
Chapter 10
Three-Dimensional Viewing

Computer Graphics

Chapter 10
Three-Dimensional Viewing

Part I.
Overview of 3D Viewing Concept

3D Viewing Pipeline vs. OpenGL Pipeline

3D Viewing-Coordinate Parameters

Projection Transformations

Viewport Transformation and 3D Screen Coordinates

2

Overview of 3D Viewing Concept
 How to construct 3D

scenes in computers?

3

 How to take a picture
by camera?

Overview of 3D Viewing Concept

 Choose the position of the camera and
pointing it at the scene (viewing
transformation).

 Arranging the scene to be photographed
into the desired composition (modeling
transformation).

 Choosing a camera lens or adjusting the
zoom (projection transformation).

 Determining how large you want the
final photograph to be (viewport
transformation).

4 (From: the red book)

 Camera analog

3D Viewing Pipeline vs. OpenGL Pipeline

In OpenGL pipeline, geometric data such as vertex positions and
normal vectors are transformed via Vertex Operation and Primitive
Assembly Operation before rasterization process.
OpenGL vertex transformation:

5

OpenGL Vertex Transformation

 Object coordinates
 The local coordinate system of objects and

represent the initial position and orientation of
objects before any transform is applied.

 Specify them with glVertex*() or
glVertexPointer().

 To transform objects, use glRotatef(),
glTranslatef(), glScalef().

6

OpenGL Vertex Transformation

 Eye coordinates
 Using GL_MODELVIEW matrix to transform

objects from “object space” to “eye space”.
(multiply GL_MODELVIEW matrix and object
coordinates)

 GL_MODELVIEW matrix is a combination of
Model and View matrices (Mview.Mmodel).
 Mmodel is to construct objects from “object space/local

space” to “world space”.
 Mview is to convert objects from “world space” to “eye

space” (camera).

7

OpenGL Vertex Transformation

 Eye coordinates (cont.)

 Note: by default, OpenGL defines that the camera is always located
at (0, 0, 0) and facing to -Z axis in the eye space coordinates.

8

OpenGL Vertex Transformation

 Clip coordinates
 Apply the Projection matrix to transform

objects from Eye Coordinates to Clip Coordinates.

 Viewing volume
 How objects are projected onto screen (perspective or

parallel(orthogonal));
 Which objects or portions of objects are clipped out of

the final image.
9

OpenGL Vertex Transformation

 Clip coordinates (cont.)
 Objects are clipped out from the viewing volume

10

OpenGL Vertex Transformation

 Normalized Device Coordinates (NDC)
 Transform the values into the range of [-1, 1] in all three axes.
 In OpenGL, it is implemented by the Perspective Division on the

Clip Coordinates.

11

(That divides the Clip Coordinates by wclip.)

OpenGL Vertex Transformation

 Window Coordinates
 Result from scaling and translating

Normalized Device Coordinates by the
viewport transformation.

 They are controlled by the parameters
of the viewport you defined
 glViewport(): to define the rectangle of

the rendering area where the final image is
mapped.

 glDepthRange(): to determine the z
value of the window coordinates.

12

OpenGL Vertex Transformation

 Window Coordinates (cont.)
 glViewport(x, y, w, h);

glDepthRange(n, f); n: near, f: far

13

 NDC->WC (Viewport)

[-1,1; -1,1; -1,1] => [x, x+w; y, y+h; n,f]

Chapter 10
Three-Dimensional Viewing
(OpenGL functions)

Part I.
Overview of 3D Viewing Concept

3D Viewing Pipeline vs. OpenGL Pipeline

3D Viewing-Coordinate Parameters
Projection Transformations

Viewport Transformation and 3D Screen Coordinates

14

Coordinate reference for “camera”
 To set up the viewing coordinate reference (or camera)
 Position and orientation of a view plane (or projection plane)
 Objects are transferred to the viewing reference coordinates

and projected onto the view plane

FIGURE 10-1 Coordinate reference
for obtaining a selected view of a three-
dimensional scene.

