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ABSTRACT
Determining node and event locations is a canonical task formany
wireless network applications. Yet dedicated infrastructure for de-
termining position information is expensive, energy-consuming, and
simply unavailable in many deployment scenarios. This paper pre-
sents an accurate, cheap and scalable framework, called Sextant,
for determining node position and event location in sensor net-
works. Sextant operates by setting up and solving a system of
geographic constraints based on connectivity informationfrom the
underlying communication network. Sextant achieves high accu-
racy by enabling non-convex constraints to be used to refine posi-
tion estimates. It represents position estimates as potentially non-
contiguous collections of points. This general representation en-
ables Sextant to usenegative information, that is, information on
where a node or event is not located, to refine location estimates.
Sextant unifies both node and event detection within the samegen-
eral framework. It can provide high precision without dedicated
localization hardware by aggressively extracting constraints from
the link layer, representing areas precisely with Bézier-enclosed
polygons and probability distributions, and using event detection
to refine node position estimates. A compact representationand a
fully distributed implementation make the framework practical for
resource-limited devices. The framework has been implemented,
deployed and tested on laptops, PDAs and Mica-2 motes. Physical
experiments show that a large number (98%) of the nodes in a net-
work can determine their positions based on a small number (30%)
of landmark nodes and that a large number (90%) of events can be
located with low median error.

1. INTRODUCTION
Many critical applications for wireless networks require deter-

mining the physical location of nodes and events in the network.
For instance, a canonical problem in sensor networks is to deter-
mine the location of an event, such as a chemical spill. Geographic
routing protocols rely on node location in order to forward pack-
ets with low overhead. Similarly, context-aware applications need
to determine the locations of network participants in orderto cus-
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tomize content for users depending on their location. These, and
many other location-sensitive applications [1, 2, 3, 4, 5],require
determining position information with high accuracy and low cost.

In this paper, we present a distributed location discovery frame-
work, called Sextant, that extracts geographic constraints from already-
present wireless radios and uses these constraints to infernode and
event location with high accuracy. Sextant operates by setting up
a system of relative geographic constraints among the network par-
ticipants based on network connectivity and solving this system in
a distributed and efficient manner with the aid of absolute position
information provided by a small number of landmarks. A landmark
is a node whose absolute position is known; Sextant landmarks can
be cheap static nodes whose positions are fixed, or they may bemo-
bile nodes equipped with dedicated hardware, such as GPS.

Sextant provides a unified framework that can be used to deter-
mine both node and event location. Sextant nodes equipped with
sensors can extract and combine constraints about sensed events to
cooperatively determine the geographic location of events. This lo-
cation is represented as a probability distribution over the sensed
area, which enables application-specific processing to be applied
in determining the event location. Sextant relies solely onsim-
ple, cheap hardware for localization; a wireless radio and abinary
event sensor suffice for both node and event localization, and costly
hardware and protocols for time synchronization are not needed.
Folding both event and node localization into the same framework
enables sensed events to be used to improve the fidelity of node
location estimates.

There has been much previous work on node localization and
event detection [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] , includ-
ing foundational work on theoretical lower bounds [17, 18].Sex-
tant differentiates itself from this body of work in severalways.
First, it does not assume uniform transmission radii (i.e. aunit disk
graph) or symmetric connectivity; instead it extracts geographic
constraints from the link layer based on a novel, realistic constraint
extraction model that accommodates the large percentage ofuni-
directional links and non-uniform coverage areas encountered in
practice. These constraints lead tonon-convexsolutions, which are
typically much more accurate, though more complex, than schemes
limited to convex embeddings. They also naturally support event
detection with heterogeneous sensors, where wide-area sensors may
determine an event to have occurred in region R, while more spe-
cific sensors might preclude the presence of that event in smaller
sub-regions S, S⊂ R, giving rise to non-convex event regions.
Second, Sextant explicitly represents node locations using Bézier
curves, and uses probability distributions to track potential event
locations. In contrast with some previous work that represented lo-
cation estimates as points, representing areas and probability distri-



bution over areas explicitly vastly improves localizationaccuracy,
and Bézier curves greatly reduce the amount of space required to
represent complex, non-convex areas. We show how to extend and
combine areas made up of piecewise Bézier curves, and the scheme
is simple to generalize to 3D with Bézier surfaces. Third, Sex-
tant propagates constraints throughout the network, and can merge
them effectively even in the presence of approximate information.
In contrast with some past work that required landmark nodesin
the one-hop neighborhood in order to perform node localization,
Sextant can derive accurate constraints even from nodes whose
position is not precisely known, and use these estimates to refine
the position estimates of other nodes. Finally, we have deployed
and tested our scheme on physical testbeds consisting of laptops
and handheld HP Jornadas equipped with 802.11b cards, as well as
50 Mica-2 motes. The algorithm is practical enough to be deployed
on motes, and robust enough to handle non-uniform behavior en-
countered in real networks.

Sextant aggressively extracts positive and negative information
from the link layer and converts it into geographical constraints. By
positive information, we mean a constraint that restricts anode’s or
event’s location to a region of finite size. For instance, much past
work is based on estimating a node’s position by examining its hop
count to landmark nodes [19, 9] or triangulation to landmarknodes
in the one-hop vicinity [20]. Sextant additionally takes advantage
of negative information; that is, constraints that preclude a node or
event from appearing in a certain region. For instance, a node that
does not receive transmissions from another node may determine
that it is outside the transmission range of the sender. We show
later that the use of such negative information greatly increases the
fidelity of location estimates for both nodes and events.

We show how to use Bézier curves to explicitly represent the
set of all points at which a node can be located. Since this set
may consist of disjoint polygons, explicitly representingit as a set
avoids estimation errors. Bézier curves are resilient to small errors
in the location of control points [21], and in addition, can be repre-
sented very efficiently, reducing packet size. Sextant can pass this
set to location-aware applications that can handle sets of positions,
or perform a final mapping to a point in order to support legacy
applications without introducing errors into the system.

