
Chapter 7
Two-Dimensional Geometric

Transformations

Computer Graphics

Chapter 7
Two-Dimensional Geometric
Transformations

Part I.
•Basic 2D Geometric Transformations
•Matrix Representations and Homogeneous Coordinates
•2D Composite Transformations

2

Transformation
 A transformation is an operation that transforms or changes a shape.
 Linear and affine (仿射) transformations are central to computer

graphics
 Linear: a mapping that preserves linear combinations in a vector space,

including rotation, scaling (缩放), shearing(剪切）…
 Affine: any transformation that preserves collinearity (共綫性, i.e., all points

lying on a line initially still lie on a line after transformation) and ratios of
distances (e.g., the midpoint of a line segment remains the midpoint after
transformation).
 Composed of linear transformations and a translation (or “shift”)

 Important features:
 Straight lines to straight lines
 Preserve parallelism
 Implemented by matrix multiplication

3

 Several basic ways you can change a shape:

 Translation (moving it)

 Rotation (turning it round)

 Scaling (making it bigger or smaller).

 Shear (changing the main shape).

 Reflection (mirroring the shape about axis).

Transformation

Translate

Rotate

Scale

Shear

Reflect

4

2D Translation
 A translation moves an object into a different position in a

scene without changing its shape.

 This is achieved by adding an offset/translation vector
to the original coordinates

 In vector notation:

x

y

P
P

 
=  
 

P

'

'
x xx

y yy

P tP
P tP

     
= +     

      

x

y

t
t

 
=  
 

T

Original points Transformed points

Translate by T

T

5

 E.g.: translate the point (1,2) using translation vector (5,6).

The new point position is (6, 8).

 To translate line  translate its endpoints.
 To translate polygon  translate its vertices.

2D Translation









=








+
+

=







+








8
6

62
51

6
5

2
1

6

2D Translation
 The routine of the transformation operation

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)
{

GLint k;

for (k = 0; k < nVerts; k++) {
verts [k].x = verts [k].x + tx;
verts [k].y = verts [k].y + ty;

}

glBegin (GL_POLYGON);
for (k = 0; k < nVerts; k++)

glVertex2f (verts [k].x, verts [k].y);
glEnd ();

}

class wcPt2D {
public:

GLfloat x, y;
};

7

2D Rotation
 To rotate points through the specified rotation angle (θ) and

rotation axis (Z - axis).
 Rotation axis is perpendicular to XY plane, and they intersect at

point (xr, yr) (pivot point)
 θ is positive - a counterclockwise rotation.

θ is negative - a clockwise rotation.

Figure 7-3 Rotation
of an object through
Angle θ about the
pivot point (xr, yr).

Figure 7-4 Rotation of a point
from position (x, y) to position
(x', y') through an angle θ
relative to the coord. origin.

Figure 7-5 Rotating a point
from position (x, y) to position
(x', y') through an angle θ
about rotation point (xr, yr).

8

2D Rotation - derivation

cos () cos cos sin sin θ φ θ φ θ φ+ = −() () () ()
sin() sin cos cos sin θ φ θ φ θ φ+ = +() () () ()

P

Q

R
PX

PY
φ

θ

[1]
[2]

[3]
[4]

[1])()()()(φθφθ sinsincoscos RRxQ −=

Substituting [3] and [4] into [1]:
)()(θθ sincos yPxPxQ −=

Similarly for [2]:
)()(θθ sincos xPyPyQ +=

)cos(φθ += RQ X

)sin(φθ += RQ y

)(cos φRPX =
)(sin φR Py =

Rotation of point P relative to the coordinate origin:

(Trigonometric identities （三角恒等式）)

9

2D Rotation - derivation
 With the column-vector representations for coordinate positions,

the rotation equations in the matrix form:
Q = R·P

where the rotation matrix is:

Therefore, general equations for rotation of a point (x, y) about any
specified pivot (xr , yr) (e.g. Fig. 7-9) :

10

2D Scaling
 To change the size of object.

 Scaling is done by multiplying each coordinate with a
scalar (Sx, Sy).
 Uniform scaling: this scalar is the same for all coordinates.
 None-uniform scaling: different scalars per coordinate.

11

 Uniform scaling

2D Scaling

× 2

12

X × 2,
Y × 0.5

 None uniform scaling

2D Scaling

13

2D Scaling – relative to the origin
 Scaling relative to the origin point (0, 0)

x' = x˙Sx , y' = y˙Sy (7-10)

Sx scales objects in the x direction, while
Sy scales in the y direction.

 In matrix form:

P' = S ˙ P (7-12)
where S is the 2 by 2 scaling matrix.

(7-11)

14

2D Scaling – relative to fixed point
 Scaling relative to the fixed point (xf, yf)

 We can rewrite these scaling
transformations to:

x' = xf + (x – xf) sx , y' = yf + (y - yf) sy

Scaling the distance from the point to the fixed point.

where the additive terms xf(1 - sx) and yf(1 - sy) are constant.