15

World Coordinate Frame

Viewing Coordinate Frame

3D Viewing-Coordinate Parameters
 Establish a 3D viewing reference frame
 Right-handed

16

FIGURE 10-7 A right-handed
viewing-coordinate system,
with axes xview, yview, zview, relative to a
right-handed world-coordinate frame

a. The viewing origin
 Define the view point or viewing position

(sometimes is referred to as the eye
position or the camera position)

b. yview -- view-up vector V
 Defines yview direction

3D Viewing-Coordinate Parameters
 Viewing direction and view plane

c. zview: viewing direction
 Along the zview axis, often in the negative zview direction

d. The view plane (also called projection plane)
 Perpendicular to zview axis

 The orientation of the view plane can be defined by a view-plane normal
vector N

 The different position of the view-plane along the zview axis

FIGURE 10-8 Orientation of the view plane
and view-plane normal vector N

17

FIGURE 10-9 Three possible positions for the
view plane along the zview axis

zview

3D Viewing-Coordinate Parameters
 The uvn Viewing-Coordinate Reference Frame (Viewing Coordinate System)

 Direction of zview axis: the view-plane normal vector N;

 Direction of yview axis: the view-up vector V;

 Direction of xview axis: taking the vector cross product of V and N to get U.

FIGURE 10-12 A right-handed viewing system
defined with unit vectors u, v, and n.

(10-1)

18

n ൌ N
N ൌ 	 ݊௫, ݊௬, ݊௭

			u ൌ
V ൈ n
V ൈ n ൌ 	 ,௫ݑ ,௬ݑ ௭ݑ

v ൌ n ൈ u ൌ 	 ,௫ݒ ,௬ݒ ௭ݒ

Chapter 10
Three-Dimensional Viewing

Part I.
Overview of 3D Viewing Concept

3D Viewing Pipeline vs. OpenGL Pipeline

3D Viewing-Coordinate Parameters

Projection Transformations
Viewport Transformation and 3D Screen Coordinates

19

Projection Transformations
 Objects are projected to the view plane.

20

Orthogonal Projection (a special case of Parallel Proj.)

FIGURE 10-15 Parallel projection
of a line segment onto a view plane.

21

Engineering and architecture drawings commonly employ it. Length and angles
are accurately depicted.

 Coordinates positions are transferred to the view plane along
parallel lines

Orthogonal Projection
(Projector is orthogonal to the view plane)
 Clipping window and orthogonal-projection view volume

 The clipping window: the x and y limits of the scene you want to display

 These form the orthogonal-projection view volume

 The depth is limited by near and far clipping planes in zview

FIGURE 10-22 A finite orthogonal view volume with the
view plane “in front” of the near plane

22

Normalization Transformation for
Orthogonal Projections
 Map the view volume into a normalized view volume

23

FIGURE 10-24 Normalization transformation from an orthogonal-
projection view volume to the symmetric normalization cube within a
left-handed reference frame.

Perspective Projections
 Positions are transferred along lines that converge to a point behind

the view plane.

FIGURE 10-16 Perspective projection
of a line segment onto a view plane.

24

FIGURE 10-39
A perspective-projection frustum
view volume with the view plane “in
front” of the near clipping plane

Perspective Projections
 Perspective projection view volume
 Symmetric

 Asymmetric

25

FIGURE 10-40 A symmetric
perspective-projection frustum view
volume.

Symmetric Perspective Projections
Frustum
 The corner positions for the clipping window in terms of the

window’s width and height:

26

min max

min min

,
2 2

,
2 2

prp prp

prp prp

width widthxw x xw x

height heightyw y yw y

   

   

 Another way to specify the symmetric-perspective projection volume
 Approximate the properties of a camera lens: the field-of-view angle / angle

of view
 E.g.: a wide-angle lens corresponds to a larger angle of view.

27

Symmetric Perspective Projections Frustum:
field-of-view angle/ angle of view

http://www.dyxum.com/columns/photoworld/fundamentals/Field_of_view_Angle_of_view.asp

Focal Length

 Another way to specify the symmetric-perspective projection volume
 In CG, the angle is between the top clipping plane and the bottom clipping plane

FIGURE 10-41 Field-of-view angle θ for a symmetric perspective-
projection view volume.

28

Symmetric Perspective Projections Frustum:
field-of-view angle/ angle of view

 For a given projection reference point and view plane position
 The height of the clipping window is:

29

Symmetric Perspective Projections
Frustum: field-of-view angle

  

















2
tan2

2/
2

tan





vpprp

vpprp

zzheight

zz
height

How about the width?

Another parameter: the aspect
ratio.

 Changing field-of-view angle

30

Symmetric Perspective Projections
Frustum: field-of-view angle

Normalization Transformation of
Perspective Projections
 Mapped to a rectangular parallelepiped (平行六面体)

 The centerline of the parallelepiped is the frustum centerline.
 All points along a projection line within the frustum map to the same point on the

view plane -> each projection line is converted by the perspective transformation
to a line that is perpendicular to the view plane, and parallel to the frustum
centerline.

