Computer Graphics

Chapter 7

Two-Dimensional Geometric

Transtormations

p
Chapter 7

Two-Dimensional Geometric
Transformations

PartI.
*Basic 2D Geometric Transformations
*Matrix Representations and Homogeneous Coordinates

*2D Composite Transtformations

Transformation

® A transformation is an operation that transforms or changes a shape.

* Linear and affine (f/i4}) transformations are central to computer
graphics
Linear: a mapping that preserves linear combinations in a vector space,
including rotation, scaling (4#/%), shearing (85 ¥])

Affine: any transformation that preserves collinearity (3£4%1%, i.¢., all points
lying on a line initially still lie on a line after transformation) and ratios of

distances (e.g., the midpoint of a line segment remains the midpoint after

transformation).

Composed of linear transformations and a translation (or “shift”)

* Important features:
Straight lines to straight lines

Preserve parallelism

e Implemented by matrix multiplication

Transformation

e Several basic ways you can change a shape:

Translation (moving it) Translate

Rotation (turning it round) 4
5 Rotate
Scaling (making it bigger or smaller).
Shear (changing the main shape).
Scale

Reflection (mirroring the shape about axis).

Reflect

Y

2D Translation

* A translation moves an object into a difterent position in a

scene without changing its shape.

® This is achieved by adding an offset/translation vector T = {

to the original coordinates p _| "~
P
Y
® In vector notation: |:va } B |:Px } + |:tx }
P P t,
f T

ﬁ Translate by T é

g

Original points Transformed points

/

2D Translation

® E.g.: translate the point (1,2) using translation vector (5,6).
1 S| |1+5 6
+ = = . 69
2 6 2+6 8
The new point position is (6, 8).

¢ To translate line = translate its endpoints.

® To translate polygon — translate its vertices.

2D Translation

® The routine of the transtormation operation
void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)

{

GLint k;

for (k = 0; k <nVerts; k++) {
verts [k].x = verts [k].x + tx;
verts [k].y = verts [k].y + ty;
;

glBegin (GL_POLYGON));

for (k = 0; k < nVerts; k++)
glVertex2f (verts [k].x, verts [k].y);

glEnd ();

.class wcPt 2D {
publ i c:
Gfloat x, vy,

2D Rotation

* To rotate points through the specified rotation angle (0) and

rotation axis (Z - axis).

* Rotation axis is perpendicular to XY plane, and they intersect at
point (x,, y,) (pivot point)

°* Ois positive - a counterclockwise rotation.

O is negative - a clockwise rotation.

Figure 7-3 Rotation
o% an object through

Angle 0 about the

pivot point (x,,y,)-

(x'.y")

r (x,)
[}

Figure 7-4 Rotation of'a point
from position (x,y) to position
(x', y') through an angle 0
relative to the coord. origin.

(x, v,)

Figure 7-5 Rotating a point

from position (x,y) to position

(x', y') through an angle 0
about rotation point (x,,y,).

/

o

2D Rotation - derivation

Rotation of point P relative to the coordinate origin:

f
Q
......... P, 0 P
.............. N \ @
R ! i
Py
0, =Rcos(0 +¢) [1]
O, =Rsin(6+¢)
P, = Rcos (@) 3]
P, = Rsin (@) [4]

cos (4 @)=cos () cos (¢)—sin (6) s1n(¢)
sin (64 @) =sin (6) cos (¢d)+cos (O) s1n(¢)

[1]==b> O, =Rcos () cos (@)—Rsin (0)sin (¢)

Substituting [3] and [4] into [1]:
Q,=P,cos (0) —Py sin (6)

Similarly for [2]:
Qy =Pyc0s (6) + P, sin (6)
(Trigonometric identities (=MTEET))

2D Rotation - derivation

® With the column-vector representations for coordinate positions,
the rotation equations in the matrix form:
Q=RP

where the rotation matrix is:

cos § —sin 9}
sin 6 cos 6

Therefore, general equations for rotation of a point (x, y) about any

specified pivot (x,,y,) (e.g. Fig 7-9) :
r =X t{x—xjees -/ —1)s5in 0
Y = Fx—x)sin @+ (y—1)cosH

~
= NP
,
|
=

‘rotation point p
f (pivot point)

1
| X,

2D Scaling

e To change the size of object,

o Scaling is done by multiplying each coordinate with a
scalar (S, S,).
Uniform scaling: this scalar is the same for all coordinates.

