Computer Graphics

Chapter 10

Three-Dimensional Viewing




Chapter 10
Three-Dimensional Viewing

Part|l.

Overview of 3D Viewing Concept

3D Viewing Pipeline vs. OpenGL Pipeline
3D Viewing-Coordinate Parameters
Projection Transtormations

Viewport Transformation and 3D Screen Coordinates




Overview of 3D Viewing Concept

® How to construct 3D ® How to take a picture

scenes 1n computers? by camera’




Overview of 3D Viewing Concept

® Camera analog

With a Camera

With a Computer

viewing

positioning the viewing volume
in the worl

modeling

~—

positioning the models
in the world

projection

determining shape of viewing volume

photograph

viewport

® Choose the position of the camera and
pointing it at the scene (Viewing

transformation).

® Arranging the scene to be photographed
into the desired composition (modeling

transformation).

° Choosing a camera lens or adjusting the

7ZOOm (projection transformation).

* Determining how large you want the

final photograph to be (viewport

creen-space view

transformation).

(From: the red book)




3D Viewing Pipeline vs. OpenGL Pipeline

Modeling WC Viewing

; . —_—
Transformation Transformation vC

MC —

Normalization
iecti Transformation i
Projection PC — . e N =3 Viewport > DC
Transformation an Transformation

Clipping

Copyright £2011 Pesrson Education, publithing as Prentice Hall

In OpenGL pipeline, geometric data such as vertex positions and
normal vectors are transformed via Vertex Operation and Primitive
Assembly Operation before rasterization process.

OpenGL vertex transformation:

ModelView Projection Divide by Viewport

. . >
Matrix Eye Matrix Clip w Normalized Transform Window
oordinates Coordinates Device [Coordinates

ICoordinates




OpenGL Vertex Transformation

- \
N
Vert ModelView
ertex / ,
Data Object Matrix Eve
cordinates Coordinates

® Object coordinates

.| Projection

Matrix

Clip

»

Coordinates

.| Divide by

w

.

The local coordinate system of objects and

represent the initial position and orientation of

objects before any transform is applied.

Specity them with glVertex*() or

glVertexPointer().

To transform objects, use glRotatef(),
glTranslatef(), glScalef().

»~
Normalized

Device

Viewport
Transform

Coordinates

Window
Coordinates




OpenGL Vertex Transformation

\
— N
Vert ModelView .| Projection .| Divide by .| Viewport .
ertex atrt atel ; »
Data Object Matrix Eye Matrix Clip w Normalized Transform Window
Coordinates Coordinates Coordinates Device Coordinates
Coordinates

* Eye coordinates

L

Using GL_MODELVIEW matrix to transform
objects from “object space” to “eye space”.
(multiply GL_MODELVIEW matrix and object
coordinates)

GL_MODELVIEW matrix is a combination of
Model and View matrices (M _.M_ . ).

M_ .. is to construct objects from “object space/ local

mo

space” to “world space”.

M . is to convert objects from “world space” to “eye

vie

b2
space” (camera).




OpenGL Vertex Transformation

—
Viewport

Vert ModelView .| Projection Divide by N
ertex ; » , »
oordinates Coordinates Coordinates Device

oordinates

* Eye coordinates (cont.)

Loy Tob; Tob

) - Uoh Yobi
Sl '-l,.f', -.;,.r'

w, Wob; Wb ;

Window
oordinates

Note: by default, OpenGL defines that the camera is always located
at (0, 0, 0) and facing to -Z axis in the eye space coordinates.




OpenGL Vertex Transformation

\
—_——
Vert ModelView .| Projection Divide by .| Viewport .
ertex bl altet . >
Data Object Matrix Eye Matrix Clip w Normalized Transform Window
Coordinates oordinates Coordinates Device Coordinates
/ Coordinates

* Clip coordinates
Apply the Projection matrix to transform
objects from Eye Coordinates to Clip Coordinates.
.’./ — A ] .’.f
f.;’ | (fA
Viewing volume

How objects are projected onto screen (perspective or

parallel(orthogonal));

Which objects or portions of objects are clipped out of
the final image.

O y




* Clip coordinates (cont.)

