
Chapter 4
Graphics Output Primitives

(Part II)

Computer Graphics

Outline
 OpenGL Curve Functions
 Fill-Area Primitives
 Polygon Fill Areas
 OpenGL Polygon Fill-area Functions
 Pixel Array Primitives
 Character Primitives
 OpenGL functions
 OpenGL Display Lists

2

Chapter 4
Graphics Output Primitives (Part II)

OpenGL Curve Functions
Fill-Area Primitives and Polygon Fill Areas

3

OpenGL Curve Functions
 GLU (OpenGL Utility) functions:

3D Quadrics (Spheres, Cylinders)

Rational B-Splines (circles, ellipse, Bezier curve)

(有理B樣條)

NURBS (non-uniform rational B-splines)

 GLUT (OpenGL Utility Toolkit) functions:
3D Quadrics (Spheres, Cones etc.)

 Approximate a simple curve using a polyline
 The more line sections, the smoother appearance of the curve.

 Write your own curve-generation algorithms

(By Mark Kilgard)

4

gluSphere/gluCylinder/gluDisk…

glutSolidSphere/glutWireSphere,
glutSolidCone, glutSolidTorus, …

Fill-Area Primitives
 Fill (Filled) Area

 An area filled with some solid color or pattern
 To describe the surfaces of solid objects
 Most graphics library routines don’t support arbitrary fill shapes.

 A fill area is required to be specified as a polygon.

 A set of polygon facets can approximate a curved surface (a polygon
mesh), which can be called as Surface Tessellation.

5

Polygon Fill Areas

A convex polygon (a) and a concave
polygon (b)

The interior angle is the angle
inside the polygon boundary that
is formed by two adjacent edges.

 Polygon
 A plane figure specified by a set

of three or more vertices, that are
connected in sequence by
straight-line segments (edges).
Here refer only to those without
crossing edges: simple (standard)
polygon

 Polygon Classifications
 Convex Polygon (凸)
 All interior angles are less than or

equal to 180o degrees
 Concave Polygon (凹)
 Otherwise6

Polygon Fill Areas
 Implementation consideration
 Some graphics packages including OpenGL, only support

convex polygon for the fill algorithms.

 For degenerate (退化) polygons
-- A set of vertices that are collinear (or that have repeated vertex positions)
--To identify these cases, graphics systems usually leave these to the

programmer

 For concave polygons
-- Implementation of fill algorithms and other graphics routines are more

complicated for concave polygons
--To split a concave polygon into a set of convex polygons

Generate a line segment

Overlapping edges, or edges with 0 length

7

Identifying Concave Polygons
 Characteristics
 At least one interior angle >180o;
 Extension of some edges intersect other;
 Line segment of some pair of interior points intersects the

boundary.

 Mathematically
 The cross products of adjacent edges
 Convex: the same sign
 Concave: some are positive and

some are negative
(next slide for the detail)

8

() ()
() ()
() ()3,0,0EE 9,0,0EE

9,0,0EE 3,0,0EE
2,0,0EE 1,0,0EE

1665

5443

3221

=×=×
=×=×

−=×=×

A concave polygon with six edges.
Edge vectors for this polygon:

The cross product for two adjacent
edge vectors:

Split the polygon along the line of
vector E2. The two new polygons
are both convex.

() ()
() ()
() ()0,3,0E 0,0,3E

0,3,0E 0,1,1E
0,1,1E 0,0,1E

65

43

21

−=−=
=−=
==

9

Splitting Concave Polygons

Determinant form

Splitting a concave polygon using
the vector method

Inside-Outside Tests
 Inside-Outside test
 Area-filling algorithms and other graphics processes often need

to identify interior regions of objects.

 For simple object, it is a straightforward process.

 For complex objects, graphics packages normally use either:
1. Odd-Even (奇偶) rule (Odd-Parity rule or Even-Odd rule)
2. Non-zero winding (環繞) number rule

10

Odd-Even rule (Odd-Parity Rule, Even-Odd Rule):
1. Draw a line: (the line path doesn’t intersect any line-segment

endpoints)
From any position P to a distant point outside the coordinate extents
of the polygon

2. Counting the number of edge crossing along the line.
3. If the number of polygon edges crossed by this line is odd (奇) then

P is an interior point.
Else

P is an exterior point

11 (From Wiki)

Inside-Outside Tests

Self-intersecting
closed polyline

P1
P2

P1
P2

Non-zero Winding (環繞) Number Rule :
 Counts the winding number of a point
 Non-zero: interior points
 Zero: exterior points

 Winding number of a closed curve around a given point:
 The number of times the curve (polygon edges) wind

counterclockwise around that point.

