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Most existing algorithms on topology control assume homogeneous wireless nodes with uniform
maximum transmission ranges, and cannot be directly applied to heterogeneous wireless multi-
hop networks in which the maximum transmission range of each node may be different. In this
paper, we present two localized topology control algorithms for heterogeneous networks: Directed
Relative Neighborhood Graph (DRNG) and Directed Local Spanning Subgraph (DLSS). In both
algorithms, each node selects a set of neighbors based on the locally collected information. We
prove that (1) the topologies derived under DRNG and DLSS preserve the network connectivity;
(2) the out-degree of any node in the resulting topology by DLSS and DRNG is bounded by a con-
stant; and (3) the topologies generated by DRNG and DLSS preserve the network bi-directionality.
Simulation results indicate that DRNG and DLSS outperforms the other known topology control
algorithms that can be applied to heterogeneous networks in several aspects.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design|: distributed
networks, network topology, wireless communication; C.2.4 [Distributed Systems]: distributed
applications

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Connectivity, energy management, heterogeneous networks,
topology control

1. INTRODUCTION

The development of wireless networks has posed many new challenges in system
design and analysis. Energy efficiency [Jones et al. 2001] and network capacity
[Gupta and Kumar 2000] are among the most important issues in wireless ad hoc
networks and wireless sensor networks. Topology control algorithms have been
proposed to maintain network connectivity while improving energy efficiency and
network capacity. Instead of transmitting using the maximal power, nodes in a
wireless multi-hop network collaboratively determine their transmission power and
define the network topology by forming the proper neighbor relation under various
topology control algorithms.
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By enabling wireless nodes to use adequate transmission power (which is usu-
ally much smaller than the maximal transmission power), topology control can
not only save energy and prolong network lifetime, but also improve spatial reuse
(and hence the network capacity) and mitigate the MAC-level medium contention
[Narayanaswamy et al. 2002]. Several topology control algorithms [Rodoplu and
Meng 1999; Ramanathan and Rosales-Hain 2000; Li et al. 2001; Narayanaswamy
et al. 2002; Kawadia and Kumar 2003; Borbash and Jennings 2002; Li et al. 2002;
Li et al. 2003] have been proposed to create power-efficient network topology in
wireless multi-hop networks with limited mobility. (A summary will be given in
Section 3). However, most of them assume homogeneous wireless nodes with uni-
form maximum transmission ranges (except [Rodoplu and Meng 1999]).

The assumption of homogeneous nodes does not always hold in practice, since
even devices of the same type may have slightly different maximal transmission
power, let alone devices of dramatically different capabilities. As will be exemplified
in Section 3, most existing algorithms cannot be directly applied to heterogeneous
wireless multi-hop networks in which the transmission range of each node may be
different.

In this paper, we propose two localized topology control algorithms for heteroge-
neous wireless multi-hop networks with non-uniform transmission ranges: Directed
Relative Neighborhood Graph (DRNG) and Directed Local Spanning Subgraph
(DLSS). In both algorithms, the topology is constructed by having each node build
its neighbor set and adjust its transmission power based on the locally collected
information. We prove that (1) the topology derived under DRNG or DLSS pre-
serves network connectivity, i.e., if the original topology generated by having each
node use its maximal transmission power is strongly connected, then the topology
generated by either DRNG or DLSS is also strongly connected; (2) the out-degree
of any node in the topology by DLSS or DRNG is bounded by a constant; and
(3) the topology generated by DRNG or DLSS preserves network bi-directionality,
i.e., if the original topology by having every node use its maximal transmission
power is bi-directional, then the topology generated by either DRNG or DLSS is
also bi-directional after some simple operations.

Simulation results indicate that, compared with other known topology control
algorithms that can be applied to heterogeneous networks, DRNG and DLSS derive
topologies with smaller average node degrees (both logical and physical) and smaller
average link lengths. The former reduces the MAC-level contention, while the
latter implies that smaller transmission power is needed to maintain the network
connectivity. To the best of our knowledge, this is the first effort to formally address
the connectivity and bi-directionality issues in the context of topology control in
heterogeneous wireless networks.

The rest of the paper is organized as follows. The network model is first given in
Section 2. In Section 3, we summarize previous work on topology control, and give
examples to show why existing algorithms cannot be directly applied to heteroge-
neous networks. Then we present both DRNG and DLSS algorithms in Section 4,
and prove several of their useful properties in Section 5. Finally, we evaluate the
performance of the proposed algorithms in Section 6, and conclude the paper in
Section 7.
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2. NETWORK MODEL

Let the network topology be denoted as a directed simple graph G = (V(G), E(G))
in the plane, where V(G) = {v1,vs,...,v,} is the set of randomly distributed
nodes (vertices) in the network and E(G) is the set of links (edges). Assume that
the transmission area of each node is a disk centered at the node. (We will relax
this assumption in Section 5.5.) We define the (maximum transmission) range of a
node v; as the radius of the disk that v; can cover using its maximal transmission
power, denoted r,,. In a heterogeneous network, the transmission ranges of nodes
may not be the same. Let 7y, = min,ev{r,} and 74, = max,cv{r, }-

We assume G is geometric, i.e., E(G) = {(u,v) : d(u,v) < ry,u,v € V(G)},
where d(u,v) is the Euclidean distance between node u and node v. Note that
(u,v) is an ordered pair representing an edge from node u to node v, i.e., (u,v) and
(v,u) are two different edges. A unique id (such as an IP/MAC address) is assigned
to each node. Here we let ¢d(v;) = ¢ for simplicity.

