

Advanced Software Engineering

Lecture 1: Introduction to Software Engineering

Prof. Harold Liu

Content

- **□** Basic concept of software engineering
- Computer-based systems engineering
- Software Process
- Basic elements of software project management

1. What is Software?

- Software=program+data+document
 - Customized software
 - Generic software, Shrink-wrapped software
 - Embedded software
 - Safety-critical software
 - COTS (Commercial Off-the-Shelf)
- "I will create a software to update the database". (some software, a piece of software, a software system)
- Categorized by its functionalities, scale/size, operational method, required reliability, etc.

2. What is Software Engineering?

- □ Fall, 1968, NATO Technical Committee convened nearly 50 first-class programmers, computer scientists and industry giants, discuss how to cope with "software crisis". Fritz Bauer at the meeting for the first time put forward the "Software Engineering" concept.
- The establishment and use of sound engineering principles in order to obtain economically software that is reliable and works efficiently on real machines." --- Fritz Bauer, 1968

- □ IEEE Definition: Software engineering is
 - (1) the systematic, standardized, measurable method is applied to software development, operation and maintenance of the process, the upcoming engineering applied to software development process thinking
 - (2) research into (1)
- Software engineering goals: low-cost, high-quality, on-time delivery

Essential Characteristics of Software Engineering

- Concerned about the construction of large programs
- How to control the complexity
- Constantly changing software requirements
- Aimed at improving the efficiency of software development
- Teamwork is the key to the successful implementation of software engineering
- Software must effectively support its users
- Cultural background difference for software product creation.

5. What is Software Process?

- Software process is the development of software products for a group of activities and their results.
- All software process contains four basic activities: Software description, software development, software validation and software evolution.
- Different software processes organized in different ways in these four activities, which may affect the results of the progress of events.
- Different bodies may be used to produce the same type of process products.

Benefits

- A software process defines that in order to achieve the goals, what people need in what way at what time what kind of work done (Goal, Who, When, How, What)
- For Customer, User, Developer, Manager, a widely applicable software process allows all stakeholders to better understand their role and others' role, as what to do at what time.
- Promote the integration process to obtain the "best software process."
- Make the company's internal training standardized.
- Due to the repeatability of the software process, useful for the development schedule arrangements and cost estimates.

6. What is Software Process Model?

- Models and Modeling
- Software process model is built from a particular perspective on the nature of the software process description.
- Software process model includes a variety of activities that are constituting the software process, software products, as well as all stakeholders

- □ From a different perspective of the software process described, you get a different type of process models. They are:
- Workflow model: Describes the sequence of a series of activities, inputs, outputs and inter-dependencie. Here we refer "Activities" as human activity.
- Data stream or activity model: the software process described as a set of activities, each of which completes certain data conversion. The referred level of activity in this model is below the workflow model.
- Role/action model: Describes the different roles involved in the software process and its responsible activities.

Paradigm, Methodology

- Waterfall Model
- Waterfall Model with Maintenance Circle
- Waterfall Model with Prototyping
- Spiral Model
- V Model
- Phased Development Model
- Incremental and Iterative Model
- Rational Unified Process

7. Costs and distributions

- Software costs depend on the adopted software process and the type of software being developed.
- □ General distribution of costs: Description: Design: Development: Integration and Test (15:25:20:40)%
- □ High-demand software systems: integration/testing 50:50%
- From software evolution
- □ From maintenance
- Web-based e-commerce system

8. Methodologies

■ Structured Method, by DeMarco,1978, Yourdon E. and Constantine L. et. al.

□ Jackson System Development, 1983

□ Object-Oriented Method, by Booch, 1994; Rumbaugh et al, 1991 → Design Patterns

UML (Unified Modeling Language)

 In 1994, OO principle has been throughout the entire software life cycle, it already has an impact on 50+ OOA&D methods.

 UML is a kind of modeling language for visualization, decription, structuring and documentation, mainly for the analysis and design phase of system modeling.