Sextant disseminates constraints transitively throughout the net-
work, creating an interdependent web. Transitively propagating lo-
cation information enables nodes that are not within the immediate
vicinity of landmarks to determine their location. It also enables
nodes to extract negative information by discovering the presence
and estimated location of other nodes in the network. Transitively
combining position estimates enables information from sparsely
distributed landmarks to be coalesced together to reduce position-
ing error.

Overall, this paper makes three contributions. First, it describes a
unified localization framework for node and event localization. The
framework achieves high accuracy by using non-convex regions to
represent node and event locations, taking advantage of negative
as well as positive constraints, and disseminating constraints tran-
sitively throughout the network. Internally, constraintsare repre-
sented precisely and in compact form as collections of polygons
enclosed in Bézier curves, resulting in an accurate and efficient im-
plementation. Second, this paper proposes a novel and realistic
constraint extraction model, and a distributed constraintsolution
algorithm. The constraint extraction model enables Sextant to ag-
gressively extract constraints from existing hardware such as wire-
less radios and sensors. The distributed algorithm for solving the
resulting constraint system is efficient and scalable. Thisalgorithm
enables nodes without any dedicated positioning hardware to de-

termine their own position and the location of events with high ac-
curacy based on a small number of landmarks. Finally, this paper
reports results from an actual physical deployment as well as simu-
lations to show that the approach is both effective and practical. We
have implemented the location discovery protocol described in this
paper and tested it on MICA-2 motes [22], laptops and StrongArm-
based PDAs equipped with 802.11b cards. The physical experi-
ment validates the simulations, and shows that Sextant is effective
at accurate location discovery.

The rest of the paper is structured as follows. The next section
discusses related work and expands on Sextant’s contributions. In
sections 3 through 6, we discuss the basic operation of Sextant,
including its area representation, its extraction of constraints from
wireless radios and sensors, and its distributed solution techniques
for node and event localization. Section 7 describes how theinter-
action between node and event localization can be used to refine
position estimates. Section 8 describes the network protocol used
to obtain and combine position estimates. Section 9 outlines the
structure and complexity of the Sextant implementation. Section 10
provides results from our simulations and physical experiments and
Section 11 concludes the paper.

2. RELATED WORK
There has been extensive past work on node localization as well

as event tracking in sensor networks (see [23] for a survey).These
systems differ in the way they obtain range measurements, propa-
gate location estimates transitively, utilize positive versus negative
information, and represent potential node locations.

Range measurements can be obtained through simple connectiv-
ity, signal strength, time of arrival, time difference of arrival or an-
gle of arrival measurements. Recent work has examined heuristics
for performing range measurements via hop counts [13]. Sextant
is agnostic to the choice of range measurements, and assumesthe
simplest form of range measurements based on connectivity,which
is available from any wireless radio. Dedicated hardware for local-
ization is costly and unavailable under many scenarios.

A common approach to estimating node positions is direct mea-
surement or triangulation against landmarks in the immediate one-
hop vicinity. Active Badge [24] relies on the closest infrared re-
ceiver to locate specialized beacons carried by tracked assets. RADAR [19]
relies on a centralized database of signal fingerprints fromland-
marks obtained at all locations and orientations to localize a node.
Lorincz and Welsh [14] propose a similar RF fingerprint-based node
localization technique that relies on strength signaturesand a dis-
tributed database. Cricket [25] relies on time difference of arrival
between radio and ultrasound signals to measure distances to ded-
icated beacons. VORBA [26] uses angle of arrival measurements
from 802.11 basestations to determine node positions. In GPS-
Less [27], a node that can receive transmissions from landmarks
L1, L2 and L3 estimates that it is at the centroid of the landmarks.
Since these approaches do not disseminate position estimates be-
yond the first hop, they do not support nodes that are outside the
range of landmarks.

Other work enables location estimates to be extended transitively
through the network to nodes that are not within the immediate
vicinity of landmarks. APS [9] relies on signal strength or hop
counts for triangulation and estimates node positions starting with
the one-hop neighborhood of landmark nodes and working transi-
tively. A variant of APS [8] relies on angle of arrival measurements
to perform triangulation and transitively determine position and ori-
entation for nodes. GPS-Free [28] relies on time of arrival measure-
ments to estimate the range between pairs of nodes, constructs local
coordinate systems at each node, and reconciles them into a sin-



gle, absolute coordinate space. Time of arrival and angle ofarrival
measurements are typically not practical since they require costly
clock synchronization hardware and receiver arrays, respectively.
Robust Positioning [20] is a two-phase approach where a system of
loose constraints, built initially by range estimates, areiteratively
refined to improve estimated locations. Robust positioningis ag-
nostic to the choice of range measurements, but iterative refinement
may never converge, even for static networks. Convex position es-
timation [29] solves a set of convex geographic constraintsin a
centralized server to localize nodes. Finally, N-hop Multilatera-
tion [30] combines robust positioning and convex position estima-
tion to formulate a least-squares problem to refine initial position
estimates. These approaches differ fundamentally from Sextant in
that they use only positive information and work only with convex
constraints.

The system proposed by Galstyan et al. [10] is similar in spirit
to our approach in that it takes advantage of negative information.
Information on where a node or event cannot be located can sig-
nificantly improve the fidelity of location estimates. The system
proposed by Galstyan et al., however, does not support non-convex
position estimates. Non-convex areas, that is, areas with amiss-
ing subregion, arise naturally from the use of negative information,
though representing them accurately is a challenge. This scheme
simply uses the largest convex subregion instead, and requires that
each node be in range of at least one landmark.

A significant difference among node localization techniques is
the way they represent estimated locations. Most previous work
computes a position estimate consisting of a single point for each
node. Such an estimate might be wildly misleading; for instance,
there might be sufficient information to indicate that a nodeis at the
upper-right, upper-left, lower-right or lower-left partsof the field.
A single point estimate may place the node at the center of the
field. Galstyan et al.’s approach represents an estimated area as a
rectangle, while Sextant represents areas explicitly as a collection
of polygons enclosed by Bézier curves.