OpenGL Vertex Transformation

lip
Coordingtes

—

Vertex
Data

Object
Coordinates

ModelView
Matrix

Ve
N

N

Eye

Coordinates

.| Projection

Matrix

C

Divide by
w

»

Normalized
Device
Coordinates

Objects are clipped out from the Viewing volume

World-space view

Screen-space view

Viewport
Transform

-

Window
Coordinates




OpenGL Vertex Transformation

/
—
ModelView .| Projection Divide by Viewport
Vertex Matrix | Matrix q w : Transform i
Data Object Eye Clip Normalize Window
oordinates ICoordinates Coordinates Device Coordinates
\ Coordinatgs

® Normalized Device Coordinates (NDC)

Transform the values into the range of [-1, 1] in all three axes.

In OpenGL, it is implemented by the Perspective Division on the
Clip Coordinates.

Ynde | = | Yorip/w.

Znd. Zelip [Weti

(That divides the Clip Coordinates by Wiy )

\ y




OpenGL Vertex Transformation

e

Vertex
Data

Object
oordinates

ModelView
Matrix

Eye

Coordinates

® Window Coordinates

.| Projection

Matrix

Clip
Coordinates

Result from scaling and translating

Normalized Device Coordinates by the

VieWport transformation.

They are controlled by the parameters

of the viewport you defined

glVieWport(): to define the rectangle of

the rendering area where the final image is

mapped.

ngepthRange()z to determine the z

value of the window coordinates.

.| Divide by

w

.

Screen-space view

Nt:trmalizer.lr
Device
Coordinates

Viewport
Transform

Window|
Coordinates

Screen-space view




OpenGL Vertex Transformation

——q
Vertex
Data

Object

Coordinates

ModelView > Projection .| Divide by .| Viewport N
Coordinates Coordinates Device Coordinates
Coordinates

* Window Coordinates (cont.)

glViewport(x, y, w, h);
glDepthRange(n, f); n:near, {: far

* NDC->WC (Viewport)
[_191; _1)1; _1>1] == [X) X—l_W; )’, }’""h, l’l,fl

&

Yu

\L’

o

= | 2yu+(y+5%)

)

Screen-space view

(%.r, 1c + (X + %)

f—n _ f4n
e 4 i3




p
Chapter 10

Three-Dimensional Viewing
(OpenGL functions)

Part|l.

Overview of 3D Viewing Concept
3D Viewing Pipeline vs. OpenGL Pipeline
3D Viewing-Coordinate Parameters

Projection Transtormations

Viewport Transformation and 3D Screen Coordinates




Coordinate reference for “camera”

® To set up the viewing coordinate reference (or camera)
Position and orientation of a view plane (or projection plane)

Objects are transferred to the viewing reference coordinates

and proj ected onto the view plane

World Coordinate Frame

A Viewing Coordinate Frame

A

{ , Plane

FIGURE 10-1 Coordinate reference

for obtaining a selected view of a three-

dimensional scene.




-

3D Viewing-Coordinate Parameters

']

* Establish a 3D viewing reference frame X
Right-handed Y k@
Yview | :
x\’ w Z/ |
y{l’
Lview .
P, = (x,, yp z,) FLIGURE 10-7 A right-handed
Viewing—coordinate system,

/ T with axesx ., y. ,z. . relative toa
Zw right-handed world-coordinate frame

a. The Viewing origin

Define the view point or viewing position
(sometimes is referred to as the eye

position or the camera position)

b. Yview -~ ViEW-up vector \Y

Defines Veiew direction

~




o

® Viewing direction and view plane
C. Zyjey: ViEWIng direction @2
Along the z ; axis, often in the negative z ;. directior Zview
d. The view plane (also called projection plane)
Perpendicular toz ..., axis
The orientation of the view plane can be defined by a View—plane normal
vector N
The different position of the View—plane along the z . axis
Yview Yview
\xvyz\_icw /
& P, /
/; . Z: ()I\‘icw
Zw S, }\)/];GI::; / Zup >0
FIGURE 10-8 Orientation of the view plane FIGURE 10-9 Three possible positions for the
and View—plane normal vector N . i
view plane along the Z ..., axis

~

/




-
3D Viewing-Coordinate Parameters

® The uvn Viewing-Coordinate Reference Frame (Viewing Coordinate System)
Direction of z ., axis: the view-plane normal vector N;

Direction of y .., axis: the view-up vector V;

Direction of x ;. axis: taking the vector cross product of Vand N to get u.

Yview
N
n= N = (nx, ny,nz)
Vxn (10-1)
v A
u= = (u,,u,,u
u |V % n| ( Ty Z)
2 Friew v=nxu= (vy,1,v,)
view "‘axb

FIGURE 10-12 A right—handed viewing system

defined with unit vectors u, v, and n.

a
Fea

b

V' 4

©




Chapter 10
Three-Dimensional Viewing

Part|l.