31

 The rectangular parallelepiped is mapped to a symmetric normalized
cube within a left-handed frame.

FIGURE 10-46 Normalization transformation from a transformed perspective
projection view volume (rectangular parallelepiped) to the symmetric
normalization cube within a left-handed reference frame, with the near clipping plane
as the view plane and the projection reference point at the viewing-coordinate origin.

32

Normalization Transformation of
Perspective Projections

Chapter 10
Three-Dimensional Viewing

Part I.
Overview of 3D Viewing Concept

3D Viewing Pipeline vs. OpenGL Pipeline

3D Viewing-Coordinate Parameters

Projection Transformations

Viewport Transformation and 3D Screen
Coordinates

33

Viewport Transformation and 3D Screen Coordinates
 Transform the normalized projection coordinates to screen

coordinates (3D screen coordinates)
 For x and y in the normalized clipping window, the transformation is the same as

2D viewport transformation
 For z (depth)

 for the visibility testing and surface rendering algorithms

 In normalized coordinates, the Znorm= -1 face of symmetric cube
corresponds to the clipping-window area
 This face is mapped to the 2D screen viewport, that is Zscreen = 0.

 The z (depth) value for each screen point
 Depth buffer or z-buffer

34

Viewport Mapping
• Mapping the viewing volume to the viewport

The aspect ratio of a viewport should generally equal the aspect ratio of the
viewing volume. If the two ratios are different, the projected image will
be distorted when mapped to the viewport.

(From OpenGL Super Bible)

35

Projection Demo

36

37

Chapter 10
Three-Dimensional Viewing

Part II.
OpenGL 3D Viewing Functions

OpenGL 3D Projection Functions
Orthogonal-Projection Function
Perspective-Projection Functions

OpenGL 3D Viewing Program Example

OpenGL 3D Viewing Functions
 A viewing transformation changes the position and

orientation of the viewpoint.
 Recall the camera analogy, it positions the camera tripod,

pointing the camera toward the model.
 Composed of translations and rotations.
 The same effects can be implemented either
 move the camera or

 move the objects in the opposite direction.

Note: The viewing transformation commands should be called
before any modeling transformations are performed, so that
the modeling transformations take effect on the objects first.

38

OpenGL 3D Viewing Functions
Method a. using glTranslate*() and glRotate*()
 To emulate the viewpoint movement in a desired way by

translating the objects:

Object and Viewpoint: at the Origin.

(From: the red book)

Move the object away from the viewpoint by
translating the object along “-z “ direction:

glTranslatef (0.0, 0.0, -5.0);

39

OpenGL 3D Viewing Functions
Method b. using the gluLookAt(eyex, eyey, eyez, atx, aty,

atz, upx, upy, upz) utility routine
 3 sets of arguments

 The location of the viewpoint,

 A reference point where you look at
 Some position in the center of a scene

 View-Up direction

 The viewing reference frame
defined by the viewing
parameters
 Zview +: N = at-eye;

 Yview +: V = up;

 Xview +: U = V x N .

The unit axis vectors (uvn) for the
viewing reference frame:),,(

),,(
||

),,(
||

zyx

zyx

zyx

vvvunv

uuu
V

nVu

nnn
N
Nn










(10-1)

(z+)

(x+)

(y+)

40

The default OpenGL viewing
parameters are:

P0 = (0, 0, 0), Pref = (0, 0, -1),
V = (0, 1, 0)

OpenGL 3D Viewing Functions

(x0, y0, z0)

(xref, yref, zref)

(Vx, Vy, Vz)

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(x0, y0, z0, xref, yref, zref,
Vx, Vy, Vz);

//gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0,

//0.0, 0.0, 1.0, 0.0);

gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

The default OpenGL viewing parameters:

P0 = (0, 0, 0), Pref = (0, 0, -1), V = (0, 1, 0)

41

Viewing Transformation: HowTo

Method a. Use one or more modeling transformation commands
(that is, glTranslate*() and glRotate*()).

Method b. Use the Utility Library routine gluLookAt() to
define a line of sight. This routine encapsulates a series of
rotation and translation commands.

Method c. Create your own utility routine that encapsulates
rotations and translations.

42

OpenGL 3D Projection Functions
 The purpose of the projection transformation is to

define a viewing volume, which is used in two ways
 How an object is projected onto the screen;
 Which objects or portions of objects are clipped out of the final

image.