In addition to node localization, there has been much work on
event tracking and localization. In collaborative Signal and Infor-
mation Processing [31], the path of moving objects are tracked in a
field of location aware sensors. The event location is derived from
the magnitude of the sensor reading, given the attenuation model
for the event. Acoustic Ranging in Sensor Networks [32] locates
sound sources to a point location by triangulating against aset of
landmark sensors that detect the event. Brooks et al. [16] propose a
distributed target tracking system using a publish-subscribe model.
Their work assumes that each sensor is equipped with a GPS forlo-
calization and instead focuses on the use of pheromone routing, in-
network filtering and object tracking. Savvides et al. [12] propose
an iterative event localization scheme based on measurements of
signal strength. Energy-Efficient Surveillance System [33] also de-
tects events in a location aware sensor field and routes back results
along a gradient set up by the controller. This approach is cen-
tralized and relies on time synchronization. In the Countersniper
system [11], event localization is performed using accurate time of
arrival estimates and node localization is performed usingacoustic
ranging. This approach relies on tight time synchronization be-
tween sensor nodes and requires each sensor to be in the rangeof
at least four other sensors in order to accurately localize the event,
thus restricting the possibilities of dynamic configurations of sen-
sor deployments. In contrast, Sextant can determine the location of
events based on their signatures, without time synchronization.

The most significant difference between our approach and previ-
ous work is that Sextant is practical. It derives this property from
its constraint model, which takes advantage of negative constraints,

(a) (b) (c)

Figure 1: Use of B́ezier curves to represent the area (a) enclosed
by a circle, (b) common to two circles, (c) inside one circle but
outside another. Control points are represented by filled dots,
and the curves by solid lines. B́ezier curves provide a precise
and compact representation for areas commonly encountered
during localization.

and its solution technique, which is distributed, transitive, and most
importantly, capable of handling non-convex areas. Introduction of
non-convex areas qualitatively changes the approach from previous
efforts, such as [6], that are limited to convex regions. Some recent
work has examined how to derive node locations without the bene-
fit of any landmarks [7, 18]. Theoretical analyses have established
estimation lower bounds for unit disk graph embeddings without
landmarks [17]. The problem that Sextant tackles is more difficult
than a unit disk graph embedding since it admits non-convex areas,
though the use of landmarks simplifies the problem space. As a
result, we have deployed and tested Sextant in practice, andlater
show that it achieves high accuracy in a real world setting.

3. REPRESENTING REGIONS AND POSI-
TIONS

The scheme used to represent positions plays a critical rolein de-
termining the functionality and efficiency of the localization tech-
niques. An ideal representation would accurately capture the types
of regions encountered during localization, permit an efficient ma-
nipulation of regions in terms of CPU cycles, and take up little
space. A simple approach that permits efficient manipulation and
compact representation is to keep track of a single point represent-
ing the system’s best estimate of the location of a node or event.
While simple, this approach fails to capture the localization error
or represent the range of positions where a node could be located.
On the other end of the spectrum, it is possible to represent regions
using a finely-partitioned grid. While grids are versatile and can
represent complex, non-convex shapes, they are not compactand
do not permit efficient manipulation; intersection and union oper-
ations with fine-grain grids take time proportional to the size of
the resulting area. What is needed is a representation that can ef-
ficiently represent and operate on the type of regions commonly
encountered when working with wireless nodes.

Sextant usesBézier regions, that is, polygons enclosed by knot-
ted Bézier curves, to represent sets of locations. Béziercurves are
expressive and compact, and enable efficient region operations such
as union, intersection, and subtraction. Sextant encodes an arbi-
trary region as a collection of polygons whose perimeters are made
of piecewise Bézier curves. A Bézier curve is a smooth parametric



polynomial curve defined by four pointsp0, . . . , p3 (calledcontrol
points) passing throughp0 andp3 and tangent top1−p0 andp3−p2

at the end-points. Multiple curves can be knotted together to form
complex curves that can enclose a given region. Regions repre-
sented by Bézier curves require only a fraction of the storage used
by grids and yet can be more complex and provide higher precision.

Figure 1(a) illustrates how Bézier curves can be used to repre-
sent a circle precisely. Logically, four curves, each representing a
quarter-arc of a circle, are joined at the endpoints. Each curve is
captured by the nearby set of color-coded control points that define
it. Since each Bézier arc shares a control point with the next seg-
ment with which it is knotted, the points in common do not have
to be repeated. This enables Sextant to represent a perfect circle
using only twelve control points. In practice, most regionswe en-
countered in practice are captured using fewer than thirty control
points, where each control point is a point in 2-space that can be
stored in two machine words. Note also that Bézier curves can rep-
resent arbitrary regions, including non-convex regions, and regions
with holes and disconnected components. Bézier curves arealso a
natural choice when some errors are present in the measurements
of the control points, as these errors are not magnified alongthe
curve [21]. Note finally that collections of Bézier regionscan rep-
resent any region, convex or concave, with and without holes, and
with a single connected component or multiple disconnectedcom-
ponents.

Algorithms have been developed by the graphics community to
efficiently perform primitive operations, such as union, intersec-
tion and subtraction, on such regions [34]. While these algorithms
are beyond the scope of this paper, they essentially convertthese
region-operations into operations involving just the control points.
The result of intersecting and subtracting two circles is illustrated in
Figures 1(b) and 1(c) where the results is defined by six and twelve
control points respectively. We build on these primitive operations
to provide two operations that we callexpandandcontract. The
result,A+, of expanding a regionA by a scalarr is the region that
encloses all points within a distancer from anypoint inA. The re-
sult of contracting a regionA by a scalarr, denoted byA−, is the
set of points withinr away fromall points inA. A+ \A (andA−)
are computed as the union (and intersection) of circles of radiusr
centered at all points on the perimeter ofA. The control points for
the resulting regions are computed directly from the control points
of A. Thus Bézier curves allow the representations of regions in
Sextant to be very expressive, compact, and yet efficient to use.

