

Advanced Software Engineering

Lecture 9: Cloud Computing and Big Data

by

Prof. Harold Liu

Content

- □ Cloud Computing
- □ Hadoop
- **HDFS**
- MapReduce

A Cloud is ...

 A data center hardware and software that the vendors use to offer the computing resources and services

Cloud Computing

"Cloud Computing is the transformation of IT from a product to a service"

Cloud Computing

Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices,

as a metered service over a network.

Cloud Service Models

SaaS

- You are most familiar with this!
- Software is delivered as a service over the Internet, eliminating the need to install and run the application on the customer's own computer
- This simplifies maintenance and support
- Examples: Gmail, YouTube, and Google Docs, among others

SaaS Maturity Levels

Distinguishing attributes: configurability, multi-tenant efficiency, scalability

PaaS

 The Cloud provider exposes a set of tools (a platform) which allows users to create SaaS applications

- The SaaS application runs on the provider's infrastructure
- The cloud provider manages the underlying hardware and requirements

PaaS Example I

Google App Engine

Build web applications on Google's Infrastructure

PaaS Example II

The Facebook Developer Platform

Set of APIs that allow you to create Facebook Applications

laaS (1/3)

 The cloud provider leases to users Virtual Machine Instances (i.e., computer infrastructure) using the virtualization technology

 The user has access to a standard Operating System environment and can install and configure all the layers above it

laaS (2/3)

 The virtualization technology is a major enabler of laaS

laaS (3/3)

laaS Example

Amazon Web Service Elastic Compute Cloud (EC2)

The Cloud Stack

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Applications

 Cloud applications can range from Web applications to scientific computational jobs

Data

- Data Management
- New generation cloudspecific databases and management systems
- E.g., Hbase, Cassandra, Hive, Pig etc.

Runtime Environment

Applications
Data
Runtime
Middleware
Operating System
Virtualization
Servers
Storage
Networking

- Runtime platforms to support cloud programming models
- E.g., MPI, MapReduce, Pregel etc.

Middleware for Clouds

- Management platforms that enable:
 - Resource Management
 - Monitoring
 - Provisioning
 - Identity Management and Security

Operating Systems

- Standard Operating Systems used in Personal Computing
- Packaged with libraries and software for quick deployment and provisioning
- E.g., Amazon Machine Images (AMI) contain OS as well as required software packages as a "snapshot" for instant deployment

Virtualization

- Key Component
- Resource Virtualization
- Amazon EC2 is based on the Xen virtualization platform

PaaS

laaS

Cloud Service Layers in the Service Levels

Qloud Stack

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Bayesian Classification, K-Means, etc.

HDFS

Apache Hadoop 0.20.1

Ganglia cluster monitoring system and the VMware vSphere Client

64-Bit Fedora 13

Vmware vSphere 4.1/ESXi 4.1

14 IBM Quad Core (E5420) Blades

Storage/Blade = 2 x 300 GB SAS & RAM/Blade = 8 GB RAM

Carnegie Mellon University in Qatar

An Ecosystem for Cloud Computing

Problem

■ Batch (offline) processing of huge data set using commodity hardware is not enough for real-time applications

■ Strong desire for linear scalability

Explosive Data! – Storage

- New York Stock Exchange: 1 TB data per day
- □ Facebook: 100 billion photos, 1 PB (1000 TB)
- □ Internet Archive: 2 PB data, growing by 20 TB per month
- □ Can't put data on a SINGLE node
- Strong needs for distributed file systems

The Hadoop Ecosystem

Java/Python/C interfaces

cloudera

Naming it Hadoop

- The name Hadoop is not an acronym; it's a made-up name. The project's creator, Doug Cutting, explains how the name came about:
- □ The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and pronounce, meaningless, and not used elsewhere: those are my naming criteria. Kids are good at generating such. Googol is a kid's term.

