used.

In all simulations we use the round based C simulator and un-
less otherwise stated, we assume that a sensor node has a storage
capacity C = 10, i.e., the node can store up to 10 codeword sym-
bols at any given time. With each node, having a storage memory
of C = 10, a maximum of 10N codewords can be stored in the
network at any time. This is sufficient to facilitate good spread and
mixing of symbols generated by the nodes. We also performed sim-
ulations with larger values of C, but the results were not noticeably
different from what is presented below.

9.1 Growth Codes in a Random Topology
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In any practical deployment of sensor nodes in a geographical
area, typically the network consists of wireless sensor nodes that
have a certain range within which they can communicate. In such a
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Figure 9: Data recovered at the sink in a 500 node random
network of radius R = 0.2 as more and more codewords are
received

scenario, the nodes aggregate in a natural topology defined by the
wireless range of the nodes.

We simulate this network as a 1x1 square, by placing sensor
nodes uniformly at random within the square. A pair of nodes,
is connected by a link if they are within a distance R from one an-
other. The parameter R is called the radius of the network. This is
similar to the connectivity model used within [28].

We assume each node in the network initially generates a symbol
xi. There is one sink that is attached to a single random node in the
network. Hence it is able to receive one codeword symbol in each
round. Therefore, the round number is the same as the number of
codewords received at the sink. The nodes follow the encoding
and data exchange protocol based on Growth Codes as described in
Section 4.1.

We compare with the case when the network nodes do not encode
any data but instead exchange the original symbols. To facilitate
a fair comparison, when not using any coding, the sensor nodes
behave in exactly the same way as when they use Growth Codes
except that they do not transition to degrees higher than 1. Hence
all the codewords generated are of degree 1.

We now compare how in a randomly formed network where the
density of nodes and links will vary from region to region, Growth
Codes can be used to deliver data at a fast rate to the sink node.
We consider a 500 node network. The sink is attached to a random
node in the network.

Figure 8 depicts the fraction of data recovered by the sink as a
function of the number of received codewords in a random network
with radius of R = 0.3. The results are an average of 100 sim-
ulation runs. On the X-axis, the number of codewords received
by the sink are plotted while the Y-axis is the fraction of symbols
recovered from the received codewords.

A random network with a radius of R = 0.3 is fairly well con-
nected. For comparison purposes, we plot the fraction of data re-
covered as a function of number of codewords received in a net-
work with clique topology. The performance of Growth Codes is
roughly the same in both topologies.

We now evaluate the data recovery rate using Growth Codes
when the network has a radius of R = 0.2 implying that the net-
work is much sparser. From Figure 9 we can observe that the data
delivery rate of Growth Codes does not deteriorate very much even
in a much sparser random network.

We observe that when the number of received codewords is small,
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the two protocols recover data at the same rate (since in the be-
ginning, Growth Codes produce only degree 1 codewords). On
the other hand when a substantial number of codewords have been
received, the Growth Codes protocol can achieve much faster re-
covery rates. Using Growth Codes, the sink is able to recover all
symbols much earlier than when no coding is used.
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Figure 10 depicts how many rounds on average are required be-
fore the sink is able to recover 75% of the original N symbols.
On the X-axis, we vary the number of sensor nodes in the network
which is the same as the total number of symbols (since each sensor
node generates one symbol). On the Y-axis, we measure the time
taken to recover 75% of the symbols. Figure 11 depicts the time
taken to recover all the symbols.

To recover 75% of the data, both protocols require the number of
codewords to be linear in the number of nodes N with the Growth
Codes protocol requiring a smaller amount. Recovering all the
symbols using Growth Codes still appears linear in the number of
nodes, however, without coding, the number of codewords required
show a clear non-linear increase. Since the unencoded retrieval pro-
cess is closely related to the classical Coupon Collector’s Problem,
it is not surprising to see the unencoded version require a long time
to acquire the last few symbols.

