

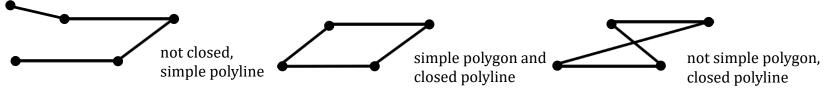
# Describing Shapes

Constructing Objects in Computer Graphics

Bin Sheng<sup>o</sup> Representing Shape - 9/20/16

### 2D Object Definition (1/3)

- Lines and polylines:
  - Polylines: lines drawn between ordered points
  - A closed polyline is a polygon, a simple polygon has no self-intersections

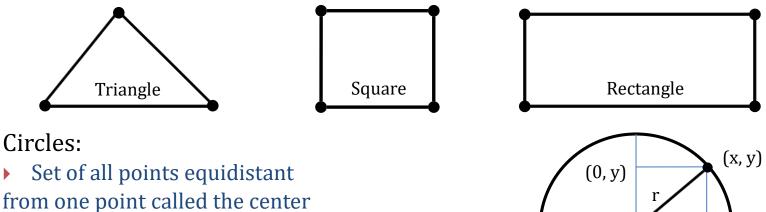


- Convex and concave polygons:
  - Convex: Line between any two points is inside polygon
  - Concave: At least one line between two points crosses outside polygon

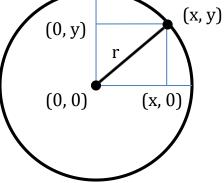


### 2D Object Definition (2/3)

Special Polygons:

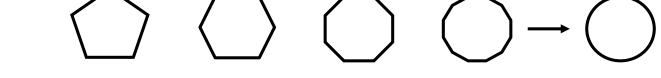


- The distance from the center is the radius *r*
- The equation for a circle centered at (0, 0) is  $r^2 = x^2 + y^2$

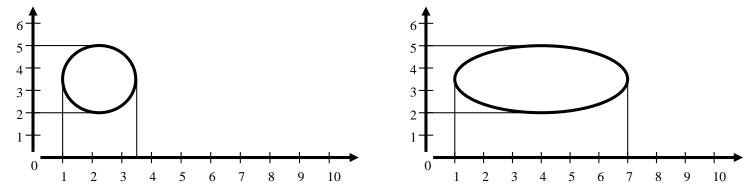


CS337 | INTRODUCTION TO COMPUTER GRAPHICS 2D Object Definition (3/3)

• A circle can be approximated by a polygon with many sides.



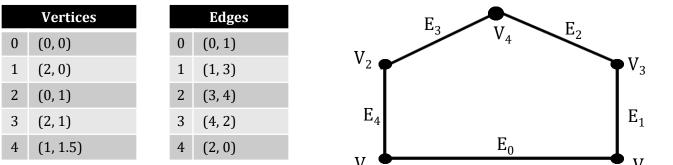
• Axis aligned ellipse: a circle scaled in the x and/or y direction



Scaled by a factor of 2 in the x direction and not scaled in the y direction. Width changes from 3.5 to 7.

## Representing Shapes

- Vertex and edge tables:
  - General purpose, minimal overhead, reasonably efficient
  - Each vertex listed once
  - Each edge is an ordered pair of indices to the vertex list



- Sufficient to draw shape and perform simple operations (transforms, point inside/outside)
- Edges listed in counterclockwise winding order for consistency with 3D where we need to compute outward-facing normals

## Splines (1/5) - Representing General Curves

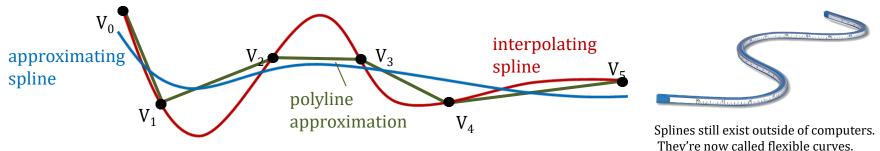
- We can represent any polyline with vertices and edges. What about curves?
  - Don't want to store curves as raster graphics (aliasing, not scalable, memory intensive). We need a more efficient mathematical representation
  - Store control points in a list, find some way of smoothly interpolating between them
  - Closely related to curve-fitting of data, done by hand with "French curves", or by computation