- Building a web search engine from scratch was an ambitious goal
- Mike Cafarella and Doug Cutting estimated a system supporting a 1-billion-page index would cost around half a million dollars in hardware, with a monthly running cost of \$30,000.11
- Nutch was started in 2002, however not scale to the billions of pages on the Web.
- Help was at hand with Google's distributed filesystem, GFS, in 2003
- In 2004, they set about writing an open source implementation, Nutch Distributed Filesystem (NDFS).
- □ In 2004, Google published a paper that introduced MapReduce
- Early in 2005, the Nutch developers had a working MapReduce implementation in Nutch, and by the middle of that year all the major Nutch algorithms had been ported to run using MapReduce and NDFS.
- February 2006 they moved out of Nutch to form Hadoop. At around the same time, Doug Cutting joined Yahoo!, which provided a dedicated team and the resources to turn Hadoop into a system that ran at web scale
- demonstrated in February 2008 when Yahoo! announced that its production search index was being generated by a 10,000-core Hadoop cluster.

- □ In January 2008, Hadoop was made its own top-level project at Apache
- New York Times used Amazon's EC2 compute cloud to crunch through 4TB of scanned archives from the paper converting them to PDFs for the Web.
- □ The processing took less than 24 hours to run using 100 machines, and the project probably wouldn't have been embarked on without the combination of Amazon's pay-by-the-hour model (which allowed the NYT to access a large number of machines for a short period) and Hadoop's easy-to-use parallel programming model.
- □ In April 2008, Hadoop broke a world record to become the fastest system to sort a terabyte of data. Running on a 910node cluster, Hadoop sorted one terabyte in 209 seconds
- □ In November of the same year, Google reported that its MapReduce implementation sorted one terabyte in 68 seconds.
- As the first edition of this book was going to press (May 2009), it was announced that a team at Yahoo! used Hadoop to sort one terabyte in 62 seconds.

Hadoop History

- □ Dec 2004 Google GFS paper is published
- □ July 2005 Nutch project uses MapReduce
- □ Feb 2006 becomes a subproject of Lucene
- □ Apr 2007 Yahoo! established a 1000 node Hadoop cluster
- □ Jan 2008 becomes Apache top-tier project
- □ Jul 2008 established 4000 node cluster
- □ Sept 2008 Hive becomes Hadoop subproject
- **.....**

Hadoop Ecosystem Map

Who is Using Hadoop?

facebook

The New York Times

amazon.com°

Commercial Hardware

Two-tier architecture

- commodity servers (cheap)
- 30-40 servers/Rack

Example: Facebook Hadoop Cluster

□ Product Cluster

- 4800 core, 600 servers, each 16GB RAM April 2009
- 8000↑ core, 1000 servers, each 32GB RAM July 2009
- Each has four 1TB SATA disk
- Two layer architecture
- Each rack has 40 servers
- In total 2PB storage

□ Testing Cluster

800 core, each 16GB RAM

A Distributed File System

Single-Node Architecture

Machine Learning, Statistics

"Classical" Data Mining

Cluster Architecture

Each rack contains 16-64 nodes

Stable Storage with Fault Tolerance

- If nodes can fail, how can we store data persistently?
- Answer: Distributed File System
 - Provides global file namespace
 - Google GFS
 - Hadoop HDFS
 - Kosmix KFS

WRITING DATA IN HDFS CLUSTER

HDFS Architecture

Namenode and Datanodes

- Master/slave architecture
- 1 Namenode, a master server that manages the file system namespace and regulates access to files by clients.
- many DataNodes usually one per node in a cluster.
 - manage storage
 - serves read, write requests, performs block creation, deletion, and replication upon instruction from Namenode.
- HDFS exposes a file system namespace and allows user data to be stored in files.
- A file is split into one or more blocks and set of blocks are stored in DataNodes.

Namespace

- □ Hierarchical file system with directories and files
- □ Create, remove, move, rename etc.
- Namenode maintains the file system
- Any meta information changes to the file system recorded by Namenode.
- An application can specify the number of replicas of the file needed: replication factor of the file. This information is stored in the Namenode.

Data Replication

- ■Store very large files across machines in a large cluster.
- Each file is a sequence of blocks of same size.
- ■Blocks are replicated 2-3 times.
- □Block size and replicas are configurable per file.
- ■Namenode receives a Heartbeat and a BlockReport from each DataNode in the cluster.
- □BlockReport contains all the blocks on a Datanode.

Replica Placement

- ■Rack-aware:
 - Goal: improve reliability, availability and network bandwidth utilization
 - Research topic
- ■Namenode determines the rack id for each DataNode.
- ■Replicas are placed:
 - 1 in a local rack, 1 on a different node in the local rack and 1 on a node in a different rack.
 - 1/3 of the replica on a node, 2/3 on a rack and 1/3 distributed evenly across remaining racks.