9.2 Growth Codes in Disaster-Prone Networks
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Figure 12: Data recovered at the sink in a 500 node random
network in a disaster scenario of impact radius r = 0.2 at time
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Growth codes are particularly effective for information collec-
tion in disaster-prone areas where the whole network or parts of
it may be destroyed or affected in some way. For example, in the
event of a flood, a subset of the sensor nodes may get submerged
and stop functioning. In the case of an earthquake, a whole region
containing sensor nodes may get destroyed. Typically, the effect of
the disaster on the sensor network will show strong spatial correla-
tion in the sense that nodes close to one another are more likely to
either survive together or get destroyed together.

We simulate a disaster in a sensor network by disabling part of
the network at the time of the disaster. We define r such that at
the time of the disaster, all nodes within r distance of the center
of the impact are disabled. This in effect, changes the topology of
the network since the disabled nodes and all links connecting them
become non-functional.

We now discuss how the time of disaster and the radius of im-
pact affects the network’s ability to deliver data to the sink. Figure
12 shows how much data can be recovered at the sink if a disas-
ter of impact radius r = 0.2 disables part of the network at time
t = 250. All nodes within a radius of r = 0.2 from the center
of the impact are disabled. This amounts to about 1/8th of the
total nodes. Nevertheless, the data recovery rate at the sink when
the nodes use Growth Codes to encode and distribute data is not
severely affected.

If the disaster occurs soon after the data generation by the sensor
nodes, the nodes that eventually get disabled may not have a chance
to spread their data outside the region of impact and that data may
get lost. Even if the data from disabled nodes does get to the surviv-
ing nodes, the distribution of data from disabled nodes and the data
from surviving nodes may become skewed. If the nodes are not us-
ing any coding scheme, this skew will affect the data recovery rate
at the sink. On the other hand, if the nodes are using codes such
as Growth Codes, the skew will not matter since high degree code-
words containing data from disabled nodes will be constructed.

In Figure 13, we depict how much data can be recovered by the
various protocols and how long does it take to recover that data in
case a disaster disables a part of a 500 node network soon after
data generation by the nodes. On the X-axis, we vary the impact
radius of the disaster. The number of disabled nodes is roughly
proportional to the square of the impact radius r. On the Y-axis, we
display how long it took for the sink to recover all symbols that sur-

264



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.1  0.2  0.3  0.4  0.5

T
im

e 
to

 r
ec

ov
er

 s
ur

vi
vi

ng
 s

ym
bo

ls

Radius of disaster impact

Effect of a disaster on the survivability of data

500

500

500

498

251

500
500

500

498

246

Growth Codes
No Coding
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experiment.

vived the disaster. The number of symbols recovered is indicated
next to the plotted point. Note that it takes less time to recover
all recoverable symbols for the disaster of size 0.5 because a much
smaller fraction of symbols is recovered. We can observe that if the
disaster radius is smaller than r = 0.4 (that covers approximately
half the nodes), most of the symbols do survive the disaster. Only
when a substantial portion of the network is destroyed, a number of
symbols are lost since a lot of nodes as well as their storage mem-
ory is destroyed. Yet, by using Growth Codes, the surviving data
can be recovered reasonably fast by the sink.

10. NODES THAT PERIODICALLY
GENERATE NEW DATA

To this point, we have considered a network setting where nodes
take a single measurement of their environment, the goal being to
deliver as much of that data as possible to the sink(s). We now
extend Growth Codes to an environment where nodes periodically
sample the environment. We assume that with period G, nodes
generate data of size sd. We call the data generated by a node in
successive time periods as belonging to different successive gener-
ations. The first data generated by a sensor node is of generation
1.

We assume a fixed storage size of C at each node. The storage
must now be shared across multiple generations. Typical sensor
nodes have a limit on the maximum packet size S they can send
or receive. We partition the memory of each node of size C into
chunks of size S so that there are dC/Se chunks.