12

Inside-Outside Tests

(Pic. From Wiki)

Non-zero Winding Number Rule (cont.):
1. Set up vectors along the edges and initialing the winding number

to 0.
2. Imagine a line drawn from any position P to a distant point

beyond the coordinate extents of the object.
3. Count the number of edges that cross the line in each direction.

Add 1 to the winding number:
A polygon edge crosses the line from right to left ().

Subtract 1:
An edge crosses from left to right ().

4. If the winding number is non-zero, then
P is defined to be an interior point

Else
P is taken to be an exterior point.

13

Inside-Outside Tests

Odd: interior; even: exterior. Non-zero: interior; zero: exterior.

14

Example: self-intersecting closed
polyline

: +1
: -1Figure 4-12

Polygon Representation
 PolygonTables (Fig. 4-16)
 Typically, the objects in a scene are described as sets of polygon

surface facets with information:
 Coordinate, color, transparency, lighting properties…

 In systems, the information for polygons facets are represented by
tables – polygon data tables:
 Geometric Tables

Vertex Table; Edge Table; Surface-Facet Table

 Attribute Tables
Normal; Transparency; Reflectance; Texture Coordinates

15

Polygon Tables

Geometric data-table representation for two adjacent
polygon surface facets, formed with six edges and five vertices

16

Chapter 4
Graphics Output Primitives (Part II)

OpenGL Polygon Fill-Area Functions

17

OpenGL Polygon Fill-area Functions
 In OpenGL, a fill area must be specified as a convex

polygon
 A vertex list for a fill polygon must contain at least three

vertices;

 No crossing edges;

 All interior angles for the polygon must be less than 180°.

A convex polygon (a) and a concave
polygon (b).

Convex:
 all interior angles are less than or

equal to 180°.
Concave:
 Otherwise.

(From: OpenGL Programming Guide)

18

A polygon with a complex
interior, which cannot be
specified with a single vertex list.

OpenGL Polygon Fill-area Functions
The figure on the left has a hole
in it.
How do you show such polygon?

 One vertex list for only
one polygon-filled area

19

 You can define it by two
overlapping convex
polygons.

OpenGL Polygon Fill-area Functions
 In OpenGL, specifying fill polygons are similar to those

for describing a point or polyline.
glBegin(SYMBOLIC_CONSTANT)

glVertex*(…);
glVertex*(…);
…

glEnd();

 By default, a polygon interior is displayed in a solid
color, determined by the current color settings

//set red color
glColor3f(1.0, 0.0, 0.0);
//specify 2D square
glBegin(GL_QUADS);

glVertex2i(-2, 2);
glVertex2i(2, 2);
glVertex2i(2, -2);
glVertex2i(-2, -2);

glEnd();

20

 A special rectangle function of OpenGL
glRect* (x1,y1,x2,y2);

‘*’: the coordinate data type: i (integer), s (short), f (float), d (double), and v
(vector)

This function is equivalent to :
glBegin (GL_POLYGON);

glVertex2* (x1, y1);
glVertex2* (x2, y1);
glVertex2* (x2, y2);
glVertex2* (x1, y2);

glEnd ();

glBegin (GL_QUADS);
glVertex2* (x1, y1);
glVertex2* (x2, y1);
glVertex2* (x2, y2);
glVertex2* (x1, y2);

glEnd ();

and

glRect* is more efficient than using the above glVertex specifications

(x1,y1)

(x2,y2)

①②

③ ④

Define Rectangle in OpenGL

21

(200, 100, 50, 250); ?

?

int vertex1 [] = { 200, 100 };
int vertex2 [] = { 50, 250 };

(vertex1, vertex2);glRectv

glRecti

To use the symbolic constant in the glBegin
function, along with a list of glVertex commands.
 GL_POLYGON -- closed ploygon
 GL_TRIANGLES -- disconnected triangles
 GL_TRIANGLE_STRIP -- connected triangles
 GL_TRIANGLE_FAN -- triangles sharing

common point
 GL_QUADS -- disconnected quadrilaterals
 GL_QUAD_STRIP -- connected quadrilaterals

Six OpenGL Polygon Fill Primitives

Same vertices in different order, and with different symbolic constant

22

 GL_POLYGON and GL_TRIANGLES

glBegin (GL_TRIANGLES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

glBegin (GL_POLYGON);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

The orders of the vertices in (a) and (b) between the glBegin()
and glEnd() pair are different.