Overview of 3D Viewing Concept

3D Viewing Pipeline vs. OpenGL Pipeline
3D Viewing-Coordinate Parameters
Projection Transformations

Viewport Transformation and 3D Screen Coordinates




4 L .
Projection Transformations

® Objects are projected to the view plane.

World-space view




o

Orthogonal Projection (a special case of Parallel Proj.)

¢ Coordinates positions are transferred to the view plane along

parallel lines
View
P, Plane

P

P, FIGURE 10-15 Parallel projection

of a line segment onto a view plane.

i)

SECTION AA

Engineering and architecture dravvings commonly employ it. Length and angles

are accurately depicted.

~




Orthogonal Projection
(Projector is orthogonal to the view plane)

Clipping window and orthogonal—proj ection view volume
The clipping window: the x and y limits of the scene you want to display
These form the orthogonal-projection view volume

The depth is limited by near and far clipping planesinz ;.

Orthogonal-Projection
View Volume

World-space view

Far
Plane

Clipping
Window

Near
Plane

FIGURE 10-22 A finite orthogonal view volume with the

view plane “in front” of the near plane




Normalization Transformation for
Orthogonal Projections

® Map the view volume into a normalized view volume

Orthogonal-Projection

View Vi 2 Yz
iew Volume (X*Waxs YWmaxs Zgar)

('nvmln' YWnins Tnea

(=1;=1;=1) Normalized
View Volume

FIGURE 10-24 Normalization transformation from an orthogonal—

projection view volume to the symmetric normalization cube within a

left-handed reference frame.




Perspective Projections

® Positions are transferred along lines that converge to a point behind

the view plane.

Rectangular
Frustum
View Volume

Clipping
Window

Projection

Far Clipping Near Clipping Reference

View
P, Plane
P;
p / - Convergence
1 P Point
1
. . . Plane
FIGURE 10-16 Perspective projection e

of a line segment onto a view plane.

World-space view Screen-space view

Plane Point

FIGURE 10-39
A perspective—projection frustum
view volume with the view plane “in

front” of the near clipping plane




-

Perspective Projections

® Perspective projection view volume

Symmetric

World-space view

Asymmetric

World-space view

Screen-space view

Frustum Centerline

Far Clipping

Plane

View Volume

Near Clipping Plane \
\
\
\
\
\
\

/
/

L (X8 )

,f [H‘[)' - IH'I)" vp
/

View Plane \
Clipping
Window

y

('v[)lj)‘ s prp? Zprp)

FIGURE 10-40 A symmetric

perspective—projection frustum view

volume.




Symmetric Perspective Projections

Frustum

® The corner positions for the clipping window in terms of the

window’s width and height:

Frustum Centerline

Far Clipping
Plane

View Volume

Near Clipping Plane %

/
/
\ /// prps Yprps
\
\ i

View Plane [

T

(x prp? 2 prp’ Zprp)

Clipping
Window

B width B
XWsin Xprp _Tﬂ max — “‘prp

~ height )
YWoin = yprp o ) > min — Y prp

~

width

height




-

~
Symmetric Perspective Projections Frustum:

field-of-view angle/ angle of view

® Another way to specify the symmetric-perspective projection volume

Approximate the properties of a camera lens: the field-of-view angle / angle
of view

E.g.: a wide-angle lens corresponds to a larger angle of view.

4
q_,""‘ p— _‘v*
coren | )w Conea 70 -
Aol Focal Length = 28 m

e
af
SOmm

g
-
g0 mm

\a http:/ /www.dyxum.com/ columns/ photoworld/ fundamentals/ Field_of view_Angle_of  view.asp /




4 ™
Symmetric Perspective Projections Frustum:

field-of-view angle/ angle of view

® Another way to specify the symmetric-perspective projection volume

In CG, the angle is between the top clipping plane and the bottom clipping plane

Frustum

Clippin A Yyiew
View Volume pping o

Window

Projection
Reference
Point

FIGURE 10-41 Field-of-view angle 0 for a symmetric perspective-

projection view volume.




Symmetric Perspective Projections
Frustum: field-of-view angle

® Fora given projection reference point and view plane position

The height of the clipping window is: 0 height /2
tan( j =

Lo ~ Lup

height = 2(z,,, - z,, )tan(gj

How about the width?

Another parameter: the aspect

ratio.