- Piecewise Linear Approximation
  - Not smooth, looks awful without many control points
- Trigonometric functions
  - Difficult to manipulate and control, computationally expensive
- Higher order polynomials
  - Relatively cheap to compute, only slightly more difficult to operate on than polylines



## Splines (2/5) - Spline Types and Uses

- Polynomial interpolation is typically used. Splines are parametric curves governed by control points or control vectors, third or higher order
- Used early on in automobile and aircraft industry to achieve smoothness even small differences can make a big difference in efficiency and look



- Used for:
  - Representing smooth shapes in 2D as outlines or in 3D using "patches" parameterized with two variables: *s* and *t* (see slide 13)
  - Animation paths for "tweening" between keyframes
  - Approximating "expensive" functions (polynomials are cheaper than log, sin, cos, etc.)

### Splines (3/5) - Hermite Curves

- > Polylines are linear (1<sup>st</sup> order polynomial) interpolations between points
  - Given points *P* and *Q*, line between the two is given by the parametric equation:

 $x(t) = (1-t)P + tQ, \qquad 0 \le t \le 1$ 

- (1-t) and t are called weighting functions of P and Q
- > Splines are higher order polynomial interpolations between points
  - Like linear interpolation, but with higher order weighting functions allowing better approximations/smoother curves
- One representation Hermite curves (Interpolating spline):
  - > Determined by two control points P and Q, an initial tangent vector v and a final tangent vector w.

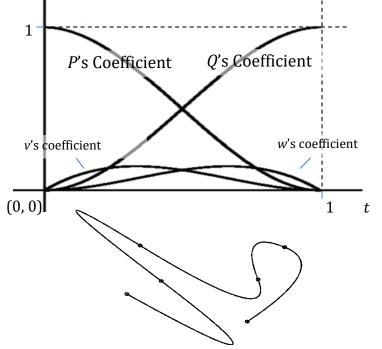
Satisfies:  

$$\gamma(0) = P$$
  
 $\gamma(1) = Q$   
 $\gamma'(0) = v$   
 $\gamma'(0) = v$   
 $\gamma'(1) = w$   
 $\gamma'(1)$ 

Bin Sheng<sup>©</sup> Representing Shape - 9/20/16

Splines (4/5) - Hermite Weighting Explained

- Polynomial splines have more complex Polynomial weighting functions in Hermite curve equation weighting functions than lines
  - Coefficients for P and Q are now 3<sup>rd</sup> degree polynomials
- At t = 0
  - Coefficients of *P* is 1, all others 0
  - Derivative of coefficient of v is 1, derivative of all others is 0
- At *t* = 1
  - Coefficient of *Q* is 1, all others 0
  - Derivative of coefficient of w is 1, derivative of all others 0
- Can be chained together to make more complex curves



Splines (5/5) - Bezier Curves

- Bezier representation is similar to Hermite
  - ▶ 4 points instead of 2 points and 2 vectors (*P*<sub>1</sub> ... *P*<sub>4</sub>)
  - Initial position  $P_1$ , tangent vector is  $P_2 P_1$
  - Final position  $P_4$ , tangent vector is  $P_4 P_3$
  - This representation allows a spline to be stored as a list of vertices with some global parameters that describe the smoothness and continuity
- Bezier splines are widely used (Adobe, Microsoft) for font definition
- See chapters 23 and 24 for more on splines

https://www.jasondavies.com/animated-bezier/

Bin Sheng<sup>©</sup>

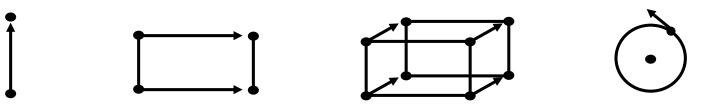
Representing Shape - 9/20/16

Image credit:

http://miphol.com/muse/2008/04/25/Bezier-courbes-anim.

### "Vertices in Motion" - Object Definition

- A line is drawn by tracing a point as it moves (1<sup>st</sup> dimension added)
- A rectangle is drawn by tracing the vertices of a line as it moves perpendicularly to itself (2<sup>nd</sup> dimension added)
- A rectangular prism is drawn by tracing the vertices of a rectangle as it moves perpendicularly to itself (3<sup>rd</sup> dimension)
- A circle is drawn by tracing a point swinging at a fixed distance around a center point.