4. NODE LOCALIZATION
Sextant performs localization by solving a set of constraints rep-

resented as Bézier regions through geometric operations.For each
node or eventA, Sextant ultimately producesestimated location
set, denoted byEA, which represents the system’s best estimate of
the region inside whichA mustbe located.

Two kinds of constraints go into the computation of estimated
location sets.Positive constraintsare of the formA must be located
inside region Xwhere X can be any arbitrary Bézier region.Neg-
ative constraints, in contrast, are of the formA cannot be located
inside region X, for a similarly generic Bézier region. For now let
us assume that there is a way to generate positive and negative con-
straints, as we shall describe in the next section.

Localization in Sextant starts with a bootstrap assumptionthat
initializes the location estimates at the start of the algorithm. For
node localization, every node initially locates itself to lie inside the
universeU such thatEA ← U . Over time,A uses the constraints it
learns to refine this estimate. IfA learns a new positive constraint
of the formA must be inside region XthenA can infer that it must

be inside the regionEA ← EA ∩X. Similarly if it learns the new
negative constraint of the formA cannot be inside region Xthen it
infers that it is in the regionEA ← EA \X. Notice that in updating
A’s estimate, we do not assume thatX needs to be convex and
indeed it usually is not.

The rate of convergence of a node’s estimated location set toa
very small region is a function of the size of the regionsX and the
number of different constraints in the system. If the regionX in
a positive constraint is small, then each intersection operation re-
duces the estimate to one at most as big asX and usually smaller,
thus leading to rapid convergence. In the negative constraint case,
the larger theX, the larger the region subtracted away fromEA and
the faster the convergence. When all useful information hasbeen
incorporated intoEA and further information from the network can-
not be used to refine A’s position further, the algorithm terminates
and reportsEA.

In the presence of large numbers of constraints, there is a risk
of ending up with an over-constrained system. If constraints are
chosen to be conservative, that is, in a manner such that theywill
never be at odds with the underlying physical reality, they will not
lead to an over-constrained system. In practice, however, there is a
fundamental tradeoff between convergence rate and accuracy, de-
termined by the level of conservatism (or conversely, the level of
aggressiveness) used when extracting constraints. Overlyconser-
vative constraints lead to slow convergence, while aggressively ex-
tracting constraints from the physical layer increases convergence
rate at the risk of overconstraining some nodes and computing a
defunct (EA = ∅) location estimate for some nodes. The next sec-
tion describes how Sextant finds a medium between these two ex-
tremes.

5. CONSTRAINT EXTRACTION
Two types of localization constraints naturally manifest them-

selves in sensor networks.Absolute constraintsexplicitly provide
coordinates (or regions) inside which the sensor must lie. For in-
stance, GPS provides the constraint that the node equipped with
the receivermust be located inside a circle of radiusε centered
at its GPS coordinateswhereε represents the GPS error. We call
nodes with access to such constraintslandmark nodes. In contrast,
relative constraintslimit the distance between a node and another
node or event whose position itself is undetermined. Absolute con-
straints are hard to come by since very few sensors in a network
will be equipped with power consuming GPS devices. Hence we
focus on cheaply generating and utilizing relative constraints from
hardware already present on the nodes.

One source of relative constraints is the wireless radio hardware
present on all sensor nodes. In this section, we limit ourselves to
mere connectivity information between nodes, a boolean value rep-
resenting whether a nodeA can receive a threshold percentage of
transmissions from nodeB or not. We do not assume symmetry in
connectivity i.e.A can hearB doesnot imply B can hearA. Under
these assumptions, a naı̈ve, but intuitive constraint is: if A hearsB
thenA must be within transmission range ofB. On the other hand,
if A doesn’t hearB thenA must be outside transmission range of
B. In practice, this approach suffers from three critical problems.
First, thetransmission coverage region(the set of locations where
transmissions from the node can be heard) is rarely, if ever,a circu-
lar disc with a fixed transmission range. Second, the transmission
coverage region may contain holes. A node right next to the trans-
mitting node may not be able to hear it while one further away in
the same direction can. And third, there should be a way to extract
useful constraints fromB’s connectivity information even if it is
not landmark node. We address these problems in turn.
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Figure 2: Wireless transmission coverage region of a MICA2
mote, shown at center. Area is non-convex with holes. The box-
plot on the left shows the distribution of inter-node distances
for wireless one-hop neighbors. The box-plot on the right
shows the inter-node distance distribution for non-neighbors.
The substantial overlap motivates conservatively extracting
two separate constraints based onr and R.

We first examine the irregularities encountered in practicewith
wireless transmission zones. Much past work assumes a simplis-
tic connectivity model based on a single radius determined by the
reception threshold; nodes that receive direct transmissions are as-
sumed to be within a circular area of radiusR, while nodes that do
not are assumed to be outside. We set up a MICA-2 mote at the
center of a 7x7 grid and monitored the connectivity of the result-
ing system to determine if this simplistic approach could accurately
capture transmission areas encountered in practice. Figure 2 shows
the irregularity of transmission ranges and the presence ofholes in
radio coverage encountered in practice with MICA-2 motes. The
box-plots show the distribution of the distances between one-hop
neighbor nodes as well as nodes that cannot receive direct trans-
missions from each other. The overlap evident in the box-plots
indicates that a unit-disk embedding, based on a single radius, is
unlikely to accurately capture physical reality.

Sextant extracts conservative constraints even in the presence of
nonuniform transmission regions by using two separate radii. It
extracts positive constraints using a large radiusR. As shown in
Figure 2, if A can receiveB’s transmissions thenA must be at
most R away fromB since no hosts separated by more thanR
can receive each others transmissions. Similarly, Sextantextracts
negative constraints using a small radiusr. If nodeA cannot re-
ceiveB’s transmissions, then it cannot be less thanr away fromB
where0 ≤ r ≤ R. The first case defines a positive constraint
circle of radiusR centered atB while the second defines a nega-
tive constraint circle of radiusr at B. Together, they sandwich the
boundary of an irregular coverage region such that the entire region
is contained inside the large circle and the portion of the region in-
side the small circle is convex. This allows for holes and other
irregularities, such as angular variance in range, to be confined to
the annulus between the two circles. In the general case,R andr
may be different for each node, and may change over time with di-
minishing energy reserves. Sextant requires only that a given node
be aware of its ownr andR, though in practice we use a uniform
set of values for a given class of wireless radio hardware.