Symmetric Perspective Projections
Frustum: field-of-view angle

° Changing field-of-view angle

World-space view

011 Pearton Education, publishing as Prentice Hall

~




©

. Normalization Transformation of
Perspective Projections

® Mapped to a rectangular parallelepiped (FAT/NTH 1)

The centerline of the parallelepiped is the frustum centerline.

All points along a projection line within the frustum map to the same point on the

view plane -> each projection line is converted by the perspective transformation

to a line that is perpendicular to the view plane, and parallel to the frustum

centerline.
Centerline
[ Far Plane
Symmetric
Frustum }‘\
ViewVolume 1= "~~~ "~~~ "~77
: Perspective Mapping
______________ ]
/;\I ear Plane o

\ /
\ 4,

% \,( Clipping

View Plane

\ / Window

\ ,’
A\

I .. ,
% Projection Reference Point

Parallelepiped
View Volume




-~

Normalization Transformation of
Perspective Projections

The rectangular arallele}a}ped is mapped to a symmetric normalized
T

cube within a left-handed frame.

Transformed
Frustum
View Volume

(xwmax* YW axs Zl'ar)

y norm

(x“?min* YWins < ncar) <horm

Window

X norm

/ R R

yiew

Projection Normalized
Reference View
Point Volume

FIGURE 10-46 Normalization transformation from a transformed perspective

projection view volume (rectangular parallelepiped) to the symmetric
normalization cube within a left-handed reference frame, with the near clipping plane
as the view plane and the projection reference point at the viewing-coordinate origin,




Chapter 10
Three-Dimensional Viewing

Part|l.

Overview of 3D Viewing Concept
3D Viewing Pipeline vs. OpenGL Pipeline
3D Viewing- Coordinate Parameters

Projection Transtormations

Viewport Transformation and 3D Screen
Coordinates




-

Viewport Transformation and 3D Screen Coordinates

* Transform the normalized projection coordinates to screen
coordinates (3D screen coordinates)

For x and y in the normalized clipping window, the transformation is the same as
2D viewport transformation

For z (depth)
for the Visibility testing and surface rendering algorithms

® In normalized coordinates, the Z = -1 face of symmetric cube
corresponds to the clipping—wincibw area

This face is mapped to the 2D screen viewport, that is Zscreen = 0.
® The z (depth) value for each screen point
Depth buffer or z-buffer

Transformed
Frustum
V]C\\‘ \"'nlumc (“"”‘m.l\‘ -\'".IU\I\' ‘_I.\r )

y (*Th) -
min* / min® “necar

Projection Normalized
Reference View

@ Point Volume




Viewport Mapping

* Mapping the viewing volume to the viewport

A
Y
Ee———

undistorted distorted
( From OpenGL Super Bible)

The aspect ratio of a VieWport should generally equal the aspect ratio of the
viewing volume. If the two ratios are different, the projected image will

be distorted when mapped to the viewport.




Projection Demo

Projection Parameters

Right 0.5 =

glMatrixMode (GL_PROJECTION) ;
iglLoadIdentity():
glFrustum(-0.5, 0.5, -0.5, 0.5,

Projection Type Rendering Mode
Q) Perspective Q) Fill
Orthographic Wireframe
Points

Left 0.5 =

Projection Matrix
Bottom 0.5 = 2,00 0.00 0.00
Top 0.5 = 0.00 2.00 0.00
Near 1= 0.00 0.00 -1.22
Far 10 5 0.00 0.00 -1.00
OpenGL Functions

0.00

0.00

2.2




Chapter 10
Three-Dimensional Viewing

Part II.

OpenGL 3D Viewing Functions
OpenGL 3D Projection Functions

Ortho gonal—Projection Function

Perspective—Projection Functions

OpenGL 3D Viewing Program Example

@ I




-
OpenGL 3D Viewing Functions

o A Viewing transformation changes the position and
orientation of the viewpoint.

Recall the camera analogy, it positions the camera tripod,

pointing the camera toward the model.
Composed of translations and rotations.

The same effects can be implemented either

move the camera or

move the objects in the opposite direction.

Note: The VieWing transformation commands should be called

before any modeling transformations are performed, so that

the modeling transformations take effect on the objects first.