OpenGL Polygon Fill-area Functions

23

 GL_TRIANGLE_STRIP
glBegin (GL_TRIANGLE_STRIP);

glVertex2iv (p1); -> n=1
glVertex2iv (p2); -> n=2
glVertex2iv (p6); -> n=3
glVertex2iv (p3); -> n=4
glVertex2iv (p5);
glVertex2iv (p4);

glEnd ();
 For N vertices, we obtain N-2 triangles. Each successive triangle shares an edge with the

previously defined triangle.
 The first three points form the first triangle (counterclockwise viewing from the

outside), points 2-4 form the second, points 3-5 form the third, and so on.
 The ordering of the vertex list is important to ensure a consistent display.

 Define each position n in the vertex list in the order 1, 2, …, N-2.
 If n is odd, the triangle vertices are in the order: n, n+1, n+2; -> (p1, p2, p6)
 If n is even, the triangle vertices are in the order: n+1, n, n+2. -> (p6, p2, p3)

OpenGL Polygon Fill-area Functions

24

 GL_TRIANGLE_FAN
glBegin (GL_TRIANGLE_FAN);

glVertex2iv (p1); -> n=1
glVertex2iv (p2); -> n=2
glVertex2iv (p3); -> n=3
glVertex2iv (p4); -> n=4
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();
 For N vertices, we obtain N-2 triangles.
 The first point is shared by every triangle. Points 1&2&3 define the first one, points 1&3&4

define the second, and so on.
 Define each position n in the vertex list in the order 1, 2, …, N-2.

Vertices1, n+1, n+2 define nth triangle; -> (p1, p2, p3); (p1, p3, p4); …

OpenGL Polygon Fill-area Functions

25

 GL_QUADS

glBegin (GL_QUADS);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);
glVertex2iv (p8);

glEnd ();

 The first four points form a quadrilateral, the next four points form the
second, and so on.

 At least four points should be listed, otherwise, nothing is displayed.

OpenGL Polygon Fill-area Functions

26

 GL_QUAD_STRIP
glBegin (GL_QUAD_STRIP);

glVertex2iv (p1); -> n=1
glVertex2iv (p2); -> n=2
glVertex2iv (p4); -> n=3
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd ();

 Rearrange the vertex list, we can obtain the set of connected quadrilaterals.
 Define each position n in the vertex list in the order n=1, n=2, …, n=(N/2)-1.

The vertices 2n-1, 2n, 2n+2, 2n+1 define nth quadrilateral -> (p1, p2, p3, p4); (p4,
p3, p6, p5)

OpenGL Polygon Fill-area Functions

27

 Common use
 GL_TRIANGLE_STRIP & GL_QUAD_STRIP

 Easy to create solid surfaces.

 GL_TRIANGLE_FAN
 Conical shapes: a cone is hard with strips, easy with a triangle fan.

 Not common use
 GL_TRIANGLES & GL_QUADS are rare

 Gaps in solid objects are an easy mistake.
 Exception: as output format of modeling programs.

 GL_POLYGON is fairly rare
 Wrongly generate non-planar/non-convex polygons.

OpenGL Polygon Fill-area Functions

28

Spatial Orientation of Polygon Faces
 Spatial Orientation of a polygon face
 The vertex coordinates values
 The equations of the polygon surfaces

 The general equation of a plane containing a polygon is
Ax + By + Cz + D = 0 (4-1)

(x,y, z) is any point on the plane;
A, B, C, D: plane parameters giving the spatial properties of
the plane.

29

 A, B, C and D can be calculated by three non-collinear points in the
plane, selected in a strictly counterclockwise order, viewing the
surface along a front-to-back direction.
 Please refer to equations (4-3) and (4-4).

Plane Equation by 3 Points

(By Linda Fahlberg-Stojanovska)

30

Orientation of Polygon Surface
 Normal vector for the plane containing that polygon

The normal vector N for a plane Ax + By + Cz + D = 0.