10.1 Clustering Across Generations
One concern when using Growth Codes across multiple gener-

ations is that the size of the coefficient describing the codeword
could grow large for large-degree codewords. Let sd be the amount
of space required for storing the data and sc for storing the coef-
ficient. Let γ be the number of generations we wish to store in a
chunk of S. This leaves on average size S/γ for each generation,
and a naive storage scheme would require that γ be chosen such
that S/gm ≥ sd + sc. Here gm indicates the number of genera-
tions that comprise a cluster.

To reduce the coefficient overhead across generations, we intro-
duce the notion of clustering. A cluster is a set of codewords across

several generations. The codewords have the same coefficients (i.e.,
the origins of the symbols used that comprise the codeword are the
same), but the data in each codeword is from a different generation.
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Figure 14: Storing Clusters in Memory.

An example of how memory is used with clustering is depicted in
Figure 14 in which the number of generations per cluster, gm = 3.
A cluster’s smallest numbered (i.e., earliest) generation is num-
bered 1 (mod 3), and the largest numbered (i.e., latest) generation
is numbered 0 (mod 3). In this example, there is sufficient mem-
ory to store 9 codewords and 4 coefficients (i.e., S ≥ 9sd + 4sc).
To make room for the codewords cluster 4 (generation 10 and 11),
codewords for generation 1 and 2 were removed. When generation
12’s codeword is generated, its storage will necessitate the eviction
of codeword 3. Hence, cluster 1 can be completely removed at that
time. When generation 13 arrives, cluster 5 is initially formed, and
codeword 4 will be removed at that time (but generations 5 and 6,
and hence the coefficient of cluster 3, will remain).

Since all codewords within a cluster have the same coefficient,
the codeword cannot be modified (i.e., “grown” to a higher degree)
until the cluster is fully formed (e.g., in the example above, the
codewords for generation 10 and 11 must remain as the original
data symbols generated by that node for those generations until
generation 12’s data is also available). This delay is not a signifi-
cant concern since we know that the optimal growth rate of Growth
Codes stays fixed at degree one for a considerable amount of time.

Since all generations in a cluster share the same coefficient, the
point in time at which the codewords grow to the next degree is
the same. Hence, the time will either be too soon for the most
recent generation in a cluster, or too late for the oldest generation
in a cluster. Since our approach is to remain conservative about
when to transition to the next degree, we recommend the use of the
transition time of the most recent generation in the cluster.

The above discussion raises an issue about how many genera-
tions of data can be encoded in a single packet. Also, transmission
channels have typically have a small limit on the packet size (Max-
imum Transmission Unit) which can be sent over the channel. In
case a packet containing multiple generations is bigger than the
MTU of the channel, a simple fragmentation and reassembly can
be added to the implementation to take care of this issue. We do
not explore this issue further in this paper due to space constraints.

10.2 Optimal Cluster Size
As cluster size is increased, the size of the coefficient per gener-

ation decreases. If the space allocated to each generation is fixed,
then by decreasing the overhead of the coefficients, data can re-
side longer in memory. However, since codewords within a cluster
cannot be grown until all generations are available for that cluster,
a larger cluster size reduces the time over which a codeword can
grow.

Let gm be the maximum number of generations in a cluster. It
can be shown that the optimal value of gm is bounded from below

by gm =

√
2Ssc − sc

sd
. If memory size is S, the coefficient size sc,
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the codeword size is sd and the maximum generations in a cluster
can be gm, then the maximum size of a cluster is sc + gmsd. The
number of clusters in memory is approximately S/(sc + gmsd).
The number of codewords of successive generations in memory is
then gmS/(sc +gmsd). Since a new generation codeword is added
after time G (and the oldest codeword removed at the same time),
the time for which a generation codeword stays in memory is given
by Tg = gmSG/(sc + gmsd).

It can easily be observed that the generation’s codeword in the
cluster must remain fixed for gm−1 generations, the second oldest
generation’s codeword for gm − 2 generations and so on. Hence,
an “average” codeword must be fixed for gm−1

2
generations, and

the time for which a typical codeword is fixed is therefore G gm−1
2

.
The time over which a codeword grows uninterrupted according

to the Growth Codes protocol is then given by Tgrowth = Tg −
G gm−1

2
. The optimal value of gm is one that maximizes the time

over which an average codeword can grow. This is given by gm =√
2Ssc − sc

sd
, where we omit the derivation due to lack of space.