OpenGL 3D Viewing Functions

Method a. using glTranslate*() and glRotate*()

To emulate the Viewpoint movement in a desired way by

translating the objects:

[ N I - *
v z

Move the object away from the viewpoint by

Object and Viewpoint: at the Origin. translating the object along “-z “ direction:
ngranslatef (0.0, 0.0, -5.0);

(From: the red book)

/




OpenGL 3D Viewing Functions

Method b. using the gluLookAt(eyex, eyey, eyez, atx, aty,
atz, upx, upy, upz) utility routine

® The viewing reference frame
® 3 sets of arguments &

defined by the viewing

The location of the viewpoint,
parameters 4 axb

=

The unit axis vectors (uvn) for the

A reference point where you look at
Zview t: N = at-eye;

Some position in the center of a scene
VieW—Hp direction Yview +: V = up;
Xview +: U =V xN .

N
n:—:(nxanyanz) (Z+)

[N |
V xn

u =
V|

v=nxu=(V,,vV,,V,) (y+)

— (u,,u,,u,) O+ (10-1)

viewing reference frame:
(at.. at,, at,)

The default OpenGL Viewing (up,. up,,, up,) o Cri o)

=4
ik
7

parameters are:
P(): (O) O) O)) Pref: (O> 03_1)) _ ;u,.\
V=(0,1,0) V4 \ N

2

&




OpenGL 3D Viewing Functions

gluLookAt ( x0, y0, z0, xref, yref, zref, Vx,Vy,Vz);

4

famprosecton —— i

‘YWorld-space view Screen-space view

(xref, yref, zref)

(Vx,Vy,Vz) o

Command manipulation window

fovy aspect zNear zFar

gluPerspective( 60.0 ,1.00 ,1.0 ,10.0 )

 gIMatrixMode(GL_MODELVIEW); | R N R

i . : | 000 ,000 ,000 , <-center

E glLoadIdentlty(); : I 0.00 ,1.00 ,0.00 ); <-up

: gIULOOkAt(XO, yO, ZO, Xl'ef, yref, Zl'ef, : . Click on the arguments and move the mouse to modify values.

| Vx,Vy, Vz); |

/ /gluLookAt( 0.0, 0.0, 5.0, 0.0, 0.0, The default OpenGL viewing parameters:
[700,00,1.0,000 . - Py=(0,0,0),P;=(0,0,-1),V=(0,1,0)

/




-
Viewing Transformation: HowTo

Method a. Use one or more modeling transformation commands

(that is, glTranslate*() and glRotate*()).

Method b. Use the Utility Library routine gluLookAt() to
define a line of sight. This routine encapsulates a series of

rotation and translation commands.

Method c. Create your own utility routine that encapsulates

rotations and translations.




OpenGL 3D Projection Functions

® The purpose of the projection transformation is to
define a viewing volume, which is used in two ways

How an object is projected onto the screen;
Which objects or portions of objects are clipped out of the final
image.

® Before issuing any of projection commands, you should call
glMatrixMode(GL_PROJECTION);
glLoadldentity();

so that the commands affect the projection matrix rather

than the modelview matrix.

o




o

OpenGL 3D Projection Functions

® OpenGL provides two functions
glOrtho(): to produce a orthographic (parallel) projection
glFrustum(): to produce a perspective projection (general)

Both functions require 6 parameters to specify Six clipping planes:

left, right, bottom, top, near and far planes.

e GLU library for symmetric perspective-projection

gluPerspective(): with only 4 parameters




4 N
OpenGL Orthogonal-Projection Function

glOrtho ( left, right, bottom, up, near, far );

An Orthographic 1.{{iewing Volume |( 2 0 0 ix \[
right = left
A
| 2 [
0 Z,
P | top — bottom v [
g e /
E Lo 0 0 1)
left Let Clipping Value —J» where
Right Clipping \lue right
NEAY HNear Clipping \&lue __’. - g & M f = — w
zK X right = lefp ¥ iop — botiom
+— Bottomn Clipping Value bottom . B
—_— - farVal + nearVal
‘dew point z farVal — nearVal

In OpenGL there is no option for the placement of

the view plane:

The near clipping plane = the view plane;

ar
ane
ipping
Windo! M
Yriew
Near ~e
ane Fview




~

OpenGL Orthogonal-Projection Function
glOrtho ( left, right, bottom, up, near, far );

® the default one:

glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

Yview

Clipping Far Clipping Plane

Window

Near Clipping Plane

FIGURE 10-47 Default orthogonal—

projection view volume.

2D: gluOrthoZD(left, right, bottom, up);

<=> a call to glOrtho() with near =
-1.0 and far = 1.0.

glOrtho (left, right, bottom, up, 0, 5.0 );

the far clipping plane: z,. .~ -5.0.