 Before issuing any of projection commands, you should call
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

so that the commands affect the projection matrix rather
than the modelview matrix.

43

OpenGL 3D Projection Functions

 OpenGL provides two functions
 glOrtho(): to produce a orthographic (parallel) projection
 glFrustum(): to produce a perspective projection (general)

Both functions require 6 parameters to specify six clipping planes:
left, right, bottom, top, near and far planes.

 GLU library for symmetric perspective-projection
 gluPerspective(): with only 4 parameters

44

OpenGL Orthogonal-Projection Function

glOrtho (left, right, bottom, up, near, far);

In OpenGL there is no option for the placement of
the view plane:

The near clipping plane = the view plane;

left
right

bottom

up

near

far

45

OpenGL Orthogonal-Projection Function
glOrtho (left, right, bottom, up, near, far);
 the default one:

glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

Viewing
direction

glOrtho (left, right, bottom, up, 0, 5.0);
the far clipping plane: zfar= -5.0.
If near or far are negative, the plane is at the
positive zview axis (behind the viewing origin)

FIGURE 10-47 Default orthogonal-
projection view volume.

2D: gluOrtho2D(left, right, bottom, up);
<=> a call to glOrtho() with near =
-1.0 and far = 1.0.

46

OpenGL Perspective-Projection Functions
 General perspective-projection function

glFrustum (left, right, bottom, up, near, far);

left, right, bottom, up: set the size of the clipping window on the near plane.

near, far: the distances from the origin to the near and far clipping planes along
the -zview axis. They must be positive. (znear= -near and zfar= -far)

47

OpenGL Perspective-Projection Functions
 Symmetric perspective-projection function

gluPerspective(theta, aspect, near, far);
theta: the field-of-view angle between the top and bottom clipping planes

in the range [0°, 180°].
aspect: the aspect ratio (width/height) of the clipping window.

near, far: specify the distances from the view point (coordinate origin) to
the near and far clipping planes.

Both near and far must be positive values.

znear= -near and zfar= -far refer to the positions of the near and far planes.

theta
48

OpenGL 3D Viewing Program Example
#include <GL/glut.h>
GLint winWidth=600, winHeight=600; // Initial display-window size.
GLfloat x0=100.0, y0=50.0, z0=50.0; // Viewing-coordinate origin P0.
GLfloat xref=50.0, yref=50.0, zref=0.0; // Look-at point Pref;
GLfloatVx=0.0, Vy=1.0, Vz=0.0; // View-up vector
/*positive zview axis N = P0 - Pref = (50.0, 0.0, 50.0)

/* Set coordinate limits for the clipping window: */
GLfloat xwMin = -40.0, xwMax= 40.0, ywMin = -60.0, ywMax= 60.0;

/* Set positions for near and far clipping planes: */
GLfloat dnear=25.0, dfar=125.0;

FIGURE 10-48 Output
display generated by the three-
dimensional viewing example
program.

49

OpenGL 3D Viewing Program Example
void init()
{

glClearColor(1.0, 1.0, 1.0, 0.0);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(xwMin, xwMax, ywMin, ywMax, dnear, dfar);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

}

void reshapeFcn(GLsizei newWidth, GLsizei newHeight)
{

glViewport(0, 0, newWidth, newHeight);
winWidth=newWidth;
winHeight=newHeight;

}
50

void displayFcn(void)
{

glClear(GL_COLOR_BUFFER_BIT|
GL_DEPTH_BUFFER_BIT);

/* Set parameters for a square fill area. */
// Set fill color to green.
glColor3f(0.0, 1.0, 0.0);
glPolygonMode(GL_FRONT, GL_FILL);
// Wire-frame back face.
glPolygonMode(GL_BACK, GL_LINE);
glBegin(GL_QUADS);

glVertex3f(0.0, 0.0, 0.0);

glVertex3f(100.0, 0.0, 0.0);
glVertex3f(100.0, 100.0, 0.0);
glVertex3f(0.0, 100.0, 0.0);

glEnd();
glFlush();

}

OpenGL 3D Viewing Program Example

Foreshortening effect
Square -> trapezoid

51

Summary
 3D viewing pipeline and camera analogy

 3D viewing transformation and projected transformation
 viewing coordinates (eye)
 Orthogonal projection
 Perspective projection

 OpenGL and utility functions
 glMatrixMode();
 GL_MODELVIEW/GL_PROJECTION

 gluLookAt();
 glOrtho();
 glFrustum();
 gluPerspective();

52