• It can be represented in the general matrix form.
15

Figure 7-8 Scaling relative to a
chosen fixed point (xf , yf). The
distance from each polygon vertex
to the fixed point is scaled by
Equations 7-13.

(7-13)

1: Translation

2: Scaling

3: Rotation

General Matrix Representation









+














=








y

x

y

x

y

x

t
t

P
P

Q
Q

10
01








+















=







0
0

0
0

y

x

y

x

y

x

P
P

S
S

Q
Q









+















 −
=








0
0

cossin
sincos

y

x

y

x

P
P

θθ
θθ

Q
Q

T

T

T

16

General Matrix Representation
 All these 2D transformations (translation, scaling,

rotation) can be generically described in terms of a
generic matrix equation as follows:

i.e.









+
















=









y

x

y

x

y

x

t
t

P
P

dc
ba

Q
Q

t MP Q +=
new position original position

constant part

transformation matrix
17

Advantage & Disadvantage

 The transformation is composed of a linear combination
followed by a translation

 Unfortunately, the translation portion is not a matrix
multiplication and must be added as an extra term, or
vector – this is inconvenient









+
















=









y

x

y

x

y

x

t
t

P
P

dc
ba

Q
Q

t MP Q +=

18









+
















=









y

x

y

x

y

x

t
t

P
P

Q
Q

10
01









+
















=







0
0

0
0

y

x

y

x

y

x

P
P

S
S

Q
Q









+















 −
=








0
0

cossin
sincos

y

x

y

x

P
P

θθ
θθ

Q
Q

Homogeneous Coordinates（齐次坐标）

 The “trick” we use is to add an additional component 1 to both P
and Q, and also a third row and column to M, consisting of zeros
and a 1
i.e.

 Then all transformation equations can be expressed as
matrix multiplications.

 Homogeneous coordinates
































=

















11001
y

x

y

x

y

x

P
P

tdc
tba

Q
Q









+
















=









y

x

y

x

y

x

t
t

P
P

dc
ba

Q
Q

t MP Q +=

19

Homogeneous Coordinates
 Homogeneous coordinates: expand 2D coordinate-

position representation (x, y) to a three-element
representation (xh, yh, h).
 h is a homogeneous parameter, which is a nonzero value such

that

 For geometric transformation, we can choose any nonzero
value for h, for simplicity, to set h=1.

, h hx yx y
h h

= =

20

Homogeneous Coordinates
 For translation by (tx, ty)

in the abbreviated form
P' = T(tx , ty)·P

(7-17)

(7-18)

21

How about θ is replaced with –θ?

Homogeneous Coordinates
 For rotation transformation by θ about the coordinate

origin

in the abbreviated form
P' = R(θ)·P

The rotation transformation operator R(θ) is the 3 by 3 matrix in
Eq.7-19 with rotation parameter θ.

(7-19)

(7-20)

22

 For scaling transformation by sx, sy relative to the
coordinate origin

in the abbreviated form
P' = S(sx , sy)·P

(7-21)

(7-22)

Homogeneous Coordinates

23

Homogeneous Coordinates
 In homogeneous form
















=

100
10
01

y

x

t
t

M
















=

100
00
00

y

x

S
S

M
















=

−

100
0
0

cossin

sincos

θθ

θθ

M

Translation by (tx, ty)

Scale by Sx, Sy

Rotation by θ

24

How about the inverse
transformation?

2D Composite Transformations
 We can use more than one transformation operation (same type or

different) on the same object.

… …

25

2D Composite Translation
 Two successive translations (tx1, ty1) and (tx2, ty2) are applied to a

coordinate point P

where P and P’ are represented as homogeneous coordinate
column vectors

or
Two successive translations are additive of the translation factor.
















+
+

=















⋅
















100
10
01

100
10
01

100
10
01

21

21

1

1

2

2

yy

xx

y

x

y

x

tt
tt

t
t

t
t

() ()() () ()()' x y x y x y x yP T t t T t t P T t t T t t P= ⋅ ⋅ = ⋅ ⋅2 2 1 1 2 2 1 1, , , ,

() () ()1x y x y x x y yT t t T t t T t t t t+ +⋅ =2 2 1 1 1 2 2, , ,

26

2D Composite Rotation
 Two successive rotations with θ1 and θ2 round the origin

applied to point P

where P and P’ are represented as homogeneous coordinate column vectors

 By multiplying the two rotation matrices, we can verify that two successive
rotations are additive:

So that the final rotated coordinates can be calculated with the
composite rotation matrix as

() ()' (2) (1) (2) (1)P R θ R θ P R θ R θ P= ⋅ ⋅ = ⋅ ⋅

)()()(2121 θθRθRθR +=⋅

PθθRP ⋅+=)(' 21
















++
+−+

=+
100
0)cos()sin(
0)sin()cos(

)21(2121

2121

θθθθ
θθθθ

θθRwhere

27

2D Composite Scaling
 Two successive scaling operations

 Two successive scaling are multiplicative.
