Tg , which is the time codewords of a particular generation stay in
memory, increases monotonically with gm. But the time for which
a codeword grows uninterrupted according to the Growth Codes
protocol is given by Tgrowth which peaks at the optimal value of
gm . For values of gm higher than this, Tgrowth decreases but the
extra low degree codewords generated by the constant resetting of
the clusters also grows, resulting in a slight loss of efficiency.

11. CONCLUSIONS
The goal of this paper is to investigate techniques to increase the

persistence of sensor networks. We propose Growth Codes, a new
class of network codes particularly suited to sensor networks where
data collection is distributed. Unlike previous coding schemes,
Growth Codes employ a dynamically changing codeword degree
distribution that delivers data at a much faster rate to network data
sinks. Furthermore, the codewords are designed such that the sink
is able to decode a substantial number of the received codewords at
any stage. This is particularly useful in sensor networks deployed
in disaster scenarios such as floods, fires etc. where parts of the
network may get destroyed at any time.

Our simulations and experiments demonstrate that Growth Codes
outperform other proposed methods in settings where nodes are
highly prone to failures. While persistence in sensor networks was
one application we studied, we believe Growth Codes have wider
applicability. The critical insight behind Growth Codes is to intelli-
gently preserve “memory” of a network, making it more robust and
resilient. The idea is potentially very useful in other dynamically
changing environments like file swarming p2p frameworks, and we
are actively exploring other similar applications of Growth Codes.
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[4] A. Albanese, J. Blömer, J. Edmonds, M. Luby, M. Sudan. Priority Encoding
Transmission. In IEEE Transactions on Information Theory, volume 42, 1996.

[5] A. G. Dimakis, V. Prabhakaran and K. Ramchandran. Ubiquitous Acess to
Distributed Data in Large-Scale Sensor Networks through Decentralized
Erasure Codes. In Information Processing in Sensor Networks, 2005.

[6] A. Kamra, J. Feldman, V. Misra and D. Rubenstein. Data Persistence for
Zero-Configuration Sensor Networks. In Technical Report, Department of
Computer Science, Columbia University, Feb. 2006.

[7] A. Manjeshwar and D.P. Agrawal. Teen: A Routing Protocol for Enhanced
Efficiency in Wireless Sensor Networks. In Parallel and Distributed Processing
Symposium, 2001.

[8] A. Scaglione and S. D. Servetto. On the interdependence of routing and data
compression in multi-hop sensor networks. In ACM Conference on Mobile
Computing and Networking, 2002.

[9] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content
Distribution. In Proceedings of INFOCOM, 2005.

[10] C. Intanagonwiwat, R. Govindan and D. Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In ACM Conference
on Mobile Computing and Networking, 2000.

[11] C. Y. Wan, S. B. Eisenman, A. T. Campbell, J. Crowcroft. Siphon: Overload
Traffic Management using Multi-Radio Virtual Sinks. In ACM Conference on
Embedded Networked Sensor Systems, 2005.

[12] D. Marco, D. Neuhoff. Reliability vs. Efficiency in Distributed Source Coding
for Field-Gathering. In Information Processing in Sensor Networks, 2004.

[13] I. F. Akyildiz, M. C. Vuran, O. B. Akan. On Exploiting Spatial and Temporal
Correlation in Wireless Sensor Networks. In Proceedings of WiOpt 2004:
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pages
71–80, Mar. 2004.

[14] J. Byers, J. Considine, M. Mitzenmacher and S. Rost. Informed Content
Delivery Across Adaptive Overlay Networks. In Proceedings of SIGCOMM,
2002.

[15] J. Considine. Generating good degree distributions for sparse parity check
codes using oracles. In Technical Report, BUCS-TR 2001-019, Boston
University, 2001.