UML 2.0

RUP

■ By IBM Rational

- Highlights
 - Use-case driven (functionality)
 - architecture-centric (design)
 - Iterative and incremental developments (implementation)
 - Using UML and other tools

Tendency for Change when Using OO Paradigm (Jacobson et al. 1995)

Characteristic of SW product/project	Probability for change
Objects derived from the application	Low
Long-lived information structures	Low
Passive object's attribute	Medium
Sequences of behavior	Medium
Interface with the outside world	High
Functionality	High

9. What is CASE?

- Computer-Aided Software Engineering (CASE)
- A bunch of tools to support the software enegnieering process
- Lower-end tools: to generate codes
- High-end tools

to draw enterprise model and application requirements specifications

10. Problems of Software Engineering

- Legacy systems
- Changing requirements
- Delivery
- □ ...
- System complexity and details (Mars probe failure)
- Technological uncertainty (and in turn the understanding of developers)
- Communication barriers
- Requirement uncertainty
- Constant changes lead to the software degradation
- Artificial and the market risk
- Costs, reliability, productivity, reusability problems

11. Moral responsibility

- Professional ethics is very important
 - Always keep employer and clients' information confidential
 - Realistically express his/her ability to work, do not accept work beyond the capability.
 - Should be aware of the laws related to patents, copyrights, etc.
 - Avoid computer misuse.
- ACM/IEEE/BCS and other organizations issued a Code of Professional Conduct and Ethics (involving only basic moral behavior)

Content

- Basic Concept of Software Engineering
- **□** Computer-based System Engineering
- Software Process
- Basic elements of software project management

1. System Overall Characteristics

- Functional
- Non-functional: reliability, security, privacy, safety issues
- What relates the system reliability:
 - HW
 - SW
 - Operational

2. System and Its Surviving Environment

- Environment is a must-have
- Environment will affect the system's functionality and performance.
- □ In the environment there exisit a series of interactions with other systems. Thus, the environment can be treated as a stand-alone system.
- Systems engineer must understand the system environment
 - In many cases, the system is to change the environment.
 - A system can be affected by environmental changes, and such effects may be difficult to estimate.

3. System Modeling

- System modeling describes the components of the system and their relationships (system architecture)
- System architecture is generally described in block diagram.
- Subsystems
- □ Functional components can be divided into six categories:
 - Sensors: Gather information from the environment.
 - Actuators: incur the environmental changes
 - Computing components: given an input, perform calculations and produce output.
 - Communications
 - Scheduling: coordination of operations between components.
 - Interface

4. Process for Sys Engineering

- Subsystem development:
 - Parallel
 - Frequent modifications beyond the scope of a subsystem may happen (HW? SW?)
 - System integration by incremental process
 - Hard to estimate the exact timing for a subsystem
 - Accurate error-positioning (which subsystem causes the failure?) to reduce the disagreement of different subcontractors

5. Buying Softwares

- What is the best way of purchase? Who is the best provider?
- Before purchasing, system-level descriptions and architectural design must be done, to make sure which "subsystem" needs to be purchased.
- Who is the contractor, and who is the sub-contractor.

Content

- Basic Concept of Software Engineering
- Computer-based System Engineering
- **□** Software Process
- Basic elements of software project management

1. Software Process Model

- An abstract representation of the software process
- □ In practice, multiple models are used.
- Four kinds of models
 - Life-cycle model (waterfall)
 - Evolutionary development model
 - Formal methods
 - Reuse-oriented development model (OO)

Pros

- Development process is essentially in a linear sequence, manageable
- Based on "clear and comprehensive requirements", thus able to achieve satisfactory results

The Impact of Changes

Evolution Development Model

- Based on the initial requirement, first develop a prototype for clients. Then, based on the feedback, continuously improve the system until satisfactory.
- Requirements can be constantly changed.
- Two ways of doing it:
 - Working with clients together until delivery
 - Prototype is to understand the clients' needs.

- Problems of evolution dev process:
 - Where is "process"?
 - No clear system architecture
- □ In practice, we use the combined model:
 - Waterfall Model with Prototyping
 - V Model
 - Phased Development Model
 - Incremental and Iterative Model
 - Spiral Model

V-Model

Phased Development Model

The Incremental and Iterative Model

Incremental Development

Iterative Development

Benefits of Incremental Development

- □ Can deliver the product with main functionalities within short period of time
- Gradually increase the provided functionalities, so that users have ample time to learn and adapt to the new project

Spiral Model

Benefits of Spiral Model

- Software re-use
- Software quality is important for dev
- Reduce unnecessary/surplus testing
- No difference between software maintenance and development

Rational Unified Process

■ Iterative and incremental development

Use-case driven

Process Workflows

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deployment

Supporting Workflows

Configuration & Change Mgmt

Project Management

Environment

In an iteration, you walk through all workflows

Phases

Formal Methods

- □ Similar to the waterfall model, but
 - Requirement descriptions are highly reply on mathematics (e.g., notations, equations...)
 - A series of transformations lead to executable programs
- Cleanroom Process by IBM