When a node’s absolute location is known, extracting constraints
is straightforward: two circles of radiir andR can simply be cen-

B’s actual position (unknown to B)

B’s actual coverage region

B’s estimated location set

B’s assured wireless coverage region

B’s maximal wireless coverage region

B EW
B

AW
B

MW
B

Figure 3: Illustration of key terms. Node B has estimated lo-
cation set EB. It can determine its maximal wireless coverage
regionMW

B by taking the union of all circles of radius R cen-
tered in EB, and its assured wireless coverage region AW

B by
taking the intersection of circles of radiusr.

tered on the node. Yet most nodes will not be landmark nodes,
and there may well be significant errors in their position estimates.
Nevertheless, we would like Sextant to be able to extract constraints
from nodes whose positions are approximate. Sextant performs this
extraction in the following, sound manner. In the positive case, ifB
lies inside regionEB, then a node that receives transmissions from
B must be located inside the regionMW

B . MW
B is defined as the

set of all points withinR from some point inEB. We callMW
B the

maximal wireless coverage regionof B, which is represented by the
light gray region in Figure 3. Geometrically, this is the union of all
circles of radiusR centered at points inEB, but it can be computed
efficiently if the boundary ofEB is piecewise Bézier by expanding
EB by R as described in Section 3. In the negative case whereA
cannot receive transmissions fromB, A must lie outside the region
AW

B , defined as those points whose distance from all points inEB

is at-mostr. We callAW
B theassured wireless coverage regionof

B, represented by the diagonally stroked region in Figure 3. As be-
fore, this is geometrically the intersection of all circlesof radiusr
centered insideEB but can be computed efficiently from the Bézier
control points by contractingEB by r.

Figure 4(a) depicts the result of node localization using connec-
tivity constraints gleaned from wireless radios in a mote-based ex-
periment. The light squares represent the actual location of the
node and the dark boundaries represent each node’s estimated lo-
cation set. The radio range for the nodes is about a fourth thewidth
of the figure. The three nodes with small circles for their estimated
location set are the only landmark nodes. Interestingly, except for
the landmark nodes, all other location estimates are non-convex,
demonstrating the usefulness of the Sextant approach. Sextant can
even localize nodes, such as the top-right corner node, which are
multiple hops from landmarks, with high accuracy.

While the preceding discussion examined how to extract con-
servative constraints from simple connectivity information, Sex-
tant can extract constraints from more sophisticated wireless hard-



ware if available. For instance, if the wireless radios provide an
estimate of signal strength, then the above analysis can be repeated
such that nodes receiving transmissions at strengtht are constrained
to lie between somert andRt away from the transmitting node.
Such rings can then be combined through union and intersection
to generate the regions corresponding to the maximal and assured
wireless coverage region for a given signal strength. If angle of ar-
rival information is available then the underlying region is shaped
like a wedge, or pie-slice, instead of rings.

If the nodes are equipped with sensors, then additional constraints
can be extracted as events occur. Sextant models the sensor range
with two parameters,s andS, defined as the distance within which
all events are sensed and the distance beyond whichno events are
sensed, respectively. Such constraints can be used to localize events
whose positions are not known, as described in the next section, or
to refine node location estimates from events whose locations are
known, as described in Section 7.

6. EVENT LOCALIZATION
The unified localization framework that Sextant provides can be

used for both node and event localization. The approach usedfor
event localization is analogous to that used for estimatingnode
positions. For event localization, we assume that each nodeis
equipped with a sensor that can detect events within a range mod-
eled bys andS, as described in the preceding section. As with
the transmission coverage region, this model allows for sensing
regions with irregular boundaries and holes. While Sextantcan
extract complex constraints for sophisticated sensors that return a
range of values when an event is detected, we limit this analysis to
sensors that return a boolean sensed/not-sensed value for simplic-
ity. Consider a sensorB with estimated location setEB. We define
two coverage areas, themaximal sensor coverage areaMS

B which
is the region outside of which no events can be sensed byB. As
before this is the union of all circles of radiusS centered inEB,
but can be computed efficiently using Bézier expansion. Second,
we define theassured sensor coverage areaAS

B which is the re-
gion inside which events must necessarily be sensed byB and can
computed by effectively taking the intersection of all circles of ra-
diuss centered insideEB . If an event is detected, then some set of
sensorsΓ detect the event while the remaining set of sensorsΘ do
not. We then conclude that the event must have occurred inside the
region that is common to all the maximal sensor coverage areas for
the sensors that detected the event and outside the assured sensor
coverage areas of the sensors that didn’t detect the event. Formally,
the estimated positionV for an event can be specified as:

V =
\

B∈Γ

MS
B \

[

B∈Θ

AS
B (1)

Equation 1 follows from a straightforward extension of the Sex-
tant approach to event detection. Note that, with this definition, the
probability of an event having occurred outside ofV is zero, and
equal for all points internal toV.

While simple, the approach presented in Equation 1 does not take
into account the varying degrees of accuracy with which nodes es-
timate their own position. A node whose position estimate carries
a high degree of uncertainty should not affect event localization to
the same degree as a landmark node. Ideally, the event localiza-
tion algorithm would return a region explicitly tagged withthe rel-
ative probabilities, representing the system’s confidencein where
the event happened.

To that effect, we perform a grid-decomposition onV and asso-
ciate a probability valueP (Gi) with each grid cellGi.

P (Gi) = γ

 

Y

B∈Γ

P (Gi|DB)

! 

Y

B∈Θ

P (Gi|¬DB)

!