[16] J. W. Byers, M. Luby, M. Mitzenmacher, A. Rege. A Digital Fountain Approach
to Reliable Distribution of Bulk Data. In Proceedings of SIGCOMM, 1998.

[17] Lin and Costello. Error Control Coding: Fundamentals and Applications. 1983.
[18] M. Luby. LT Codes. In Symposium on Foundations of Computer Science, 2002.
[19] M. Li, D. Ganesan and P. Shenoy. PRESTO: Feedback-Driven Data

Management in Sensor Networks. In ACM/USENIX Symposium on Networked
Systems Design and Implementation, 2006.

[20] M. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. Spielman. Efficient
Erasure Correcting Codes. In IEEE Transactions on Information Theory,
volume 47, pages 569–584, 2001.

[21] M. O. Rabin. Efficient Dispersal of Information for Security, Load Balancing
and Fault Tolerance. In Journal of the ACM, volume 36, pages 335–348, 1989.

[22] M. Perillo, Z. Ignjatovic and W. Heinzelman. An Energy Conservation Method
for Wireless Sensor Networks Employing a Blue Noise Spatial Sampling
Technique. In Information Processing in Sensor Networks, pages 116–123,
2003.

[23] M. Sartipi and F. Fekri. Source and Channel Coding in Wireless Sensor
Networks using LDPC Codes. In EEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, 2004.

[24] N. Cai, S. Y. R. Li and R. W. Yeung. Linear Network Coding. In IEEE
Transactions on Information Theory, volume 49, pages 371–381, 2003.

[25] P. Desnoyers, D. Ganesan and P. Shenoy. TSAR: A Two Tier Storage
Architecture Using Interval Skip Graphs. In ACM Conference on Embedded
Networked Sensor Systems, 2005.

[26] P. J. M. Havinga, G. J. M. Smit and M. Bos. Energy Efficient Adaptive Wireless
Network Design. In The Fifth Symposium on Computers and Communications,
2000.

[27] R. Ahlswede, N. Cai, S. Y. R. Li and R. W. Yeung. Network Information Flow.
In IEEE Transactions on Information Theory, volume 46, pages 1004–1016,
2000.

[28] R. Chandra, C. Fetzer and K. Hogstedt. A Mesh-based Robust Topology
Discovery Algorithm for Hybrid Wireless Networks. In Proceedings of
AD-HOC Networks and Wireless, Sept. 2002.

[29] R. Koetter and M. Medard. An Algebraic Approach to Network Coding. In
ACM/IEEE Transactions on Networking, volume 11, pages 782–795, 2003.

[30] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge International
Series on Parallel Computation.

[31] S. Acedanski, S. Deb, M. Medard and R. Koetter. How Good is Random Linear
Coding Based Distributed Networked Storage. In Workshop on Network
Coding, Theory and Applications, 2005.

[32] S. Pattem, B. Krishnamachari and R. Govindan. The Impact of Spatial
Correlation on Routing with Compression in Wireless Sensor Networks. In
Information Processing in Sensor Networks, pages 28–35, 2004.

[33] S. S. Pradhan, J. Kusuma and K. Ramchandran. Distributed compression in a
dense microsensor network. In IEEE Signal Processing Magazine, volume 19,
pages 51–60, Mar. 2002.

[34] T. Arici, B. Gedik, Y. Altunbasak and L. Liu. PINCO: a Pipelined In-Network
COmpression Scheme for Data Collection in Wireless Sensor Networks. In
International Conference on Computer Communications and Networks, 2003.

[35] T. Ho, M. Médard, M. Effros and D. Karger. On Randomized Network Coding.
In Allerton Annual Conference on Communication, Control and Computing,
Oct. 2003.

[36] W. Heinzelman, A. Chandrakasan and H. Balakrishnan. Energy-Efficient
Communication Protocols for Wireless Microsensor Networks. In Hawaii
International Conference on Systems Sciences, 2000.

266