Operational Specification Model

or incomplete)

Transformational Model

or incomplete)

2. Software Descriptions

- Feasibility study report
- Requirement analysis
- Requirement descriptions
- Requirement validations

3. Software Designs

- Architectural design
- Subsystem abstract description
- Interface design
- Component design
- Data structure design
- Algorithm design

4. Software Validation

- Unit testing
- Functional module testing
- Subsystem testing
- System testing
- \square Delivery testing (α , β , λ)

5. Software Evolution

- Definition: Software evolution is the term used in software engineering (specifically software maintenance) to refer to the process of developing software initially, then repeatedly updating it for various reasons.
- The nature of software flexibility determines that software evolution is a must
 - Avoid expensive HW modifications
- □ Can be regarded as an integrated process between dev and maintenance

6. Software Automation

- CASE
- Limitations
 - By essence, software engineering is a creative activity
 - Software process emphasizes the team work

Content

- Basic Concept of Software Engineering
- Computer-based System Engineering
- Software Process
- **□** Basic elements of software project management

Software Project Management

- clear distinction with other project management.
- Software PM needs to take a variety of different tasks, one of the most important activities are project planning, estimating costs and schedule control.
- Project milestone is sth that is expected and planned. When reaching a milestone, PM needs to report the progress to the mangement board.
- In order to effectively track/control the project progress, PM can use a variety of charts/diagrams.
- Should identify and assess the project risk, determine the likelihood of these risks and consequences.

1. What to Manage?

- People management
- Cost estimations
- Quality control
- Process improvement
- Software configuration management

2. Project Planning

- Essence is to estimate the potential risks and adopt effective method to solve the problems
- □ Contents:
 - Project plan
 - Quality plan
 - Configuration management plan
 - Maintenance plan
 - Training plan
 - ...

3. Resource Planning

- PM needs to estimate the amount of "resources" to use in order to complete the project, and organize these resources in an optimal way. They are:
 - HW
 - SW
 - Costs
 - Space
 - People
 - Time
 - **...**

4. Risk Management

- Identify the potential risks and make the plan, to maximally lower their impact to the project
- Three types of risks
 - Product: that have impact on the software quality and performance
 - Project: that have impact on the project progress and resources
 - Business: that have impact on the software company and/or clients
- How to manage the risks?
 - Identification, analysis, plan, and monitoring

Potential Software Risks

Risks	Туре	Descriptions
Staff quit	project	Experienced staffs
Re-org	project	
Lack of HW	project	e.g., ordered HW is not delivered
Change of req	project	inevitable
Description delay	Project& product	
Underestimate the system scale	Project& product	Over budget
Poor CASE perf	product	Some CASE tools are very expensive
Tech change	Biz	
Peer competition	Biz	60

Risk Analysis

Risks	Possibility	consequence
Financial problems, to cut the budget	Low	Significant
Lack of qualified staff	High	Significant
Staff report sickness at important stage	Medium	Significant
Defect on re-useable components	Medium	Significant
Req change leads to re-design	Medium	Significant
Re-org	High	Significant
Database problem	Medium	Significant
Underestimate the dev efforts (time)	High	Significant
CASE tools cannot be used	High	Tolerable
Clients not sure of the req	Medium	Tolerable
Lack of training	Medium	Tolerable
Underestimate the software size	High	Tolerable
Codes generated by CASE tools are inefficient	Medium	Negligible

Causes of Software Risks

Type	Potential risks	Examples
Tech	DB, re-useable components, or COTS	HW/SW delivery delay, exposes too many tech problems
Staff	Recruitment, staff changing jobs, training	Tasks are not assigned properly, team internal chaos
Org	Re-org, financial problems	
tools	CASE tools	Using tools are not easy
req	Change, misunderstanding, communications	Too much changes, client complaints
plan	Underestimate the software size, timing, defects	Progress is delayed

Risk Management Strategies

Risks	Strategies
Financial problems	Draft a report to the mgmt team, explain the impact to the project
recruitment	Tell clients the potential risks/delay this may cause
Staff sickness	Re-form the dev team, flexible task assignment, efficient communications.
Component defect	Purpose reliable components
Req change	Evaluate the impact of change, increase the traceability of the dev process
Re-org	Draft a report to the mgmt team, explain the impact to the project
DB performance	Purpose high performance DB