The information needed by the proposed algorithms is the knowledge of all ex-
isting edges in G. An edge that was not formed in the network, whether because
the two end-nodes of the edge are too far away to communicate, or because there
exists an obstacle in between, does not have any impact on the results. As long as
the original topology (which has taken into account of the obstacles in the network)
is strongly connected, our algorithms can be applied to preserve the connectivity.
This implies whether or not obstacles exist in the deployment area does not affect
the correctness of the proposed algorithms.

Before delving into the technical discussion and algorithm description, we give
the definition of several terms that will be used throughout the paper.

Definition 2.1 Weight Function. Given two edges (uj,v1), (u2,v2) € E and the
Euclidean distance function d(-,-), the weight function w : E — R satisfies:

w(ug,v1) > w(ug,va)
& d(ug,v1) > d(uz,vs)
or (d(u1,v1) = d(uz,v2)
&& max{id(uy),id(v1)} > max{id(uz),id(vs)})
or (d(u1,v1) = d(uz,v2)
&& max{id(u1),id(v1)} = max{id(uz),id(v2)}
&& min{id(u1),id(v1)} > min{id(uz),id(v2)}).

This weight function ensures that two edges with different end-vertices have differ-
ent weights. Note that w(u,v) = w(v,u).

Definition 2.2 Neighbor Set. Node v is an out-neighbor of node u (and u is an

in-neighbor of v) under an algorithm A, denoted u LN v, if and only if there exists
an edge (u,v) in the topology generated by the algorithm. In particular, we use

u — v to denote the neighbor relation in G. u & v if and only if u 4, v and
v 25 u. The Out-Neighbor Set of node u is N§*(u) = {v € V(G) : u 4 v}, and
the In-Neighbor Set of u is N§*(u) = {v € V(G) : v 4, u}.
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Definition 2.3 Topology. The topology generated by an algorithm A is a directed
graph G4 = (E(G4),V(Ga)), where V(Ga) = V(G), E(G4) = {(u,v) € E(G) :
u 2 v}

Definition 2.4 Radius. The radius, R,, of node u is defined as the distance be-
tween node u and its farthest out-neighbor (in terms of Euclidean distance), i.e,
Ru = maxveNZut (u){d(u, ’U)}

Definition 2.5 Connectivity. In the topology generated by an algorithm A, node
u is said to be connected to node v (denoted u = v) if there exists a path (py =

U, P1y-- -y Pm—1,Pm = v) such that p; A pi+1,t = 0,1,...,m — 1, where p; €
V(Ga),k = 0,1,...,m. It follows that v = v if u = p and p = v for some
pEV(GA).

Definition 2.6 Bi-Directionality. A topology generated by an algorithm A is bi-
directional, if for any two nodes u,v € V(G4), u € N3**(v) implies v € N3“*(u).
In other words, the topology generated by A is bi-directional if all edges in the
topology are bi-directional.

Definition 2.7 Bi-Directional Connectivity. In the topology generated by an al-
gorithm A, node u is said to be bi-directionally connected to node v (denoted u < v)

if there exists a path (py = u,p1,..-,Pm—1,Pm = v) such that p; <é>pi+1,z' =
0,1,...,m — 1, where px, € V(Ga),k =0,1,...,m. It follows that u < vifu < p
and p < v for some p € V(Ga).

Deriving network topologies consisting of only bi-directional links facilitates link
level acknowledgment in wireless networks, which is a critical operation for data
transmissions and retransmissions over unreliable wireless media. Bi-directionality
is also a key feature to the correctness of the floor acquisition mechanisms such as
the RTS/CTS mechanism in IEEE 802.11.

Definition 2.8 Addition and Removal. The operation Additionis to add an extra
edge (v,u) into Ga if (u,v) € E(Ga), (v,u) ¢ E(Ga), and d(u,v) < r,. The
operation Remowval is to delete any edge (u,v) € E(Ga) if (v,u) ¢ E(G4). Let
G: and G, denote the resulting topologies after applying Addition and Removal
to G 4, respectively.

Both the Addition and Removal operations attempt to create a bi-directional
topology by converting uni-directional edges into bi-directional or removing uni-
directional edges. The resulting topology after Addition is not necessarily bi-
directional, as it may attempt to increase the transmission power of a node v to a
level that is beyond its maximum transmission power. The resulting topology after
Remowal is alway bi-directional, although it may not be strongly connected.

3. RELATED WORK AND WHY THEY CANNOT BE DIRECTLY APPLIED TO
HETEROGENEOUS NETWORKS

Several topology control algorithms [Rodoplu and Meng 1999; Ramanathan and
Rosales-Hain 2000; Li et al. 2001; Narayanaswamy et al. 2002; Kawadia and Kumar
2003; Borbash and Jennings 2002; Li et al. 2002; Li et al. 2003] have been proposed.
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In this section, we first summarize these algorithm and then give examples to
explain why they cannot be directly applied to heterogeneous networks.

3.1 Related Work

Rodoplu et al. [Rodoplu and Meng 1999] (denoted R&M) introduced the notion of
relay region and enclosure for the purpose of power control. Instead of transmitting
directly, a node chooses to relay through other nodes if less power will be consumed.
It is shown that the network is strongly connected if every node maintains links with
the nodes in its enclosure and the resulting topology is a minimum power topology.
The major drawback of R&M is that it requires an explicit radio propagation model
to compute the relay region, hence the resulting topology is sensitive to the model
used in the computation.!, Also, it assumes there is only one data sink (destination)
in the network.