WhereP (Gi|DB) represents the conditional probability that the
event happened inGi given sensorB detected it andP (Gi|¬DB)
is the same givenB did not detect it.γ is chosen to normalize the
volume under the surface defined byP (Gi) to 1. P (Gi|DB) and
P (Gi|¬DB) can be related toP (DB |Gi) andP (¬DB |Gi) using
Bayes’s theorem as follows.

P (Gi|DB) =
P (DB|Gi)× |Gi|

P

j
P (DB|Gj)× |Gj |

P (Gi|¬DB) =
P (¬DB|Gi)× |Gi|

P

j P (¬DB|Gj)× |Gj |

Where | · | calculates the area of a region. Finally, we deter-
mineP (DB |Gi) by calculating the relative size of the region inside
EB that B needs to be inside of to detect an event inGi. This is
given byP (DB |Gi) = |EB ∩ M

Gi |/|EB | whereMGi is the set
of all points at-mostS away fromsomepoint inGi, calculated by
effectively taking the union of all circles of radiusS centered in
Gi

1. P (¬DB |Gi) can similarly be calculated asP (¬DB |Gi) =
|EB \ A

Gi |/|EB | whereAGi is the set of all points at-mosts away
from all points inGi, calculated by effectively taking the intersec-
tion of all circles of radiuss centered inGi.

We call the surfaces defined byP (Gi|DB) andP (Gi|¬DB) the
positive sensing contributionof B andnegative sensing contribu-
tion of B respectively; these are shown in Figures 4(b) and 4(c).
Each small square in the figure represents aGi and the function
value is represented by varying the shade of the square with white
representing 0 and the darkest shade representing the maximum
value. The positive sensing contribution, comprised of peaks (dark
areas in a sea of white) tends to increase the probability of an event
taking place near the peak. In contrast, the negative sensing con-
tribution is comprised of troughs (white depressions in a plateau
of dark) that decrease the probability that an event happened in the
recess by increasing the probability everywhere else. The relative
heights of the peaks and troughs are a function of the ambiguity in
node positions. If the node localization is highly accuratethen the
peaks are higher, troughs are deeper and the slopes in the graphs are
steeper. Figure 4(d) representsP (Gi), the system’s best estimate of
the region in which the event happened, annotated with probabili-
ties. The peak of the surface is quite close to the event itself, and the
region of ambiguity is very small even thoughB, the node closest
to the event, has a large ambiguity in its position.

7. FEEDBACK
Event localization provides additional opportunities to extract

constraints for node localization. We make the assumption that
nodesB and C can tell that they both detected the same event.
This detection can be performed in the frequency domain through
event signatures, say, when working with acoustic sensors.Or it
can be performed in the time domain by comparing clock valuesif
nodes have access to synchronized clock hardware. If two nodesB
andC that know their locations with some ambiguity both detect
the same event then they can infer that they must be within sensing
rangeS of the event, and thus within2S of each other, and within
S of V.

1Since a straight line is a Bézier curve,Gi can be expanded byS as
per Section 3
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Figure 4: Various areas encountered by the system.

Following this intuition, node positions can be refined by intro-
ducing calibration events into the network. In the case where a net-
work administrator can control the positions of events, Sextant uses
circles with radiis andS centered at the absolute event location to
draw further constraints on node positions. This straightforward
refinement is similar to the calibration approach describedin [10].
Surprisingly, however, events can be used to refine node positions
even when the event location is not known with certainty. In re-
sponse to an event, Sextant determines the regionV in which the
event happened using the algorithm described in the previous sec-
tion. It then computes the regionsMV andAV that are defined
as points at-mostS ands away fromsomeandall points inV, re-
spectively. As mentioned earlier, these regions are computed by
effectively combining all circles of radiusS ands centered inV
through union and intersection, respectively. If a nodeB detected
the event that was located at some point insideV, thenB must be
within S from that point. Hence, for all nodesB ∈ Γ that de-
tected the event, Sextant introduces a new positive constraint that
B must be insideMV . Similarly, if B did not detect the event,
then it cannot be withins of the event location and thus cannot be
at a point that is less thans from all points inV. Therefore for all
nodesB ∈ Θ that did not detect the event Sextant introduces a new
negative constraint thatB cannot be insideAV .

Note that while these constraints themselves are conservative,
they may magnify errors already in the system. If, for example,B
lies slightly outsideEB due to errors introduced by a non-conservative
choice ofr, then it is possible that the system localizes an event
to V even when it happened slightly outsideV. As a result both
MV ,AV are slightly off such that when intersected or subtracted
by B, EB shrinks further, causingB to lie further away from the
boundary than before the event. Such constraints obtained via feed-
back magnify the tradeoff between accuracy and constraint satisfi-
ability discussed earlier.

8. NETWORK PROTOCOL
The Sextant localization framework operates in a fully distributed

fashion without central coordination. Each Sextant nodeB locally
keeps track of its estimated location setEB, the set of positive con-
straintsΩ and negative constraintsΦ learned over time. All con-
straints inΩ andΦ refer to a corresponding regionX and carry a
version number and validity time period. At any time, the invariant
holds thatEB =

T

Xi∈Ω
Xi \

S

Xi∈Φ
Xi.

Any time B’s value of EB changes,B recomputesMW
B and

AW
B as described earlier. It tags the former as a positive constraint

and the latter as a negative constraint and attaches a monotonically
increasing version number, network time-to-live (TTL) anda va-
lidity time period to each constraint. The version number isused
to propagate new information. The TTL is used to limit how far
each packet is disseminated into the network. Since the positive
constraints are useful only to nodes that can receive directtrans-
missions fromB its TTL is set to 1. The negative constraint is
useful for nodes more than one-hop fromB; however, in practice,
only nodes at-most 3-4 hops benefit from the data. The validity pe-
riod is used to cull unsatisfiable constraints after a periodof time
and is based onB’s mobility rate.B then transmits these two con-
straints after waiting for a small random interval of time toallow
for sudden surges of incoming constraint traffic to modifyB’s local
estimates before transmission.B may transmit the constraint mul-
tiple times to account for packet loss. It also retransmits its updated
constraints at the point of expiry of its last transmission.