None-uniform scaling: different scalars per coordinate.

2D Scaling

¢ Uniform scaling

2D Scaling

® None uniform scaling

N

—>

X X2,
Y X 0.5

o

2D Scaling - relative to the origin

® Scaling relative to the origin point (0, 0)
x'=x-S_,)/' :)PS), (7-10)
S, scales objects in the x direction, while

Sy scales in the y direction.

® In matrix form:

— e — — —=

o s 0 . (7-11)

Y 0 s, | |

. il S—_— — - R

P'=S"P (7-12)
where S is the 2 by 2 scaling matrix.

2D Scaling - relative to fixed point

A

® Scaling relative to the fixed point (xf, yﬂ ¥
P]
X'=xpt (x—x) 8, YV =Ey Q-

@ P»,
(7- 1 3) (_rf‘ y’) 2
Scaling the distance from the point to the fixed point.

. . P,
® We can rewrite these scahng ‘

=y

transformations to:

I Figure 7-8 Scaling relative to a
A = X ° 5y = .Xf(l - 5.1') chosen fixed point (X, y;). The
| distance from each polygon vertex
to the fixed point is scaled by
Equations 7-13.

!

Yy =y s, + Yyl —s)

where the additive terms x(1 -s,) and y(1 -s,) are constant.

® [t can be represented in the general matrix form.

- y

General Matrix Representation

1: Translation
0] M1 of~
o)l 17

2: Scaling
{Q
Q

3: Rotation

E

; cosf —sin
, sinfd cos

I

0
0

i
Fos]ak

y

[»

I

0
0

|

O

=)

I

B

General Matrix Representation

* All these 2D transformations (translation, scaling,
rotation) can be generically described in terms of a

generic matrix equation as follows:

HE E
Q=MP +t

/ / \ \‘ constant part

new position original position

1.e.

transformation matrix

Advantage & Disadvantage

o)-le dn)

Q=MP+t

X

Y

|

i 0. __005(9 —sin 6 Px_+ 0]
E _Qy __sin(9 cosd Py_ 0 E

® The transformation is composed of a linear combination

followed by a translation

® Unfortunately, the translation portion is not a matrix

multiplication and must be added as an extra term, or

vector — this is inconvenient

-

Homogeneous Coordinates (55/rA444R)

® The “trick” we use is to add an additional component 1 to both P

and Q, and also a third row and column to M, consisting of zeros

and a 1

S 1 i A P e
Q, c d]|P, L,
Q=MP+t
O | [a b t |~
0, |=|c @ 1|7
e 0]

® Then all transformation equations can be expressed as
matrix multiplications.
° Homogeneous coordinates

~

Homogeneous Coordinates

°* Homogeneous coordinates: expand 2D coordinate-
position representation (X, ¥) to a three-element
representation (xh, Vi h).

h 1S a homogeneous parameter, Wthh 1S a NONZero Value SllCh
that
y
h h
—, y A

For geometric transformation, we can choose any nonzero

X

value for h, for simplicity, to set A=1.

Homogeneous Coordinates

® For translation by (¢, ¢)

% 1T @ ¢, X
=10 1 1 Y
_1 B _0 0 1# __1_1

in the abbreviated form

P'=T(t,, t,)P

(7-17)

(7-18)

-

Homogeneous Coordinates

* For rotation transformation by 0 about the coordinate

origin
cosf —sing 0 X
e =1 sing - wesd - 0L |y (7-19)
1 0 0 1 il

in the abbreviated form

P'=R(0)P (7-20)

The rotation transformation operator R(0) is the 3 by 3 matrix in

Eq.7— 19 with rotation parameter 0.

HOW about 0 is replaced with —0?