The surface normal vector is:
 perpendicular to the plane;
 points in the direction from inside
to the outside;
 Cartesian components (A, B, C),
where A, B and C are the plane
coefficients

31

Polygon Faces

32

 In graphics, polygon faces are often distinguished between the two
sides of each surface.
 Back face: the side that faces into the object interior.

Front face: the side that is visible, or outward.
 Each side can have its own rendering style, such as
 Filling
 Wireframe
 Vertex
 …

back

V1

V2

V3

V4

 In OpenGL, each polygon we specify has two faces: a back face
and a front face.

 Fill color and other attributes can be set for each face separately.

 Define front/back face
 Default: the polygon vertices in a counterclockwise order as we view the

polygon from “outside”.
 User define:

Front and Back face of Polygons

V1

V2

V3

V4
front

33

glPolygonMode(GL_FRONT, GL_FILL); //filled polygon
glPolygonMode(GL_BACK, GL_LINE); //wireframe
glBegin(GL_POLYGON);

glVertex2f(…);
……
glVertex2f(…);

glEnd();

glFrontFace(GL_CCW); //counterclockwise
glFrontFace(GL_CW); //clockwise

Identify Points Position Relative to Faces
 A basic task in many graphics algorithms
 How to do the test?
 Each polygon is contained in an infinite plane that partitions the

place into two regions.
 Is the point in front of the plane?
 Is the point inside the object?
 Behind (inside) all polygon surface planes

34

 Plane equation can be used.

The shaded polygon surface
of the unit cube has plane
equation x – 1 = 0.
Any point outside it satisfies
the inequality x - 1 > 0.

If Ax +By + Cz + D < 0,
the point (x, y, z) is behind (inside) the plane;
If Ax +By + Cz + D > 0,
the point (x, y, z) is in front of (outside) the plane.

These inequality tests are valid in a right-handed Cartesian system;
A, B, C and D were calculated using points selected in a strictly counterclockwise order,
viewing the surface along a front-to-back direction.

Chapter 4
Graphics Output Primitives (Part II)

Pixel Array Primitives, Character Primitives
and OpenGL Functions

35

Pixel-Array Primitive
 Bitmap (mask, 2-color image) is a pixel array with the bit

value 0 or 1 to each element.

 Pixmap is a pixel array of color values
How to obtain such pattern on screen?
 Scanning a picture or generated by a graphics program.
 So the pattern can be represented by a rectangular array of color values.
 Then each color value in the array is mapped to one or more screen pixel

positions.

Mapping an n by m color array
onto a region of the screen
coordinates. 36

 Two OpenGL functions are used to define pixel patterns: bitmap
and pixmap.

 OpenGL Bitmap Function

width: the no. of columns for the Bitmap in the array bitShape;
height: the no. of rows for the Bitmap in the array bitShape;
(x0, y0): define the “origin” of the bitmap, which is positioned at the
current raster position (next slide);
xOffset,yOffset: coordinate increments added to the raster position after
the bitmap is displayed;
bitShape: the array of elements assigned either 1 (displayed in the

previously set color) or 0 (unaffected by the bitmap); (example)

glBitmap (width, height, x0, y0, xOffset, yOffset, bitShape);

Spec.:http://www.opengl.org/documentation/specs/man_pages/hardcopy/GL/html/gl/bitmap.html

OpenGL Pixel-Array Functions

37

Floating
-point

OpenGL Pixel-Array Functions
 OpenGL Bitmap Function (cont.)

Current raster position:
A location in the frame buffer where the pattern is to be applied.

glRasterPos*()

which sets the coordinates (floating-point) for the current raster
position, and the default value is the world-coordinate origin.

38

 bitShape: the rectangular bit array
 Each row is stored in multiples of 8 bits, where the binary data is arranged

as a set of 8-bit unsigned characters.

 But the arbitrary shape can be defined by any convenient grid
size in a bit pattern.

oA bit pattern defined on a 10-row by 9-colume grid.
oThe binary data is specified with 16 bits for each row.
oWhen applied, all bit values beyond the 9th column are ignored.