Ramanathan et al. [Ramanathan and Rosales-Hain 2000] presented two central-
ized algorithms to minimize the maximal power used per node while maintaining
the (bi)connectivity of the network. They introduced two distributed heuristics
for mobile networks. Both centralized algorithms require global information, and
thus cannot be directly deployed in the case of mobility. On the other hand, the
proposed heuristics cannot guarantee the preservation of network connectivity.

COMPOW |Narayanaswamy et al. 2002] and CLUSTERPOW [Kawadia and Ku-
mar 2003] are approaches implemented in the network layer. Both hinge on the idea
that if each node uses the smallest common power required to maintain network
connectivity, the traffic carrying capacity of the entire network is maximized, the
battery life is extended, and the MAC-level contention is mitigated. The major
drawback is its significant message overhead, since each node has to run multiple
daemons, each of which has to exchange link state information with the counterpart
at other nodes.

CBTC(a) [Li et al. 2001] is a two-phase algorithm in which each node finds the
minimum power such that at least one (if any) node can be reached in every cone of
degree a. The algorithm has been proved to preserve network connectivity if a <
57 /6. Several optimization methods (that are applied after the topology is derived
under the base algorithm) are also discussed to further reduce the transmitting
power.

To facilitate the following discussion, we give the definition of the Relative Neigh-
borhood Graph (RNG) below.

Definition 3.1 Neighbor Relation in RNG. For RNG [Toussaint 1980; Supowit

1983], w8y if and only if there does not exist a third node p such that w(u,p) <
w(u,v) and w(p,v) < w(u,v). Or equivalently, there is no node inside the shaded
area in Figure 1(a).

Borbash and Jennings [Borbash and Jennings 2002] proposed to use RNG for
topology initialization of wireless networks. Based on the local knowledge, each
node makes decisions to derive the network topology based on RNG. The network
topology thus derived has been reported to exhibit good overall performance in
terms of power usage, interference, and reliability.

1In the simulation study presented in Section 6, we assume that the free-space model is used.
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U @e————>Q v

(a) Relative Neighborhood Graph.

(b) Modified Relative Neighbor-
hood Graph (to be defined in Sec-
tion 3.2).

(¢) Directed Relative Neighborhood
Graph (to be defined in Section 4).

Fig. 1. The definition of RNG, MRNG and DRNG.

Li et al. [Li et al. 2002] presented the Localized Delaunay Triangulation, a lo-
calized protocol that constructs a planar spanner of the Unit Disk Graph (UDG).
The topology contains all edges that are both in the unit-disk graph and the Delau-
nay triangulation of all nodes. It is proved that the shortest path in this topology
between any two nodes u and v is at most a constant factor of the shortest path con-
necting u and v in UDG. However, the notion of UDG and Delaunay triangulation

cannot be directly extended to heterogeneous networks.
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control) is  strongly optimization is  not
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there is no path from v
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Fig. 2. An example that shows CBTC (%‘n) may render disconnectivity in heterogeneous networks.
There is no path from v1 to vz due to the loss of edge (v2,v3), which is discarded by v2 since v1
and v4 have already provided the necessary coverage.

In [Li et al. 2003], we proposed LMST (Local Minimum Spanning Tree) for
topology control in homogeneous wireless multi-hop networks. In this algorithm,
each node builds its local minimum spanning tree independently and only keeps on-
tree nodes that are one-hop away as its neighbors in the final topology. It is proved
that (1) the topology derived under LMST preserves the network connectivity; (2)
the node degree of any node in the resulting topology is bounded by 6; and (3) the
topology can be transformed into one with bi-directional links (without impairing
the network connectivity) after removal of all uni-directional links. Simulation
results show that LMST can increase the network capacity as well as reduce the
energy consumption.

Instead of adjusting the transmission power of individual devices, there also exist
other approaches to generate power-efficient topology. By following a probabilis-
tic approach, Santi et al. derived the suitable common transmission range which
preserves network connectivity, and established the lower and upper bounds on the
probability of connectedness [Santi et al. 2000]. In [Basagni et al. 2001], a “back-
bone protocol” is proposed to manage large wireless ad hoc networks, in which a
small subset of nodes is selected to construct the backbone. In [J. Wu and Sto-
jmenovic 2002], a method for calculating the power-aware connected dominating
sets was proposed to establish an underlying topology for the network.

3.2 Why Existing Algorithms Cannot be Directly Applied to Heterogeneous Networks

Most existing topology control algorithms (except [Rodoplu and Meng 1999]) as-
sume homogeneous wireless nodes with uniform transmission ranges. When directly
applied to heterogeneous networks, these algorithms may render disconnectivity. In
this subsection, we give several examples to motivate the need for new topology
control algorithms for heterogeneous networks.

As shown in Figures 2(a)-(b) (note that in Figures 2-5 we use arrows to indicate
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v
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(a)  Original  topol-
ogy (without topology
control) is  strongly
connected.

(b) Topology by RNG is
not strongly connected:
there is no path from vs
to va.

(¢) Topology by DLSS is
strongly connected.

Fig. 3. An example that shows RNG may render disconnectivity in heterogeneous networks.
There is no path from vs to v2 due to the loss of edge (v4,v2), which is discarded since |(v4,vs5)| <
|(va, v2)], and |(v2, vs)| < |(v4,v2)l.

V3 Vg U2 Vg V3 Vg

U1 U1 U1

U3 vs U3 U5 3 Us

V4 Vg V4

(a)  Original  topol-
ogy (without topology
control) is  strongly
connected.

(b) Topology by MRNG
is not strongly con-
nected: there is no path
from v3 to vs.