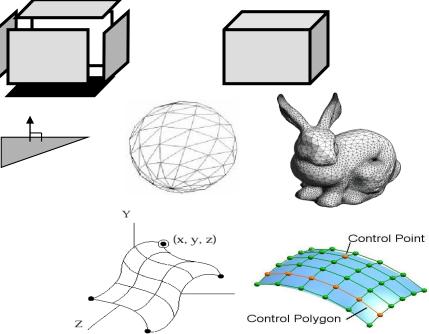
### Building 3D Primitives

Made out of 2D and 1D primitives



- Triangles are commonly used
- Many triangles used for a single object is a triangular mesh
- Splines used to describe boundaries of "patches" – these can be "sewn together" to represent curved surfaces

 $\begin{aligned} x(s,t) &= (1-s)^3 \times (1-t)^3 \times P_{1,1} \\ &+ (1-s)^3 \times 3t (1-t)^2 \times P_{1,2} + \cdots \end{aligned}$ 



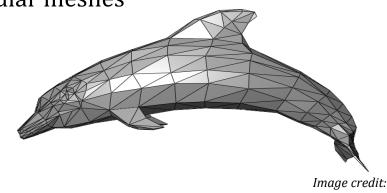
Bin Sheng<sup>©</sup>

Image credit (Stanford Bunny): http://mech.fsv.cvut.cz/~dr/papers/Habil/img1007.gif

12/15

### Triangle Meshes

- Most common representation of shape in three dimensions
- All vertices of triangle are guaranteed to lie in one plane (not true for quadrilaterals or other polygons)
- Uniformity makes it easy to perform mesh operations such as subdivision, simplification, transformation etc.
- Many different ways to represent triangular meshes
- Meshes <u>en.wikipedia.org/wiki/polygon\_mesh</u>
  - Mesh transformation and deformation
  - Procedural generation techniques (upcoming labs on simulating terrain)



http://upload.wikimedia.org/wikipedia/commons/f/fb/Dolphin\_triangle\_mesh.png

### Triangular Mesh Representation

- Vertex and face tables, analogous to 2D vertex and edge tables
- Each vertex listed once, triangles listed as ordered triplets of indices into the vertex table
  - Edges inferred from triangles
  - It's often useful to store associated faces with vertices (i.e. computing normals: vertex normal as average of surrounding face normals)
- Vertices listed in **counter** clockwise order in face table.

Bin Sheng<sup>©</sup>

No longer just because of convention. CCW order differentiates front and back of face

|             |             | Vertex List                          |
|-------------|-------------|--------------------------------------|
| v0          | 0, 0, 0     | f0 f1 f12 f15 f7                     |
| v1          | 1, 0, 0     | f2 f3 f13 f12 f1                     |
| v2          | 1, 1, 0     | f4 f5 f14 f13 f3                     |
| v3          | 0, 1, 0     | f6 f7 f15 f14 f5                     |
| v4          | 0, 0, 1     | f6 f7 f0 f8 f11                      |
| v5          | 1, 0, 1     | f0 f1 f2 f9 f8                       |
| v6          | 1, 1, 1     | f2 f3 f4 f10 f9                      |
| v7          | 0, 1, 1     | f4 f5 f6 f11 f10                     |
| v8          | .5, .5, 1   | f8 f9 f10 f11                        |
| v9          | .5, .5, 0   | f12 f13 f14 f15                      |
| v4          |             | v7                                   |
|             | f'          | 11 f10                               |
|             | <b>▲ f8</b> | 548 f10                              |
| 50 4        |             | f9 v6                                |
| f0 🗲        | <b>√</b> v5 |                                      |
|             | · ·         |                                      |
|             |             | f2                                   |
|             |             |                                      |
| / f1        |             |                                      |
| v0 🔨        |             | f3                                   |
|             |             |                                      |
|             |             |                                      |
|             | v1          | v2                                   |
| Diaaram lia |             | Creative Commons Attribution license |

Face List

| fO  | v0 v5 v4 |
|-----|----------|
| f1  | v0 v5 v1 |
| f2  | v1 v6 v5 |
| f3  | v1 v2 v6 |
| f4  | v2 v7 v6 |
| f5  | v2 v3 v7 |
| f6  | v3 v4 v7 |
| f7  | v3 v0 v4 |
| f8  | v8 v4 v5 |
| f9  | v8 v5 v6 |
| f10 | v8 v6 v7 |
| f11 | v8 v7 v4 |
| f12 | v9 v1 v0 |
| f13 | v9 v2 v1 |
| f14 | v9 v3 v2 |
| f15 | v9 v0 v3 |