Datanode Distance

Replication Pipelining

- ■When the client receives response from Namenode
- □It flushes its block in small pieces (4K) to the first replica
- ■that in turn copies it to the next replica and so on.
- □Thus data is pipelined from Datanode to the next.

Replica Selection

- Replica selection for READ operation: HDFS tries to minimize the bandwidth consumption and latency.
- □ If there is a replica on the Reader node then that is preferred.
- □ HDFS cluster may span multiple data centers: replica in the local data center is preferred over the remote one.

Datanode

- □ A Datanode stores data in files in its local file system.
- □ Datanode has no knowledge about HDFS filesystem
- □ It stores each block of HDFS data in a separate file.
- □ Datanode does not create all files in the same directory.
- □ It uses heuristics to determine optimal number of files per directory and creates directories appropriately:
 - Research issue?
- □ When the filesystem starts up it generates a list of all HDFS blocks and send this report to Namenode: Blockreport.

HDFS: File Read

HDFS: File Write

Communication Protocol

- □ All protocols are layered on top of the TCP/IP protocol
- A client establishes a connection to a configurable TCP port on the Namenode machine. It talks ClientProtocol with the Namenode.
- □ Datanodes talk to the Namenode using Datanode protocol.
- RPC abstraction wraps both ClientProtocol and Datanode protocol.
- Namenode is simply a server and never initiates a request; it only responds to RPC requests issued by DataNodes or clients.

DataNode Failure and Heartbeat

- □ Datanodes lose connectivity with Namenode.
- Namenode detects this condition by the absence of a Heartbeat message.
- Namenode marks Datanodes without Hearbeat and does not send any IO requests to them.
- Any data registered to the failed Datanode is not available to the HDFS.

Cluster Rebalancing

- HDFS architecture is compatible with data rebalancing schemes.
- A scheme might move data from one Datanode to another if the free space on a Datanode falls below a certain threshold.
- □ In the event of a sudden high demand for a particular file, a scheme might dynamically create additional replicas and rebalance other data in the cluster.
- These types of data rebalancing are not yet implemented: research issue.

APIs

- □ HDFS provides <u>Java API</u> for application to use.
- Python access is also used in many applications.
- □ A C language wrapper for Java API is also available.
- □ A HTTP browser can be used to browse the files of a HDFS instance.

A Distributed Computation Framework for Large Data Set

What is Map/Reduce?

- A Programming Model
- Decompose a processing job into Map and Reduce stages
- Developer need to
 - provide code for Map and Reduce functions
 - configure the job
 - let Hadoop handle the rest

MapReduce Model

Architecture Overview

Inside Hadoop

Example: Word Count

- We have a large file of words, one word to a line
- Count the number of appearances for each distinct word

Sample application: analyze web server logs to find popular URLs

MapReduce

- Input: a set of key/value pairs
- User supplies two functions:
 - \blacksquare map(k,v) \rightarrow list(k1,v1)
 - reduce(k1, list(v1)) \rightarrow v2
- □ (k1,v1) is an intermediate key/value pair
- Output is the set of (k1,v2) pairs

What is MAP?

- Map each data entry into a pair
 - <key, value>
- Examples
 - Map each log file entry into <URL,1>
 - Map day stock trading record into <STOCK, Price>

What is Shuffle/Merge phase?

- Hadoop merges(shuffles) output of the MAP stage into
 - <key, valulue1, value2, value3>
- Examples
 - <URL, 1,1,1,1 1>
 - STOCK, Price On day 1, Price On day 2..>

What is Reduce?

- Reduce entries produces by Hadoop merging processing into <key, value> pair
- Examples
 - Map <URL, 1,1,1> into <URL, 3>
 - Map <Stock, 3,2,10> into <Stock, 10>

Word Count

map(key=url, val=contents):

For each word w in contents, emit (w, "1")

reduce(key=word, values=uniq_counts):

Sum all "1"s in values list

Emit result "(word, sum)"

see bob run
see spot throw
run
see 1
bob
1
run
see 2
see 1
spot
throw
1
throw
1

Pseudo-Code: Word Count

```
map(key, value):
// key: document name; value: text of document
   for each word w in value:
      emit(w, 1)
reduce(key, values):
// key: a word; values: an iterator over counts
      result = 0
      for each count v in values:
             result += v
      emit(key,result)
```