Homogeneous Coordinates

® For scaling transtformation by s, S, relative to the

coordinate origin

X — i S) Aef? X :
U s R Sy U 28 (7—21)
i} OFoaliny: 1
in the abbreviated form
'=S(s,, 5,)P (7-22)

Homogeneous Coordinates

* In homogeneous form

Translation by (¢, 7)) Rotation by H_ B
B 0=t [cosf sinf 0]

T '=(0 1 -t R =|-sinf cosh 0
T n pcpa

Scale by S,, S,
How about the inverse

[0 0l transformation?
e
S iyt

2D Composite Transformations

® We can use more than one transtformation operation (same type or

different) on the same object.

r;} %\

2D Composite Translation

® Two successive translations (t,, t ;) and (¢,5, t ;) are applied to a

coordinate point P
P'=T(t,.1,)(T(t,t,)-P)=(T(t,01,) T(t,t,))-P

where P and P’ are represented as homogeneous coordinate

column vectors

1 O tx2
O 1 ty2 .
00 1

_1 O txl—
O 1 tyl

00 1

) 1 O I+ fx2_
O 1 tyl + ty2
00 1

or T(txz’tyz).T(txl’tyl):T(tx1+txz’tyl+ty2)

Two successive translations are additive of the translation factor.

i

e

<

2D Composite Rotation

e Two successive rotations with 91 and 92 round the Origin

applied to point P
P'=R(02)-(R(01)- P) = (R(02)- R(01))- P
where P and P’ are represented as homogeneous coordinate column vectors

® By multiplying the two rotation matrices, we can verify that two successive

rotations are additive:

R@1)-RO2)=R(O1+0>2)

So that the final rotated coordinates can be calculated with the

composite rotation matrix as

P=R614+02)-P

cos(fi1+62) —sin(61+62) 0 X \Re
where R(01+602) =|sin(61+62) cos(fi+62) O

6 0 0 1
3

o

2D Composite Scaling

® Two successive scaling operations

Sx2

0
0

0 O]
Sy2 0
0 1

Sx1

0
0

0 0

Syl

0

0
1

Sx1.5x2

0
0

0
Syl.Sy2

0

0
0
1

S(Sx2,8v2)-S(Sx1,8v1) = S(Sx1-Sx2,85v1-Sr2)

® Two successive scaling are multiplicative.

General 2D Pivot-Point Rotation

® A transformation sequence for rotating an object about a

specified pivot point
(x5 ¥,) (X, ¥,)
./ > \o
(a) (d)
Steps .

® Translate the object so that the pivot-point position is

moved to the coordinate origin;
* Rotate the object about the coordinate origin;

* Translate the object so that the pivot point is returned to its

@ original position.

General 2D Pivot-Point Rotation

A

o Original Position of Object and

A Pivot Point (x, y,).

10 -x
= 01y . .
' L; \ ‘ ® Translation of Object so that
Pivot Point is at Origin.

General 2D Pivot-Point Rotation

A
cosl -sin0 0
R,=

sind coso 0] ® Rotation about Orlgln

0 0 1

® Translation of Object so that

0
. Pivot Point is Returned to

|
T=(0
0

original Position.

<

General 2D Pivot-Point Rotation

* Rotation with respect to a pivot point (X,),.)

1 0 x)(cos@ —-sm@ O0)(1 0 —x
O 1 y |-{sm@ cos@ O[]0 1 -y
0 0 1 0 0 1){0 0 1

cosd —sinf x.(1-cosf)+y. sind
=| sind cos@ y.(1-cosf)—x sinf

0 0 1
or in form
T'(x,y.) RO)T(—x.,—y.)= R(xr,yr,é’)
where e ‘ J

T(_xr’_yr):T_l(‘xr’yr) |]

(a) (b) (c)

o

General 2D Fixed-Point Scaling

® A transformation sequence for scaling an object with

respect to a specified fixed position using the scaling

matrix

(xp yp)

(x f> }’_r)

(a)
Steps .

* Translate object so that the fixed point coincides with the coordinate

origin;

® Scale the object with respect to the coordinate origin;

® Use the inverse translation of step 1 to return the object to its original

position.

General 2D Fixed-Point Scaling

A

o Original Position of Object and

A Fixed point.