(¢) Topology by DLSS is
strongly connected.

Fig. 4. An example that shows MRNG may render disconnectivity in heterogeneous networks.
There is no path from v3 to vs due to the loss of edge (v2,vs5), which is discarded since |(v2, v3)| <
(v2,v5)|, and |(vs, v3)| < [(v2,vs)|-

the direction of the links), the network topology derived under CBT'C(2) (without
optimization) may not preserver the connectivity, when the algorithm is directly
applied to a heterogeneous network. CBTC(%#) also has the same problem.

Similarly we show in Figure 3 (a)-(b) that the network topology derived under
RNG may be disconnected when the algorithm is directly applied to a heterogeneous
network. As RNG is defined for undirected graphs, one may tailor the definition of
RNG for directed graphs.

Definition 3.2 Neighbor Relation in MRNG. For Modified Relative Neighborhood
Graph (MRNG), u MRNG, ", if and only if there does not exist a third node p
such that w(u,p) < w(u,v),d(u,p) < ry and w(p,v) < w(u,v),d(v,p) < r, (Fig-

ure 1(b)).

As shown in Figures 4(a)-(b), the topology derived under MRNG may still be
disconnected. (We will give another variation of RNG in the next section that
maintains network connectivity in heterogeneous networks.)

ACM Journal Name, Vol. V, No. N, May 2004.
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(¢) The local directed (d) The resulting topol-
MST rooted at v7. ogy is not strongly con-

nected: there is no path
from v7 to vg.

Fig. 5. An example that shows the algorithm in which each node builds a local directed minimum
spanning tree and only keeps the one-hop neighbors may result in disconnectivity.

One possible extension of LMST [Li et al. 2003] is for each node to build a local
directed minimum spanning tree [Chu and Liu 1965; Edmonds 1967; Bock 1971]
and keep only neighbors within one hop. Unfortunately, as shown in Figure 5, the
resulting topology does not preserve the strong connectivity. In the next section,
we will modify this approach to preserve the connectivity.

4. DRNG AND DLSS

In this section, we propose two localized topology control algorithms for heteroge-
neous wireless multi-hop networks with non-uniform transmission ranges: Directed
Relative Neighborhood Graph (DRNG) and Directed Local Spanning Subgraph
(DLSS). In both algorithms, the topology is derived by having each node build its
neighbor set and adjust its transmission power based on locally collected informa-
tion. Both algorithms are composed of three phases:

(1) Information Collection: each node locally collects the information of the neigh-
borhood;

(2) Topology Construction: each node defines (in compliance with the algorithm)
the proper set of neighbors for the final topology using the information in the
neighborhood.

ACM Journal Name, Vol. V, No. N, May 2004.
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Vg

U3

V2
U1

Fig. 6. An example that shows having each node broadcast a Hello message using its maximal
transmission power may be insufficient for some nodes (e.g., node v1) to know their reachable
neighborhood. This figure also serves to show that given an arbitrary direct graph, it may be
impossible to derive a bi-directional topology.

(3) Construction of Topology with Only Bi-Directional Links (Optional): each node
adjusts its set of neighbors to make sure that all the edges are bi-directional.

4.1 Information collection

In the stage of information collection, every node collects the information of its
neighborhood. In particular, each node needs to know all the edges in its neighbor-
hood. In [Li et al. 2003], the Reachable Neighborhood was used for the local topology
construction. We modify the definition for heterogeneous networks as follows:

Definition 4.1 Reachable Neighborhood. The reachable neighborhood NZE is the
set of nodes that node u can reach using its maximal transmission power, i.e., Nt =
{v € V(G) : d(u,v) < r,}. For each node u € V(G), let GE = (V(GE), E(GE)) be
an induced subgraph of G such that V(GE) = NE.

For homogeneous networks, the Reachable Neighborhood N can be obtained lo-
cally if each node broadcasts periodically a Hello message using its maximal trans-
mission power. The information contained in a Hello message should at least include
the id, the maximal transmission power, and the position of the node. Here for ease
of exhibition, we assume that each node is equipped with the capability to gather
its location information via special hardware or localization service provided by the
network (see, for example, [He et al. 2003] for a summary).

Note that our algorithms can still operate if the position information is not
available, as only the knowledge of all the existing edges, E(GF), is required. E(GF)
can be constructed locally as follows. First, each node periodically broadcasts, using
its maximal transmission power, a very short Hi message which includes only its
node id and its maximal transmission power. Upon receiving such a message from
a neighbor node v, each node u estimates the length of the edge (u,v) based on
the attenuation incurred in the transmission. Let the set of edges incident at u
be denoted as EI = {(u,v) : v € NE}). After node u collects the information on
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Procedure: DLSS(u)

Input: GE, the induced subgraph of G that spans the viewable neighborhood of u;
Output: S, = (V(Su), E(Sy)), the local spanning subgraph of GE;

V(Sy) :=V, E(Sy) :=0;

begin

1:  Sort all edges in E(GE) in the ascending order of weight (as defined in Definition 2.1);

2:  for each edge (ug,vo) in the order

3: if uo is not connected to vp in S,

4: E(Sy) := E(Su) U{(uo0,v0)};

6: if ug is connected to every other node in GF
7: exit;

8: endif

5: endif

9: end

end

Fig. 7. Algorithm description of DLSS.

ET it can then broadcast this information in an Edge message. Each node will be
able to infer F(GT) based on the Edge messages received from all of its neighbors.
Although this solution may incur more communication and computation overhead,
and make our algorithms less “localized”, it eliminates the need for the position
information, and thus is better suited for wireless sensor networks where the cost
and the energy consumption should be kept as low as possible.