OpenGL Bitmap Function

39

Fig.4-27

 Apply the bit pattern of Fig. 4-27.
//array values defined row by row

GLubyte bitShape[20] = {
0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0xff, 0x80,
0x7f, 0x00, 0x3e, 0x00, 0x1c, 0x00, 0x08, 0x00 };

//set the storage mode for the bitmap
glPixelStorei (GL_UNPACK_ALIGHMENT, 1);
//set the current raster position
glRasterPos2i (30, 40);
glBitmap (9, 10, 0.0, 0.0, 20.0, 15.0, bitShape);

width height

OpenGL Bitmap Function

40

The alignment requirements for the start
of each pixel row in memory.

 OpenGL provides three basic commands to manipulate image
data
 glDrawPixels(): Writes [a rectangular array of pixels] from data kept in

memory into the framebuffer at the current raster position specified by
glRasterPos*().

 glReadPixels(): Reads [a rectangular array of pixels] from the
framebuffer and stores the data in memory.

 glCopyPixels(): Copies [a rectangular array of pixels] from one part of
the framebuffer to another.
 This command behaves similarly to a call to glReadPixels() followed by a call to glDrawPixels(),

but the data is never written into the memory.

OpenGL Image (Pixmap) Functions

41

OpenGL Image Functions

 The coordinates of glRasterPos*(), which specify the current
raster position used by glDrawPixels() and glCopyPixels(),
are transformed by the geometric processing pipeline.

42
(From OpenGL Programming Guide)

 Write an image which is kept in processor memory into the
framebuffer at the current raster position

pixMap draws to the current raster position.

width, height: the column and row dimensions of the pixMap;
dataFormat (OpenGL constant): to indicate how the array values are

specified, such as GL_BLUE, GL_BGR; GL_DEPTH_COMPONENT,
GL_STENCIL_INDEX.

dataType (OpenGL constant): to specify the pixel format of the pixMap,
such as GL_BYTE, GL_INT, or GL_FLOAT

Eg: a 128-by-128 array of RGB color values pixmap
glDrawPixels (128, 128, GL_RGB, GL_UNSIGNED_BYTE, colorShape);

glDrawPixels (width, height, dataFormat, dataType, pixMap);

OpenGL Image Functions

43

OpenGL Image Functions
 Data format

44
(From OpenGL Programming Guide)

 After defining the shape or pattern by glDrawPixels routine, a
target buffer should be specified.

 OpenGL buffers and their uses (store color values and other kinds
of pixel data information)
 Color buffer

There are 4 available in OpenGL for screen refreshing.: A left-right pair
of color buffers is for displaying stereoscopic views, a front-back pair for
double-buffered animating displays;

 Depth buffer (z buffer)
Store object distances (depths) from the viewing position;

 Stencil buffer
Store rendering patterns for a scene;

 Accumulation buffer
Accumulating a series of images into a final, composite image.

Store Pixel Values in Buffer

45

(From: Wiki)

Store Pixel Values in Buffer
 Operations to clear buffers
 Firstly, to set the clearing values for each buffer

 Then to clear the buffers

46
(From OpenGL Programming Guide)

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glClearColor(1.0, 1.0, 1.0, 1.0);

 To select which color buffer will be drawn

OpenGL symbolic constants for “buffer”:
A single buffer: GL_FRONT_LEFT, GL_FRONT_RIGHT,

GL_BACK_LEFT, GL_BACK_RIGHT;

Two buffers: GL_FRONT, GL_BACK; GL_LEFT, GL_RIGHT;

All available four buffers: GL_FRONT_AND_BACK

glDrawBuffer (buffer);

Store Pixel Values in Buffer

47

OpenGL Raster Operations
 Other operations on a pixel array by OpenGL:

 Retrieve a block of values from a buffer into memory;
 Copy a block of values between buffers array;
 Logic operations to combine the two blocks of pixel values.

48

OpenGL Raster Operations
 Retrieving a block of values from a buffer into memory

(array)
 Firstly, to select a block of pixel values in a designated buffers

(xmin,ymin): the lower-left corner coordinate position of the rectangular
block to be retrieved;

dataFormat: depend on the selected buffer, Eg,
GL_DEPTH_COMPONENT for the depth buffer, or
GL_STENCIL_INDEX for the stencil buffer;
Other parameters such as width, height, dataType are the same as in
the glDrawPixels routine.

glReadPixels (xmin, ymin, width, height, dataFormat, dataType, array);

49

OpenGL Raster Operations
 Retrieving a block of values from a buffer into memory

(array) (cont.)
 Then, to define the source buffer where the block of pixel

values is stored

 Symbolic constants for buffer are the same as in the glDrawBuffer
routine.