Widely Applicable MapReduce Programs in Google Source Tree

Example uses:
distributed grep
term-vector / host
document clustering

distributed sort
web access log stats
machine learning

web link-graph reversal inverted index construction statistical machine translation

70

···

Distributed Execution Overview

71

Data Flow

- Input, final output are stored on HDFS
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of map and reduce workers
- Output is often input to another map reduce task

Coordination

- Master data structures
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Failures

- Map worker failure
 - Map tasks completed or in-progress at worker are reset to idle
 - Reduce workers are notified when task is rescheduled on another worker
- Reduce worker failure
 - Only in-progress tasks are reset to idle
- Master failure
 - MapReduce task is aborted and client is notified

Execution

Parallel Execution

How Many Map and Reduce Jobs?

- M map tasks, R reduce tasks
- Rule of thumb:
 - M, R >> (# of nodes) in cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds recovery from worker failure
- Usually R is smaller than M, because output is spread across R files

Combiners

- □ Often a map task will produce many pairs of the form (k,v1), (k,v2), ... for the same key k
 - e.g., popular words in Word Count
- Can save network time by pre-aggregating at mapper
 - combine(k1, list(v1)) → v2
 - same as reduce function

Partition Function

- Inputs to map tasks are created by contiguous splits of input file
- □ For reduce, we need to ensure that records with the same intermediate key end up at the same worker
- System can use a default partition function e.g., hash(key) mod R
- Sometimes useful to override
 - e.g., hash(hostname(URL)) mod R ensures
 URLs from a host end up in the same output file

Execution Summary

- How is this distributed?
 - Partition input key/value pairs into chunks, run map() tasks in parallel
 - After all map()s are complete, consolidate all emitted values for each unique emitted key
 - Now partition space of output map keys, and run reduce() in parallel
- If map() or reduce() fails, re-execute!

Example: Trading Data Processing

□ Input:

- Historical Stock Data
- Records are CSV (comma separated values) text file
- Each line : stock_symbol, low_price, high_price
- 1987-2009 data for all stocks one record per stock per day

□ Output:

Maximum interday delta for each stock

Map Function: Part I

```
public class StockAnalyzerMapper extends MapReduceBase
    implements Mapper<LongWritable, Text, Text,</pre>
        FloatWritable> {
   @Override
   public void map (LongWritable key, Text value,
         OutputCollector<Text, FloatWritable> output,
             Reporter reporter)
         throws IOException {
      String record = value.toString();
      if (record.startsWith("Symbol")) {
         // ignore header row
         return;
                                                          82
```


Map Function: Part II

```
String[] fields = record.split(",");
String symbol = fields[0];
String high = fields[3];
String low = fields[4];
float lowValue = Float.parseFloat(low);
float highValue = Float.parseFloat(high);
float delta = highValue - lowValue;
output.collect(new Text(symbol),
               new FloatWritable(delta));
                                                     83
```


Reduce Function

```
public class StockAnalyzerReducer extends MapReduceBase
        implements Reducer<Text, FloatWritable, Text,</pre>
            FloatWritable> {
   @Override
   public void reduce(Text key, Iterator<FloatWritable>
       values,
        OutputCollector<Text, FloatWritable> output,
            Reporter reporter)
        throws IOException {
      float maxValue = Float.MIN VALUE;
      while (values.hasNext()) {
         maxValue = Math.max(maxValue, values.next().get());
      output.collect(key, new FloatWritable(maxValue));
                                                            84
```


Running the Job: Part I

```
public class StockAnalyzerConfig {
   public static void main(String[] args) throws Exception {
      if (args.length != 2) {
         System.err.println("Usage: StockAnalyzerConfig <
             input> <output>");
         System.exit(1);
      JobConf conf = new JobConf(StockAnalyzerConfig.class);
      conf.setJobName("Stock analyzer");
      Path inputPath = new Path(args[0]);
      FileInputFormat.addInputPath(conf, inputPath);
      Path outputPath = new Path(args[1]);
      FileOutputFormat.setOutputPath(conf, outputPath);
```


Running the Job: Part II

```
conf.setMapperClass(StockAnalyzerMapper.class);
conf.setReducerClass(StockAnalyzerReducer.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(FloatWritable.class);

JobClient.runJob(conf);
}
```