Any nodeA that receives more than some threshold percentage
of B’s direct transmissions first removes all copies ofAW

B from Φ
and all old copies ofMW

B from Ω where old is defined as a copy
with a lower version number. It then addsMW

B from the received
packet toΩ and retransmits the negative wireless constraint in the
packet after decrementing the associated TTL, dropping thepacket
if the TTL reaches 0. If a nodeC receivesB’s forwarded transmis-
sion, it checks if someMW

B exists inΩ. If not, c then removes any
existing copies ofAW

B from Φ and adds theAW
B from the received

packet toΦ. C then retransmits the packet after decrementing the
TTL unless the TTL hits 0. BothA andC expire the entries in their
Ω, Φ once the validity period indicates that the constraint is stale.

WhenB detects an event, it waits for a small random interval
before sending out an event-report request with the event signa-
ture and an initial TTL, unless it receives an event-report request
with the same signature while waiting. The event-report requests
are forwarded immediately by other nodes until the TTL expires.
NodeA, upon receiving the request, responds with an event-report
response message addressed toB containingEA and eitherMS

A if
it detected the event orAS

A if it did not detect the event.B collects
all such responses and combines them to generateV as described
earlier. For the feedback part of the protocol,B then creates two
constraints from the areasMV andAV and attaches the event sig-
nature, a TTL and a large validity period before broadcasting it.
Once nodeA receives and processes the feedback packet, it adds



MV to Ω or AV to Φ depending on whether it sentMS
A or AS

A

in the event-response for that event. It then forwards the feedback
packet unless the TTL expires. In the mean time,B can calculate
the surfaceP (Gi) and notify the user by sending it to a predeter-
mined node.

Since each node keeps track of local information, the network
load and memory requirements in Sextant donot depend on the
number of nodes. Instead, the network load and memory require-
ments are proportional to the local density of nodes. The network
load also depends on the validity period of constraints, which de-
pends on the mobility of the network. For highly mobile networks,
constraint validity periods are low, causing nodes to continually
broadcast updated position estimates. For static networks, however,
validity periods approach infinity causing almost zero network traf-
fic after Sextant converges to its node localization solution. Conse-
quently, Sextant scales well to large static networks.

9. IMPLEMENTATION
We have implemented two instances of Sextant. The first is a

fully distributed implementation that runs on laptops and PDA-
class devices such as HP Jornada palmtops. The system is small
and compact; it consists of only 710 nonblank lines of Java code
and relies on the Bézier curve library supplied with the Java Run-
time Environment version 1.2. The Sextant implementation uses
Sun’s JRE on laptops and HP’s ChaiVM on Jornadas with 802.11b
wireless cards operating in ad hoc mode to perform node localiza-
tion. The second instance of Sextant was implemented for MICA-
2 motes. It consists of a TinyOS module, written in 209 lines of
NesC code, that collects network connectivity and sensor informa-
tion and forwards it to a central controller node that performs the
node and event localization. Our implementation takes lessthan
100 ms. per node on average to perform node localization on a
2.7 GHz Pentium 4 processor. For event localization, the probabil-
ity distributions of each node’s positive and negative contributions
are pre-computed and cached once node localization is complete,
adding a 1-2 second latency before the system can perform event
localization. Using the cached data, the system can localize events
in just a couple of milliseconds.

10. EVALUATION
In this section, we demonstrate that Sextant is effective through

both extensive simulations as well as physical experiments. We
show that aggressively harvesting constraints from the wireless ra-
dio and sensors leads to low median error rates and accurate local-
ization using few landmark nodes. We provide insights for network
designers to select optimal parameters for Sextant based onsimu-
lation and experimental results.

10.1 Setup
We implemented Sextant on laptops and PDA-class devices equipped

with 802.11b modems and MICA-2 motes equipped with 900MHz
wireless radios and sensor boards with light sensors. In this sec-
tion, we report on results from a deployment of 50 motes. In order
to create a complex network topology, transmission power was set
to 1.5%. This yields an experimentally determined coveragearea
where the transmission range varies between60cm and183cm.
We setr to 121cm, corresponding to the 3rd percentile, andR to
183cm, corresponding to the 97th percentile in Figure 2. The sens-
ing range for our hardware was determined to beS = s = 61cm.
49 sensors were laid out in a7 × 7 grid pattern with an inter-node
separation of 61cm, one additional sensor acted as an accesspoint.
30% percentage of the nodes were randomly chosen to be seeded
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Figure 5: Percentage of nodes accurately estimating their posi-
tion as a function of percentage of landmark nodes.

with absolute constraints. Due to the static position of nodes, the
validity period of constraints was set to infinity. The optimal value
of the TTL parameter TTL in the network protocol was experimen-
tally determined to be 3.

Some of the results in this section are computed through sim-
ulations. The simulation parameters for transmission and sensor
ranges were set to those observed in the physical experiment. Simu-
lated nodes were placed randomly in a field with dimensions366cm×
366cm.

In a long-term deployment, key system parameters, such asr and
R, might change. Sextant does not make any strong assumptions
about the invariance of such parameters and can easily accommo-
date dynamic changes. For instance, nodes can measure theirown
energy levels and adjust the ranges they broadcast to their neigh-
bors. Nevertheless, we measured the changes in the transmission
range of several motes over the course of four days and did notfind
any variance over this time span in wireless range for a threshold of
80% packet reception. This is in line with other measurements [35],
which found that fluctuations were confined to an annulus, modeled
accurately by ther andR parameters.

10.2 Experiments
We compare the effectiveness of Sextant against previouslyex-

plored techniques: triangulation, single-hop and positive-constraints.
Triangulation is an approach similar to [20, 27] where a nodelo-
cates itself to the centroid of other nodes that it hears from. Single-
hop is an approach similar to [19] where nodes only use constraints
learned from their neighbors and do not propagate them transi-
tively. Positive-constraints only makes use of the positive con-
straints in the system and is similar to [6]. In order to compare
accuracy between the regions returned by Sextant and the point-
locations returned by other schemes we use a Monté Carlo tech-
nique to pick a point-location inside the Sextant regions that min-
imizes the average error to other points inside the region. Further,
we limit Sextant to use only the constraints gleaned from thewire-
less radios. Constraints derived from sensors and feedbackare eval-
uated later.