10 -x
= 01y . .
' L; \ ‘ ® Translation of Object so that
Fixed Point is at Origin.

General 2D Fixed-Point Scaling

T{ sg gg } ® Scale Object with Respect to
Origin.

= T =]

1
0

::f.] ® Translation of Object so that
Fixed Point is Returned to

original Position.

General 2D Fixed-Point Scaling

* Concatenating the matrices for these operations produces the

required scaling matrix

S(X:5,55,55,)
=T(x;,y,)-S(s,,8,)- T(=x,—y)
(1 0 x,\(s, 0 0)(1 0 —x,)
=0 1 y, 40 s, 00 1 -y,
00 1){o 0 1)0 0 1
(s. 0 (I—Sx)-xf\

=10 s, (I-s))y,

0 0)

Matrix Composition

® Transformations can be combined by matrix multlphcatlon

X’ 1 0 ¢x|/cos@ —sin@® Ollsx 0 0
vy 1 =110 1 ¢tyisin @ cos @ 0|l 0 sy O
W’ 0O 0 1 0 0 I O 0 1
TP = Tt) REQ SGses) P
p = (T*R*(S*p)))
p’ = (T*R*S) * p -

* Order of transformations

Matrix multiplication is not commutative

pP=T*R*S*p

@

Order of Transformations

- ® 1o
N

eP'=R-T-P e P =T R-P

More Example

® Suppose we want,

] N,

\.
A

3

® We have to compose two transformations

R(-90°)

T(x,3)

—

followed by :
translation >

More Example

® Matrix multiplication is not commutative

T(x,3) R(=90°) # R(=90°)T(x,3)

Rotation

Translation

.

followed by
rotation

p
Chapter 7

Two-Dimensional Geometric
Transformations

Part II.

eOther 2D Transformations
eRaster Methods for Geometric Transformations

*OpenGL Raster Transformations

Reflection

e Reflection: produce a mirror image of an object.

e Reflection about x-axis:
1

X —X (0] 1
Posit
y — -y 2 (3
N
Reflected
Positio

e Reflection about y-axis:

’
X

y)

-X

y

Original
Position
2

}.‘

N

1

]J’

Reflected
Position
2!

[

<k

—

— < o

Reflection

X —1
y 0
1] 0

};‘:l’
y 3 Origi_nal P 4
Position 7
7
,
s
2 ¥
1 ,~ Reflected
\<’ Position
s
7
/
/ 3
o
7
s
/7 %4

@ /)
-

0
-1

0

* Reflection about origin point (0, 0)

0
0

1

= =

e Reflection about the line y =X and y = -X.

2F
Reflected
Position
b
~
\ ' r
s 3
b
b Y
2 I S
Y
hY
Original kY
Position 3 b
,"

Reflected
Position

3

Original
Position

~

Shear

e Shear

Distorts the shape of an object such that the transformed shape
appears as if the object were composed of internal layers that had

been caused to slide over each other. N

7z

—_—

¢ Jtis done by changing the value of one coordinate and keeping the

other coordinate without changing.

* Two types of shear:

To shift in x.

To shift in y.

To stretch rectangles into

parallelograms. Y- direction X- direction
shear shear

/

o

o X- direction shear:

xX’=xtsh, oy
Y=y

In matrix representation:

y

(0,1) (1)

(0,0) (1,0) x
(a)

X-direction Shear: refer to x-axis

(0,0)

x, 1 shx
V= 0 1
1 0 0
y
2,1) (3,1)
(1,0)
(b)

(7-57)

FIGURE 7-23 A unit square (a) is converted to a parallelogram (b)

using the x-direction shear matrix 7-57 with sh. = 2.

X-direction Shear: refer to y=y,

¢ x-direction shears relative to other reference lines V= Vief
A

x’ 1 0 o011 sh, O|1 0 0 x 1 shy, —sh, - Y.
y, = O 1 YVref 0 1 O O 1 — Vref y ‘ 0 1 0
1 0 0 1o o 11]0 0 1 1 0 0 1

x'=x+ th(y_ yref)

@ y' =y

Y-direction Shear: refer to y-axis

® Y- direction shear:

x'=x

'=y+sh,ex x: 1 0 0 X
4 4 Y Y = Shy 1 0 Y
In matrix representation: 1 0 0 I 1

y-direction shear relative to the y-axis (x = 0) ‘ y 1.3)

y

1,2)

©,1) a,1)

P

©,0) (1,0) Y ©9)]

Given sh, = 2, relative to the y-axis (x = 0), and a square with

coordinates (0,0), (0,1), (1,1), (1,0).