=

































100
00
00

100
00
00

100
00
00

2.1

2.1

1

1

2

2

yy

xx

y

x

y

x

ss
ss

s
s

s
s

)()()(21211122 YYXXYXYX S,SSSS,SSS,SSS ⋅⋅=⋅

28

General 2D Pivot-Point Rotation
 A transformation sequence for rotating an object about a

specified pivot point

Steps:
 Translate the object so that the pivot-point position is

moved to the coordinate origin;
 Rotate the object about the coordinate origin;
 Translate the object so that the pivot point is returned to its

original position.
29

General 2D Pivot-Point Rotation

 Original Position of Object and
Pivot Point (xr, yr).

 Translation of Object so that
Pivot Point is at Origin.

30

General 2D Pivot-Point Rotation

 Rotation about Origin.

 Translation of Object so that
Pivot Point is Returned to
original Position.

31

General 2D Pivot-Point Rotation
 Rotation with respect to a pivot point (xr,yr)

or in form

where

1 0 cos sin 0 1 0
0 1 sin cos 0 0 1
0 0 1 0 0 1 0 0 1

cos sin (1 cos) sin
sin cos (1 cos) sin

0 0 1

r r

r r

r r

r r

x x
y y

x y
y x

θ θ
θ θ

θ θ θ θ
θ θ θ θ

− −     
     ⋅ ⋅ −     
     
     

− − + 
 = − − 
 
 

()(,) () (,) , ,r r r r r rT x y R T x y R x yθ θ⋅ ⋅ − − =

1(,) (,)r r r rT x y T x y−− − =
32

General 2D Fixed-Point Scaling
 A transformation sequence for scaling an object with

respect to a specified fixed position using the scaling
matrix

Steps:
 Translate object so that the fixed point coincides with the coordinate

origin;

 Scale the object with respect to the coordinate origin;

 Use the inverse translation of step 1 to return the object to its original
position.33

General 2D Fixed-Point Scaling

 Original Position of Object and
Fixed point.

 Translation of Object so that
Fixed Point is at Origin.

34

General 2D Fixed-Point Scaling

 Scale Object with Respect to
Origin.

 Translation of Object so that
Fixed Point is Returned to
original Position.

35

General 2D Fixed-Point Scaling
 Concatenating the matrices for these operations produces the

required scaling matrix

(, , ,)

(,) (,) (,)

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 1 0 0 1

0 (1)
0 (1)
0 0 1

x y x y

f f x y

f x f

f y f

x x f

y y f

S x y s s

T x y S s s T x y

x s x
y s y

s s x
s s y

= ⋅ ⋅ − −

−     
     = ⋅ ⋅ −     
     
     

− ⋅ 
 = − ⋅ 
 
 

36

Matrix Composition
 Transformations can be combined by matrix multiplication

 Order of transformations
 Matrix multiplication is not commutative































































 −

















=
















w

y

x

sy

sx

ty

tx

w

y

x

100

00

00

100

0cossin

0sincos

100

10

01

'

'

'

θθ
θθ

p’ = T(tx,ty) R(Q) S(sx,sy) p

p’ = (T * (R * (S*p)))
p’ = (T*R*S) * p

p’ = T * R * S * p

37

Order of Transformations

 P' = R .T . P  P' = T . R . P

38

More Example
 Suppose we want,

 We have to compose two transformations

)90(°−R)3,(xT

39

More Example
 Matrix multiplication is not commutative

)3,()90()90()3,(xx TRRT °−≠°−⋅

Translation
followed by

rotation

Rotation
followed by
translation

40

Chapter 7
Two-Dimensional Geometric
Transformations

Part II.
•Other 2D Transformations
•Raster Methods for Geometric Transformations
•OpenGL Raster Transformations

41

Reflection
 Reflection: produce a mirror image of an object.

 Reflection about x-axis:
 x’ = x
 y’ = -y

 Reflection about y-axis:
 x’ = -x
 y’ = y

42




























−=














′
′

110
01

0
0

001

1
y
x

y
x



























 −
=













′
′

110
01

0
0

001

1
y
x

y
x

Reflection
 Reflection about origin point (0, 0)

 Reflection about the line y = x and y = -x.

43




























−

−
=














′
′

110
01

0
0

001

1
y
x

y
x




























=













′
′

110
00

0
1

010

1
y
x

y
x

0 1 0
1 0 0

1 0 0 1 1

x x
y y
′ −     

     ′ = −     
          

Shear
 Shear

Distorts the shape of an object such that the transformed shape
appears as if the object were composed of internal layers that had
been caused to slide over each other.