Figure 5 plots simulation results for the percent of nodes that
can localize themselves accurately versus the percentage of nodes
with access to expensive absolute constraints. The graph demon-
strates the effectiveness of Sextant; specifically, when more than
20% of the nodes are landmarks, more than 90% of the nodes can
discover their location accurately. Figure 6 plots the experimental
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and transitive dissemination improve location estimates signif-
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results along a different axis. The experimental result qualitatively
confirms the simulation result and demonstrates that Sextant is ef-
fective in a real setting. These graphs also quantify the benefits
of multi-hop dissemination of location information as wellas the
benefits of using negative information to supplement constraints.
Single-hop schemes can determine position for a node only when
it is within range of a node with absolute constraints. Similarly
positive-constraint schemes are not competitive since they fail to
take full advantage of all available constraints.

Figure 7 shows that in a physical deployment, Sextant’s use of
negative information provides higher accuracy than other approaches.
Sextant locates 61% of the total located nodes to within0.45R of
their true position, whereas schemes based on positive-constraints,
single-hop and triangulation achieve comparable accuracyfor only
48%, 41% and 40% of the nodes, respectively. The median Sex-
tant error is 30% ofR while the median error for the other ap-
proaches is significantly higher.

Next, we compare the event localization component of Sextant.
For comparison we implemented a simple triangulation scheme
that triangulates the location of events to the centroid of nodes de-
tecting the event. Figure 8 plots physical experiment results show-
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ing that Sextant effectively detects and locates events to ahigher
degree of accuracy than triangulation. In our physical experiment,
Sextant localized 90% of the events to within 6cm (10% of S). In
addition Sextant localizes all events to within 9cm whereastriangu-
lation based schemes have a maximum error on 60cm. Sextant’sac-
curacy is partly due to negative information extracted fromthe sen-
sors, partly due to the constraint setup that Sextant solvesinstead
of single hop triangulation and partly due to the use of probabilities
to discard unlikely grid cells. This accuracy is further evidenced
by simulation results in Figure 9, where Sextant consistently out-
performs the triangulation scheme as sensor density increases. Sex-
tant has a low mean error and accurately pin-points event locations;
further, its accuracy increases as the number of sensors increase.

In Figure 10, we experimentally compare the accuracy of node
localization in Sextant with and without the use of feedbackcon-
straints learned from the sensors. The figure shows that additional
positive and negative constraints serve to decrease the errors in
node localization significantly with very little magnification, if any,
in the errors of most nodes. In our experiment, the average error
with feedback was 1.6cm while without feedback it was 12.2cm.

Figure 11 shows the performance of the system as node trans-
mission power and consequently coverage area is increased.With
one-hop triangulation, increasing the coverage area increases the
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number of one-hop landmark nodes a node can detect. Beyond
a threshold of landmarks, this introduces an averaging effect and
eventually all non-landmark nodes estimate their positionto be at
the centroid of all landmark nodes. With Sextant , however, as
the coverage area grows, so do the assured wireless coveragearea,
therefore balancing the averaging effect by subtracting larger areas
of assured coverage. As a result, Sextant is able to maintainits
performance as transmission area increases. Only when coverage
area exceeds the field size do the non-landmark nodes lose their
ability to differentiate their position and only then does the system
collapse. Overall, Sextant is effective across a wide rangeof trans-
mission powers.

Figure 12 shows the density of landmark nodes required to achieve
a target level of node localization for a given density of sensor
nodes. The graph shows a flat trend suggesting that the number
of expensive landmark nodes required is independent of the num-
ber of sensor nodes in the system and depends only on the accuracy
desired of the system. This confirms the intuition that, regardless of
the number of inter-dependent constraints, only a fixed number of
absolute constraints are needed to collapse and solve the constraint
system.

The dependence of the event localization component of Sex-
tant on the sensing range of the sensors is explored in Figure13.
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Figure 13: Sextant is effective over a wide range of sensor pa-
rameters

As with wireless ranges, Sextant avoids the averaging effect that
triangulation schemes suffer from. With larger sensing ranges, the
broader peaks in the positive sensing contribution graph are can-
celed by the broader troughs in the negative sensing contribution
graph. Sextant succumbs to the averaging effect only when the
sensors can sense almost the entire field, thus demonstrating that it
is effective over a wide range of sensing ranges.

Sextant has a small memory footprint and introduces little net-
work overhead. Estimated location sets in our experiment typically
comprised of ten Bézier segments, which consumed 240 bytesof
local storage per node. The total local memory requirement in our
implementation including maximal and assured coverage regions,
neighbor sets etc. was less than 2 kB per node. The number of
bytes transmitted by a node was around 80 kB over the course of
the experiment, corresponding to about 350 (re)transmissions of
coverage regions.

11. CONCLUSIONS
In this paper, we presented Sextant, a unified framework for node

and event localization. Sextant is a comprehensive system that de-
rives its effectiveness from integrating negative as well as positive
information, representing areas precisely using Bézier curves, tran-
sitively disseminating constraints in the presence of uncertainty,



and solving the resulting system of constraints using a distributed
algorithm. The resulting system is capable of providing probability
distributions for event locations, and non-convex area estimates for
node locations to higher level applications. We have implemented
and deployed Sextant on a range of hardware, and demonstrated its
accuracy and practicality via simulations and physical experiments.
Overall, Sextant is comprehensive, principled, and accurate.

The explicit representation of potential node and event locations
as non-convex areas opens up new opportunities. Applications,
which tend to rely on point-estimates, can extract much morein-
formation from the localization layer by using the Bézier regions
and probability distributions provided by Sextant . And theuse of a
unified framework for node and event localization can help improve
the fidelity of both localization problems.
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