Another issue that complicates the process of obtaining E(GF) and is unique in
heterogeneous networks is that it may not be sufficient to have each node broadcast
periodically a Hello message using its maximal transmission power, in order to
obtain F(GF). For example, as shown in Figure 6, v; is unable to know the position
of v, since v4 cannot reach v;. For ease of presentation, we assume for now that by
the end of the first phase every node u obtains its E(G®). We will come back to
this issue in Section 5.4.

4.2 Topology construction
After obtaining E(GF), the neighbor relation in both algorithms can be defined.

Definition 4.2 Neighbor Relation in DRNG. For Directed Relative Neighborhood

Graph (DRNG), v DRNG, 1 if and only if v € NE and there does not exist a third
node p € NE such that w(u,p) < w(u,v) and w(p,v) < w(u,v),d(p,v) < r, (see
Figure 1(c)).

Definition 4.3 Neighbor Relation in DLSS. For Directed Local Spanning Subgraph

(DLSS), v LDL5S, 1 if and only if (u,v) € E(Sy), where S, is the output of DLSS(u)

(Figure 7). Hence node v is a neighbor of node w if and only if node v is on node
u’s directed local spanning graph S, and is one-hop away from node u.

DLSS is a natural extension of LMST [Li et al. 2003] to heterogeneous networks.
Instead of computing a directed local MST (which minimizes the total cost of all
the edges in the subgraph, and is shown to be incapable of maintaining connectivity
in heterogeneous networks in Section 3.2), each node u computes a directed local
subgraph according to the algorithm in Figure 7 (which minimizes the maximum
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cost of all edges in the subgraph) and takes on-tree nodes that are one-hop away
as its neighbors.

Each node broadcasts its own maximal transmission power in the Hello or Hi
message. By measuring the receiving power of the messages, each node u can
determine the specific power level required to reach each of its out-neighbors [Li
et al. 2003]. Node u then uses the power level that can reach its farthest neighbor as
its transmission power. This approach can be applied without knowing the actual
propagation model.

4.3 Construction of topology with only bi-directional edges

As illustrated in Section 3.2 (e.g., Fig. 2(c)), some links in Gprss may be uni-
directional. There may also exist uni-directional links in Gpryg. We can apply
either Addition or Remowval to Gprss and Gprng to obtain bi-directional topolo-
gies. We will discuss some properties of these solutions in Section 5.2.

5. PROPERTIES OF DRNG AND DLSS

In this section, we prove the connectivity and bi-directionality of DLSS and DRNG
and derive the bound of their node degree in Sections 5.1-5.3. Then we discuss in
Section 5.4 how to deal with the problem (Figure 6) that arises in obtaining the
reachable neighborhood E(G?®) in heterogeneous networks, and in Section 5.5 how
to relax the assumption of perfect omni-directional antenna patterns. We always
assume @G is strongly connected, i.e., u = v in G for any u,v € V(G).

5.1 Connectivity

LEMMA 5.1. For any edge (u,v) € E(G), we have u = v in Gprss.

) €
PROOF. Let all the edges (u,v) € E( ) be sorted in the increasing order of
weight, i.e., w(u,v1) < w(uz,vg) < ... < w(u,v;), where [ is the total number of
edges in G. We prove by induction.

(1) Basis: The first edge (u1,v1) satisfies w(ui,v1) = mingy )er@){w(u,v)}.
According to the algorithm in Figure 7, (ui,v1) and (v1,u;) will be included in

DLSS
GpLss, i-e., ug & v1.

(2) Induction: Assume the hypothesis holds for all edges (u;,v;),1 < i < k,

. L ..
we prove ur = vk in Gprss. If ug DLSS Vg, then ugy = wvg. Otherwise in the

local topology construction of v, before edge (uk,vr) was inserted into S,,, there

must already exist a path p = (wp = uk, w1, W2, , Wrm—1,Wm = vg) from ug
to vk, where (w;, wiy1) € E(Sy,),s = 0,1,---,m — 1. Since edges are inserted
in an ascending order of weight, we have w(w;, w;y1) < w(ug,vk). Applying the
induction hypothesis to each pair (w;, w;y1),7 =0,1,--- ,m—1, we have w; = w; ;.

Therefore, ur = vg.

O

THEOREM 5.2 CONNECTIVITY OF DLSS. Gprss preserves the connectivity of
G, i.e., Gprss is strongly connected if G is strongly connected.

PROOF. Suppose G is strongly connected. For any two nodes u,v € V(G), there
exists at least one path p = (wg = u, w1, Wz, , W_1, Wy, = v) from u to v, where
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(a)  Original  topol-
ogy (without topology
control) is  strongly
connected.

(b) Topology by DLSS is
strongly connected.

(¢) Topology by DLSS
with Remowal is not
strongly connected:
there are 2 components.

Fig. 8. An example that shows DLSS with Removal may result in disconnectivity.

(wi, wit1) € E(G),i=0,1,---
u=v. O

,m — 1. Since w; = w;4+1 by Lemma 5.1, we have

LEMMA 5.3. Given three nodes u,v,p € V(Gprss) satisfying w(u,p) < w(u,v)
and w(p,v) < w(u,v), d(p,v) <7p, then u » v in Gprss.