 It is done by changing the value of one coordinate and keeping the
other coordinate without changing.

 Two types of shear:
 To shift in x.
 To shift in y.

44
Y- direction
shear

X- direction
shear

To stretch rectangles into
parallelograms.

X-direction Shear: refer to x-axis
 X- direction shear:

x’ = x + shx • y
y’ = y

In matrix representation:

45




























=














′
′

110
01

0
0

01

1
y
xsh

y
x x

(7-57)

FIGURE 7-23 A unit square (a) is converted to a parallelogram (b)
using the x-direction shear matrix 7-57 with shx = 2.

X-direction Shear: refer to y=yref
 x-direction shears relative to other reference lines y = yref

46

y=yref

y=0 y=0
















−

100
10

001
refy

















100
010
01 xsh

















100
10

001
refy
































−
































=
















′
′

1100
10

001

100
010
01

100
10

001

1
y
x

y
sh

yy
x

ref

x

ref

y=yref

x' = x + shx(y – yref)
y' = y

Y-direction Shear: refer to y-axis
 Y- direction shear:

x' = x
y' = y + shy • x

In matrix representation:

47

Given shy = 2, relative to the y-axis (x = 0), and a square with
coordinates (0,0), (0,1), (1,1), (1,0).




























=














′
′

110
01

0

001

1
y
x

shy
x

y

 y-direction shear relative to
the line x = xref
x' = x
y' = shy(x – xref) + y

48

Y-direction Shear: refer to x=xref

Example: y-direction shear relative to
the line xref = -1

FIGURE 7-25 A unit square (a) is turned
into a shifted parallelogram (b) with
parameter values shy = 0.5 and xref = -1 in the
y-direction shearing transformation 7-61.

(7-61)

Raster Methods for Geometric Transformations
 An alternative method for performing 2D transformations
 To use raster operations to directly manipulating pixel values in the

frame buffer

49

1. Block Transfer (bitblt / pixblt)
 Block transfer (bitblt (bit-block transfer), pixblt): moving a block of

pixel values from one position to another.

FIGURE 7-26 Translating an object from screen position (a) to the destination
position shown in (b) by moving a rectangular block of pixel values.
Coordinate positions Pmin and Pmax specify the limits of the rectangular block to be
moved, and P0 is the destination reference position.

Raster Methods for Geometric Transformations
Rotations
 Rotations in 90 or 180 degrees are easily accomplished by

rearranging the elements of a pixel array
 90°-counterclockwise rotation by reversing the pixel values in each row

of the array;
 180°-counterclockwise rotation by reversing the order of the elements in

each row, then reversing the order of the rows.



















12 11 10
9 8 7
6 5 4
3 2 1

















10 7 4 1
11 8 5 2
12 9 6 3



















1 2 3
4 5 6
7 8 9

10 11 12

(a) (b) (c)

FIGURE 7-27 Rotating an array of pixel values. The original array is shown
in (a), the positions of the array elements after a 90° counterclockwise
rotation are shown in (b), and the positions of the array elements after a 180°
rotation are shown in (c).50

90
180

OpenGL Raster Transformations
1) Translation/Copy
A translation of a rectangular array of pixel-color values from one buffer to

another can be accomplished in OpenGL as a copy operation

glCopyPixels (xmin, ymin, width, height, GL_COLOR);

-- GL_COLOR: buffer type to be copied
(others: GL_DEPTH, GL_STENCIL)

-- Destination: Current Raster Position.

The translation can be
- carried out on any OpenGL buffers for refreshing;
- used between different buffers.
source buffer is chosen with glReadBuffer;
destination buffer is selected with glDrawBuffer.

51

OpenGL Raster Transformations
2) Rotation a block of pixel-color values in 90 degrees

 Read a block of pixel-color values from a buffer and store in an
array by glReadPixels

glReadPixels (xmin, ymin, width, height, GL_RGB,
GL_UNSIGNED_BYTE, colorArray);

-- The color of block read into colorArray[] with data format GL_RGB, & data
type GL_UNSIGNED_BYTE.

 Rearrange the rows and columns of the array;
 Placing the rotated array back in the buffer.

glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE,
colorArray);

--The block is written by colorArray[] to Current Raster Position.

52

3) Scaling a block of pixel-color values

 Firstly, specify the scaling factors by glPixelZoom
glPixelZoom (sx, sy);

-- Zoom referred to Current Raster Position;
-- sx, sy: nonzero floating-point values;
-- > 1.0 positive values: increase the size of an element in the source

array;
-- < 1.0 positive values: decrease element size;
-- negative value: produce a reflection and scaling the array elements.

 Then, write back (either glCopyPixels or glDrawPixels).

53

OpenGL Raster Transformations

- End of Part I&II -