If near or far are negative, the plane is at the
positive z, axis (behind the viewing origin)

An Orthographic \{ljewing Volume

A Viewing

A direction

*

Top Clipping Value - o o
. :’-——Far Clipping “alue

‘Q
‘O
Ky

Let Clipping Value —»

*
Near Clipping \alue —_-;’.‘ R

‘ewpoint




OpenGL Perspective-Projection Functions

® (General perspective—projection function

glFrustum (left, right, bottom, up, near, far);

left, right, bottom, up: set the size of the clipping window on the near plane.

near, far: the distances from the origin to the near and far clipping planes along

the -z . axis. They must be positive. (z_ = -near and z, = -far)
view near ar

[ a0 40] P
| right = lef | Top Clipping i e 8
% sVl Value RSO R
| top — bottom | i 2 ! Far Clipping
0 0 CD AT Value
L J Left Clipping SR
0 0 '1 0 Value o PR O
= righr T kﬁ_ B= fop + boriom \ | ’X
B right — left B top — botiom T 7 3
Near Clipping ] . | Right Clippin
s . LR, Value _— [ s
farVal — nearVal Z/ AT :

s 2 faVal nearVal
= farVal = nearVal Bottom Clipping Value

~




OpenGL Perspective-Projection Functions

o Symmetric perspective—projection function

gluPerspective( theta, aspect, near, far );

theta: the field-of-view angle between the top and bottom clipping planes
in the range | 0° ,180° .
aspect: the aspect ratio (Width/ height) of the clipping window.

near, far: specity the distances from the view point (coordinate origin) to

the near and far clipping planes.

Both near and far must be positive values.

= _near and Z = far refer to the positions of the near and far planes.
near ar

projection plane

------
-
-
......




- OpenGL 3D Viewing Program Example A

#include <GL/glut.h>

GLint winWidth=600, winHeight=600;  // Initial display-window size.
GLfloat x0=100.0, y0=50.0, z0=50.0; / / Viewing-coordinate origin PO.
GLfloat xref=50.0, yret=50.0, zref=0.0; // Look-at point Pref;

GLfloat Vx=0.0,Vy=1.0,Vz=0.0; // View-up vector
/*positive zview axis N = PO - Pref = (50.0, 0.0, 50.0)

/* Set coordinate limits for the clipping window: */
GLfloat xwMin = -40.0, xwMax= 40.0, ywMin = -60.0, ywMax= 60.0;

/* Set positions for near and far clipping planes: */ y ‘__

GLfloat dnear=25.0, dfar=125.0;

| ——— o
FIGURE 10-48 Output o
display generated by the three- Viewpoint
dimensional viewing example 510 _ -

program .




-
OpenGL 3D Viewing Program Example

void init()

{

glClearColor(1.0, 1.0, 1.0, 0.0);

glMatrixMode(GL_PROJECTION);
glLoadldentity();
glFrustum(xwMin, xwMax, ywMin, ywMax, dnear, dfar);

glMatrixMode(GL_MODELVIEW);

glLoadldentity();
gluLookAt(x0, y0, z0, xref, yref, zref, Vx, Vy, Vz); /52

;

void reshapeFen(GLsizei newWidth, GLsizei newHeight)

{

glViewport(0, 0, newWidth, newHeight);
winWidth=newWidth;
winHeight=newHeight;

@}

~




: OpenGL 3D Viewing Program Example A

void displachn(void)
{

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

/* Set parameters for a square fill area. */ \\ /3/{
/

// Set fill color to green.
glColor3£(0.0, 1.0, 0.0);
glPolygonMode(GL_FRONT, GL_FILL);
// Wire-frame back face.
glPolygonMode(GL_BACK, GL_LINE);
glBegin(GL_QUADS);

glVertex3£(0.0, 0.0, 0.0);

glVertex3£(100.0, 0.0, 0.0);

glVertex3£(100.0, 100.0, 0.0);

glVertex3£(0.0, 100.0, 0.0);
glEnd();

Foreshortening effect
glFlush();

Square -> trapezoid




Summary

* 3D viewing pipeline and camera analogy

® 3D viewing transformation and proj ected transformation
viewing coordinates (eye)
Orthogonal projection

Perspective projection

® OpenGL and utility functions

glMatrixMode();
GL_MODELVIEW/GL_PROJECTION
gluLookAt();

glOrtho();
glFrustum();
gluPerspective();