PROOF. We only need to consider the case where d(u, v) < r, since d(u,v) > 7y
would imply u - v. Consider the local topology construction of v. Before we
insert (u,v) into Sy, the two edges (u,p) and (p,v) have already been processed
since w(u,p) < w(u,v) and w(p, v) < w(u,v). Thus v = p and p = v, which means
u = v. Therefore, (u,v) should not be inserted into S,, according to the algorithm
in Figure 7, i.e., u » v in Gprgs. [

LEMMA 5.4. The edge set of Gprss is a subset of the edge set of Gpryg, i-€-,
E(Gprss) € E(Gprna)-

PROOF. We prove by contradiction. Given any edge (u,v) € E(GprLss), assume
(u,v) ¢ E(Gprng)- According to the definition of DRNG, there must exist a third
node p such that w(u,p) < w(u,v),d(u,p) < r, and w(p,v) < w(u,v),d(p,v) < rp.
By Lemma 5.3, v » v in GpLgs, i-e., (4,v) ¢ E(Gprss). O

THEOREM 5.5 CONNECTIVITY OF DRNG. IfG is strongly connected, then Gprng
is also strongly connected.

ProOOF. This is a direct result of Theorem 5.2 and Lemma 5.4. O

5.2 Bi-directionality

Now we discuss the bi-directionality property of DLSS and DRNG. Since Addition
may not always result in bi-directional topologies, we first apply Removal to topolo-
gies by DLSS and DRNG. It turns out the simple Removal operation may lead to
disconnectivity. Examples are given in Figure 8-9 to show, respectively, that DLSS
and DRNG with Removal may result in disconnectivity.

In general, G may not be bi-directional if the maximum transmission ranges are
non-uniform. Since the maximal transmission range can not be increased, it may
be impossible to find a bi-directional connected subgraph of G in some cases. An
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(a)  Original  topol- (b) Topology by DRNG (¢) Topology by DRNG
ogy (without topology is strongly connected. with Remowval is not
control) is  strongly strongly connected:
connected. there are 2 components.

Fig. 9. An example that shows DRNG with Removal may result in disconnectivity.

example is given in Figure 6: vy can reach v and v4, vs can reach v; and wvs,
vs can reach vy and v4, and v4 can reach ve only. Addition does not lead to bi-
directionality since all edges entering or leaving v4 are uni-directional with all nodes
already transmitting with their maximal power. On the other hand, Removal will
partition the network. In this example, although the graph G is strongly connected,
its subgraph with the same vertex set cannot be both connected and bi-directional.

Now we show that bi-directionality can be ensured if the original topology is both
strongly connected and bi-directional.

THEOREM b5.6. If the original topology G is strongly connected and bi-directional,
then Gprss and Gprng are also strongly connected and bi-directional after Addi-
tion or Removal.

PrOOF. We have E(Gppss) C E(Gprss), and E(Gprss) € E(Gpryea) C
E(G} rne) since E(Gprss) € E(Gprng)- Therefore, we only need to prove that
G pLgs preserves the strong connectivity.

In the Induction step in Lemma 5.1, the only reason we cannot prove that

u, P55 o, is that edge (vg,ur) may not exist. Given that G is bi-directional,

we are able to prove that u, 2253 v;. Hence for any edge (u,v) € E(G), we have

u < v in Gprss. The removal of asymmetric edges in Gprss does not affect this
property. Therefore, G, ¢ ¢ is still strongly connected. [

5.3 Degree Bound

It has been observed that any minimum spanning tree of a simple undirected graph
in the plane has a maximum out-degree of 6 [Monma and Suri 1991]. However,
this bound does not hold for directed graphs. An example is shown in Figure 11,
where node u has 18 out-neighbors. In this section, we derive the bound on the
node degree in the topology by DLSS and DRNG. First we define the out-degree
and in-degree as follows:

Definition 5.7 Degree. The out-degree of a node u under an algorithm A, denoted
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19 | o|Q
S

Fig. 10. The definition of Cone(u, a,v).

deg%*t(u), is the number of out-neighbors of u, i.e., degq**(u) = |[N3%*(u)|. Similarly,

the in-degree of a node u, denoted deg?*(u), is the number of in-neighbors, i.e.,
degy’ (u) = N7 (u)]-
Definition 5.8 Disk. Disk(u,r) is the disk of radius r, centered at node w.

Definition 5.9 Cone. Cone(u,a,v) is the unbounded shaded region shown in
Figure 10.

The following lemma is a direct result of the definition of DRNG.

LEMMA 5.10. Given three nodesu,v,p € V(Gprna) satisfying w(u,p) < w(u,v)
and w(p,v) < w(u,v), d(p,v) <7p, then u » v in GprnaG-

The following corollary is a direct result of Lemma 5.3 and Lemma 5.10.

COROLLARY 5.11. Ifwv is an out-neighbor of u in Gprss or Gprng, and d(u,v)
Tmin, then u can not have any other out-neighbor inside Disk(v, Tmin).

\Y

THEOREM 5.12. For any node u in Gprss or Gprng, the number of out-
neighbors that are inside Disk(u,Tmin) s at most 6.