 But, we can’t select all four of the buffers.
 The default selection is the front left-right pair or the front-left buffer

depending on the stereoscopic viewing.

glReadBuffer (buffer);

50

OpenGL Raster Operations
 Copy the block of pixel values from one (source) buffer

into another (destination) buffer (by current raster
position)

roughly = glReadPixels () + glDrawPixels () without mem. array

pixelValues: GL_COLOR, GL_DEPTH, or GL_STENCIL to indicate
the kind of data (the framebuffer used) to copy: color values, depth values, or
stencil values.

xmin, ymin, width, height : the same as the above routines;
Source: by glReadBuffer (buffer);
Dest. : by glDrawBuffer (buffer);

glCopyPixels (xmin, ymin, width, height, pixelValues);

51

Example
 To demonstrate drawing pixels and show the effect of

glDrawPixels(), glCopyPixels(), and glPixelZoom().

52
(From OpenGL Programming Guide)

Moving the mouse while pressing the mouse button will copy the image
in the lower-left corner of the window to the mouse position, using the
current pixel zoom factors.

file

OpenGL Raster Operations
 Logic operations to combine the two blocks of pixel

values

logicOp:
 GL_AND, CL_OR, GL_XOR,

GL_COPY_INVERTED, GL_INVERT;
 GL_CLEAR (0), GL_SET (1);
 GL_COPY (by default).

glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(logicOp);

53

 Routines for generating characters are available in most
graphics packages.

 Font (Typeface)
 The overall design style for a set of characters.
 Two kinds of representations for storing computer fonts
 bitmap (raster) font
 outline (stroke) font

FIGURE 4-28 The letter “B”
represented with an 8-by-8 bitmap
pattern (a), and with an outline shape
defined with straight-line and curve
segments (b).

Character Primitives

54

OpenGL Character Functions
 OpenGL only has low-level support for displaying characters

 Explicitly define any character as a bitmap.
 Displayed by mapping the bitmap in the frame buffer.

 OpenGL Utility Toolkit (GLUT) contains routines for displaying
predefined character sets
 bitmap font

 outline font

glutBitmapCharacter(font, character);

glutStrokeCharacter(font, character);

55

glutBitmapCharacter(GLUT_BITMAP_9_BY_15, chara);

Chapter 4
Graphics Output Primitives (Part II)

OpenGL Display Lists

56

OpenGL Display Lists
 Display list (OpenGL 1.1)
 A group of OpenGL commands that have been stored (or

compiled) for later execution.
 Once it has been created, we can reference it multiple times

with different display operations.

 Useful for hierarchical modeling, where a complex object can
be described with a set of simpler subparts.

57

Display list
Code:
{ …

…
…
…

}

Display list

Display list

Display list

Creating and Naming OpenGL Display List
 To form a display list, put a set of OpenGL commands

into glNewList/glEndList pair

listMode: GL_COMPILE or GL_COMPILE_AND_EXECUTE.

//let OpenGL generate an identifier
listID = glGenLists(1);

//check if listID has been used
glIsList(listID);
return value: GL_TRUE – already used

GL_FALSE – not used58

glNewList(listID, listMode);
… …

glEndList();

Executing and Deleting OpenGL Display List
 Executing OpenGL display lists

 Deleting OpenGL display lists

startID: the initial display-list identifier
nlists: the number of lists that are to be deleted

glCallList (listID);

glDeleteList (startID, nLists);

59

OpenGL Display Lists Example (segment)
// draw a red hexagon
const double TWO_PI = 6.281853;
GLuint regHex;
GLdouble theta;
GLint x, y, k;
regHex = glGenLists(1);
glNewList (regHex, GL_COMPILE);

glBegin (GL_POLYGON);
for (k=0; k<6; k++) {

theta = TWO_PI * k / 6.0;
x = 200 + 150 * cos (theta);
y = 200 + 150 * sin (theta);
glVertex2i (x, y);

}
glEnd();

glEndList();
glCallList (regHex);

60

Summary of Chapter 4
 Line drawing algorithms
 DDA (Digital Differential Analyzer)
 Bresenham

 Output primitives
 Points, straight lines, curves
 Filled color areas
 Polygons
 Pixel-array primitives and characters

 OpenGL functions
 Read the example programs on P117 in the textbook

61