Y-direction Shear: refer to X=X

o y—direction shear relative to
the line x = x_,
x'=x

y' - Shy(x_ Xref) * y

1 0 0
.Sh;, 1 _Sll}f : 'rrl_'l
0 0 1

Example: y-direction shear relative to

the line Xpof = -1

(0, 3/2)
(0, 1) (AP

{0, 1/2)

{1, 2)

1.1

|

I

(a)

(b}

FIGURE 7-25 A unit square (a) is turned

into a shifted parallelogram (b) with

parameter values sh, = 0.5 and x,,=

-1 in the

y—direction shearing transformation 7-61.

/

Raster Methods for Geometric Transformations

® An alternative method for performing 2D transformations

To use raster operations to directly manipulating pixel values in the
frame bufter

I BlockTranster (bitblt / pixblt)
Block transfer (bitblt (bit-block transfer), pixblt): moving a block of

pixel values from one position to another.

P
.ma.\ —

']
‘, : |
p* /._....._'

P.
(a) (b)

FIGURE 7-26 Translating an object from screen position (a) to the destination

position shown in (b) by moving a rectangular block of pixel values.
,and P__specify the limits of the rectangular block to be

Coordinate positions P_.

moved, and P, is the destination reference position.

~

Raster Methods for Geometric Transformations

Rotations

Rotations in 90 or 180 degrees are easily accomplished by
rearranging the elements of a pixel array

90 -counterclockwise rotation by reversing the pixel values in each row
of the array;

180 -counterclockwise rotation by reversing the order of the elements in
each row, then reversing the order of the rows.

80
12 3\ ‘\90 12 11 10]
45 6 36 9 12 9 § 7
78 9 {2 5 8 11] 6 5 4
1011 12 1 4 7 10 302 1
(a) (b) (c)

FIGURE 7-27 Rotating an array of pixel values. The original array is shown

in (a), the positions of the array elements after a 90" counterclockwise

rotation are shown in (b), and the positions of the array elements after a 180"

@ rotation are shown in (c).

OpenGL Raster Transformations

1) Translation/ Copy

A translation of a rectangular array of pixel—color values from one buffer to
another can be accomplished in OpenGL as a copy operation

glCopyPixels (xmin, ymin, width, height, GL_COLOR);

-- GL_COLOR: buffer type to be copied
(others: GL_DEPTH, GL_STENCIL)

-- Destination: Current Raster Position.

The translation can be

- carried out on any OpenGL bulffers for refreshing;
- used between different buffers.
source buffer is chosen with glReadBuffer;
destination buffer is selected with glDrawBuffer.

o

OpenGL Raster Transformations

2) Rotation a block of pixel-color values in 90 degrees

Read a block of pixel-color values from a buffer and store in an

array by glReadPixels

glReadPixels (xmin, ymin, width, height, GL_RGB,
GL_UNSIGNED_BYTE, colorArray);

-- The color of block read into colorArray[| with data format GL_RGB, & data
type GL_UNSIGNED_BYTE.

Rearrange the rows and columns of the array;

Placing the rotated array back in the buffer.

glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE,

colorArray);

--The block is written by colorArray[| to Current Raster Position.

4 ™
OpenGL Raster Transformations

3) Scaling a block of pixel-color values
Firstly, specity the scaling factors by glPixelZoom

glPixelZoom (sx, sy);
-- Zoom referred to Current Raster Position;
-- $X, sy: nonzero floating-point values;
-- > 1.0 positive values: increase the size of an element in the source
array;
-- < 1.0 positive values: decrease element size;

-- negative value: produce a reflection and scaling the array elements.

Then, write back (either glCopyPixels or glDrawPixels).

- End of Part I&II -