PROOF. Let N°“(u) be the set of out-neighbors of u in Gprss or Gpryg that
are inside Disk(u,T.min). Let the nodes in N°“!(u) be ordered such that for the
ith node w; and the jth node w; (j > %), w(u,w;) > w(u,w;). By Lemma 5.3 and
Lemma 5.10, we have w(u,w;) < w(w;,w;) (otherwise u - w;). Thus Zw;uw; >
7/3, i.e., node w; cannot reside inside Cone(u,27/3,w;). Therefore, node u cannot
have neighbors other than node w; inside Cone(u,27/3,w;). By induction on the
rank of nodes in N°%(u), the maximal number of out-neighbors that u can have is
at most 6. [

THEOREM 5.13 OUT-DEGREE BOUND. The out-degree of any node in Gprss
or Gprna 1s bounded by a constant that depends only on Tmaz and Tmin-

PROOF. By Theorem 5.12, for any node u in Gprss or Gprng, there are at
most 6 out-neighbors inside Disk(u, 7). Also by Corollary 5.11, the set of disks
{Disk(v, tzin) : v € N°**(u),v ¢ Disk(u,min)} are disjoint. Therefore, the total
number of out-neighbors of u is bounded by:

ﬂ'[("’maz + r'ﬂé’ln )2 _ (T'm2'i.'n

| o )2]] — 4[B(3 +1)] +6,
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Fig. 11. An example that shows the out-degree in a heterogeneous network can be very large.
The transmission range of u is 7,0z and the transmission range for all other nodes is 7, in, where
Tmaz = 2(Tmin + €), € > 0. All nodes are so arranged that the distance between any node and its
closest neighbor is 7,4 + €. Therefore, the only links in the network are those from u to all the
other nodes. Since relaying packets is impossible, u has to use its maximal transmission power
and keeps all 18 neighbors.

where 3 = ::“: . Actually we can observe that Figure 11 shows the scenario where
the maximum out-degree of u is achieved if ¢ — 0. Therefore, we can further
tighten the bound. Since the hexagonal area (as shown in Figure 11) centered at
every neighbor of u is disjoint with each other, the total number of neighbors of u

is bounded by:

™ max Imin 2
cy = [w-‘ 1= [Q_W(ﬂ_i_

V3,2
21"

min
O

THEOREM 5.14 IN DEGREE BOUND. The in-degree of any node in Gprss or
GprNG s bounded by 6.

PROOF. Let N*"(u) be the set of in-neighbors of u in Gprss or Gpryg. Sort
the nodes in N**(u) such that for the ith node w; and the jth node w; (j >
i), w(wj,u) > w(ws;,u). By Lemma 5.3 and Lemma 5.10, we have w(w;,u) <
w(w;, w;) (otherwise w; - u). Thus Zws;uw; > 7/3, i.e., node w; cannot reside
inside Cone(u, 27w /3,w;). Therefore, node u cannot have in-neighbors other than
node w; inside Cone(u,2m/3,w;). By induction on the rank of nodes in N®"(u),
the maximal number of in-neighbors that u can have is at most 6. [

The bound given in Theorem 5.12 is the same for DLSS and DRNG, but the
out-degree of the same node in Gprgs is always smaller than that in Gpgrng since
E(Gprss) € E(Gprng)- Although this given bound is quite large, the average
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out-degree of nodes is actually not as large. In particular, since Y, oy, deg™(v) =
> pev deg®t(v), we have E[deg®(v)] = L3 .\ deg(v) < L.6n = 6. We will
also show in Section 6 that the average maximum out-degree is far less than the
bound for networks with randomly distributed nodes.

Note that what has been discussed so far is the logical node degree, i.e., the
number of logical neighbors. In practice, it is more important to consider the
physical node degree, i.e., the number of nodes within the transmission radius. If
omni-directional antennas are used, the physical degree cannot be bounded for an
arbitrary topology. However, with the help of directional antennas, we can bound
the physical degree given that the logical degree is bounded under DLSS (except
in some extreme cases, e.g., a large number of nodes are of the same distance from
one node). Essentially when transmitting to a specific neighbor, node u should
adjust the direction and limit the transmission power so that no other nodes will
be affected.

5.4 Obtaining the Reachable Neighborhood Information in Heterogeneous Networks

As mentioned in Section 4, having each node u broadcast its own position informa-
tion to all the other nodes within 7, is not sufficient to ensure in a heterogeneous
network that each node can obtain the information, F(GF), on its reachable neigh-
borhood (Figure 6). This problem is common to any distributed/localized topology
control algorithm since each node has to at least know the information of the reach-
able neighborhood to be able to preserve network connectivity.

To solve this problem, we have to make an extra assumption about the orig-
inal topology of the network. Consider a subgraph of G that has less edges:
G = (V(G),E(G")), where E(G") = {(u,v) : d(u,v) < min(ry,r),u,v € V(G)}.
Generally speaking, G’ may not be strongly connected even if G is strongly con-
nected. For each node to be able to obtain its reachable neighborhood, we add
an additional assumption that G’ should be strongly connected. For any edge
(u,v) € E(@), since d(u,v) < min(ry,7y), we have (v,u) € E(G’), which means
@' is bi-directional. Define N®' = {v € V(Q) : d(u,v) < min(ry,7,)}, o/ =
max,cyr {d(u,v)}, where r,’ < r, since for any v € NE d(u,v) < ry. Let
Poin! = min,ecv{r,’'} and rpe;’ = max,ev{r,’}. By requiring each node u to
broadcast its position and id to all other nodes within r,, we are able to deter-
mine Nf" and 7,’. We can then apply DRNG and DLSS to G’ and prove that
Theorems 5.2-5.13 still hold if the original topology is G'.

THEOREM b5.15. Theorems 5.2, 5.5, 5.6, 5.12, 5.13, and 5.14 still holds if the
original topology is G'.

PROOF. We replace @, T, NE, Tmin, and rmae with G, 7/, NE' r.." and
Tmae 1N the proof of Lemmas 5.1, 5.3, 5.4, and 5.10 and Theorems 5.2, 5.5, 5.6,
5.12, 5.13, and 5.14. By following the same line of arguments, we can prove that

they still hold if the original topology is G'. O

THEOREM 5.16. If the original topology is G' (which is a subgraph of G), GpLss
and Gprng are bi-directional after Addition or Removal.

PROOF. We apply Theorem 5.6 to G', for G’ is bi-directional. [
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(a) Original topology (without topology (b) Topology by R&M is strongly con-
control) is strongly connected. nected.
(¢) Topology by DRNG is strongly con- (d) Topology by DLSS is strongly con-
nected. nected.

Fig. 12. Topologies derived by R&M, DRNG, and DLSS.

5.5 Relaxing the Assumption of Perfect Omni-directional Antenna Patterns

Many topology control algorithms assume a Unit Disk Graph (UDG) model, i.e.,
the antenna pattern of a wireless device is a perfect disk. This is also the underlying
assumption for algorithms that use explicit channel propagation models. Since the
same models are applied to all directions, the antenna patterns have to be isotropic,
which in turn implies that the transmission area is a perfect disk.

In the case of DLSS, the antenna pattern model influences the manner in which

ACM Journal Name, Vol. V, No. N, May 2004.




Localized Topology Control Algorithms for Heterogeneous Wireless Networks . 19

T e i e el et e el Rt ot S ki
r 1 R e T e e R e A bt

B 160

Average Link Length (m)

* NONE
60H A RaMm
-o- DRNG
-&- DLSS

+ NONE
A RaM
-o- DRNG
-6 DLSS

220 240 260 280 300 0 120 140 160 180

00 120 140 160 180 220 240 260 280 300

200 200
# Nodes # Nodes

(a) Average radius. (b) Average link length

Fig. 13. Comparison of DLSS, DRNG and R&M with respect to average radius and average edge
length.

the information of N2 can be collected. Given an arbitrary antenna pattern, we
can simply employ the information dissemination technique in Section 4.1. It is
obvious that the information dissemination technique does not rely on any specific
antenna pattern, except that estimating the edge length becomes quite difficult.
This is due to the fact that the antenna pattern is not necessarily isotropic, i.e., the
power attenuation may vary in different directions. We are currently investigating
how to address this problem.

6. SIMULATION STUDY

In this section, we evaluate the performance of R&M, DRNG, and DLSS by simula-
tions. Each data point reported below is an average of 50 simulation runs. All three
algorithms are known to preserve network connectivity in heterogeneous networks.

In the first simulation, 50 nodes are uniformly distributed in a 1000/ x 1000m re-
gion. The transmission ranges of nodes are uniformly distributed in [200m, 250m].
Figure 12 gives the topologies derived using the maximal transmission power (la-
beled as NONE), R&M (under the two-ray ground model), DRNG, and DLSS for
one simulation instance. As shown in Figure 12, R&M, DRNG and LMST all sig-
nificantly reduce the average node degree, while maintaining network connectivity.
Moreover, both DRNG and DLSS render less edges than R&M.

In the second simulation, we vary the number of nodes in the region from 100 to
300. The transmission ranges of nodes are uniformly distributed in [200m, 250m)].
Figure 13 shows the average radius and the average link length for the topologies
derived under NONE (no topology control), R&M, DRNG, and DLSS. DLSS out-
performs the others, which implies that DLSS can provide better spatial reuse and
nodes consume less energy to communicate with each other.

We also compare the out-degree of the topologies by different algorithms. The
result of NONE is not shown because its out-degrees increase almost linearly with
the number of nodes and are significantly larger than those under R&M, DRNG,
and DLSS. Figure 14 shows the average logical/physical out-degree for the topolo-
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Fig. 15. Comparison of R&M, DRNG and DLSS with respect to the maximum logical degree.

gies derived by R&M, DRNG, and DLSS. The average out-degrees under R&M and
DRNG increase with the increase in the number of nodes, while that under DLSS
actually decrease. Figure 15 shows the average maximum logical degree and the
largest maximum logical out-degree for the topologies derived by R&M, DRNG,
and DLSS. The largest maximum logical degree under DLSS is at most 4, and is
well below the theoretical upper bound obtained in Theorem 5.13. Also, the topol-
ogy derived under DLSS has much smaller out-degrees than the other topologies.
Similar observations can be made in Figure 16 for physical degrees, except that
physical degrees are in general larger than logical degrees for the same topology.

7. CONCLUSIONS

In this paper, we have proposed two localized topology control algorithms, Directed
Relative Neighborhood Graph (DRNG) and Directed Local Spanning Subgraph
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Fig. 16. Comparison of R&M, DRNG and DLSS with respect to the maximum physical degree.

(DLSS), for heterogeneous wireless multi-hop networks in which each node may
have different maximal transmission ranges. We show that as most existing topol-
ogy control algorithms (except R&M [Rodoplu and Meng 1999]) do not consider
the fact that nodes may have different maximal transmission ranges, they render
disconnected network topologies when directly applied to heterogeneous networks.
Then we devise DRNG and DLSS and prove that (i) both DRNG and DLSS preserve
network connectivity; (ii) both DRNG and DLSS preserve network bi-directionality
if Addition and Remove operations are applied to the topologies derived under these
algorithms; and (iii) the out-degree of any node is bounded in the topology derived
under DLSS or DRNG. The simulation study validates the superiority of DRNG
and DLSS over R&M.

As part of our future research, we will (1) derive, given a topology in which each
node transmits with different maximal transmission power, the probability that the
topology is bi-directional with respect to the distribution and the density of nodes,
and the distribution of the transmission ranges; and (2) jointly consider topology
and MAC control and study the issue of how the MAC-level interference affects
network connectivity and bi-directionality.
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