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ABSTRACT

An enterprise information worker is often aware of a few example
tuples (but not the entire result) that should be present in the out-
put of the query. We study the problem of discovering the minimal
project join query that contains the given example tuples in its out-
put. Efficient discovery of such queries is challenging. We propose
novel algorithms to solve this problem. Our experiments on real-
life datasets show that the proposed solution is significantly more
efficient compared with naïve adaptations of known techniques.

Categories and Subject Descriptors

H.2.4 [Database Management]: Query processing, Textual databases

Keywords

SQL query discovery, example tuples, project join query, filter se-
lection, pruning

1. INTRODUCTION
Most real-life enterprise data warehouses have large and com-

plex schemas [3, 11]. To pose queries, the user needs to understand
the schema in detail and locate the schema elements of interest; this
is a daunting task for most users. Consider a sales executive who
needs to pose a query to obtain a set of sales tuples (say, containing
which customers bought which products during a specific time pe-
riod) so that she can create a report. This information might be split
across multiple tables due to database normalization; locating those
tables requires detailed understanding of the schema. Any aid we
can provide in formulating the query or locating the relevant tables
will immensely benefit such enterprise information workers.

An enterprise information worker is often aware of a few exam-

ple tuples that should be present in the output of the query. They
are typically not aware of all tuples in the output, otherwise they
would not need to pose the query at all. The question we ask is:
how can we use this to help the user formulate the query?
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c1 Mike Jones

c2 Mary Smith
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Figure 1: Example database
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Figure 2: An example table and valid minimal query

EXAMPLE 1. Consider the simple sales and employee database

at a computer retailer (e.g., Best Buy) shown in Figure 1. The

database contains 3 fact tables (shown in green): ‘Sales’ where

each row stores which customer bought which device with which

applications (apps) installed, ‘Owner’ that stores which employee

owns which device with which app installed and ‘ESR’ (Employee

Service Requests) that stores which employee submitted service re-

quest for which app along with a textual description. There are

4 dimension tables: ‘Customer’, ‘Device’, ‘App’ and ‘Employee’

containing names of customers, devices, apps and employees re-

spectively. Each dimension table has a primary key and the fact

tables contain foreign key references to those primary keys (shown

using directed edges).

Consider the executive who needs to pose the query to obtain

sales tuples. She obviously has the desired schema of the query re-

sult in her mind: say, it should contain the name of the customer, the

name of device bought and the name of the app that was installed.

She is also aware of a few tuples that should be present in the query

result: say, she knows that a customer named ‘Mike’ (but does not

know the full name) bought a ‘Thinkpad’ (does not know the full de-
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vice name) with ‘Office’ installed, another customer named ‘Mary’

bought an ‘iPad’ (but not sure what app was installed on it) and

another customer named ‘Bob’ bought a device with ‘Dropbox’ in-

stalled on it (but not sure which device). She provides the above

information in the form of the “example table” (ET) shown in Fig-

ure 2; she can do so by typing it into a spreadsheet-style interface

(e.g., Microsoft Excel, Google Spreadsheet). Note some cells are

partially specified (e.g., customer, device, app names) and some

are totally empty.

We propose to return a small set of queries so that the user can

select one of them and easily modify it to obtain the final query.

Each returned query should have the following desired character-

istics:

(i) Its output should have the desired schema.

(ii) Its output should contain all the rows in ET.

(iii) Considering the class of SPJ queries where all joins are for-

eign key joins, there are numerous queries that satisfies (i) and (ii);

we refer to them as “valid” queries. We should return the fewest

valid queries in order to avoid overwhelming the user. At the same

time, all the distinct join paths/projected columns should be cov-

ered. Hence, we do not consider selections, i.e., we consider only

project join queries. Furthermore, we consider only the minimal

project join queries, i.e., the ones where we cannot remove any re-

lation or join condition so that it is still valid.

For the ET in Figure 2, there is only one valid minimal query

as shown in the figure. The query is represented by the join tree.

The red arrows show the projected column for each ET column.

Each projected column is labeled by the name of corresponding

ET column (A, B and C). Note that our problem is different from

query by output which aims to find the query that produces the exact

table [22, 23].

Technical Challenges: The key challenge is to compute the valid
minimal queries efficiently. Existing approaches on keyword search
in databases [1, 10, 2, 14, 9, 19, 4, 6, 15, 12] and sample driven
schema mapping [18] focus on the single input tuple scenario. A
naive adaptation to our problem is to first compute the set valid
minimal queries for each row in ET and then intersect those sets.

Most valid minimal queries for the individual tuples are not valid
for the overall ET; the latter set is much more constrained. The
above adaptation does not push these constraints down. It executes
join queries to compute valid queries for the individual tuples but
subsequently throws most of them away as they are not valid for
the overall ET. This is wasteful.

We identify a set of constraints that can be pushed below the
joins. A valid minimal query must contain a projected column for
each column C in ET; all the values in C must appear in it. We
refer to it as the column constraint for C. A valid minimal query
must satisfy the column constraints for all the columns in ET. We
define the set of candidate queries as the set of minimal project
join queries that satisfy all the column constraints. Figure 4 shows
a few examples of candidate queries. We push the column con-
straints down by first computing the candidate set; this can be done
very inexpensively (without performing any joins). We refer to this

 

Figure 4: Candidate queries

step as the candidate generation step. All the algorithms consid-

ered in the paper, including the baseline algorithms, first perform

this candidate generation step.
Not all the candidate queries are valid ones. Since the candidate

generation step is relatively inexpensive, the main technical prob-
lem is: given the set of candidate queries defined above, compute

the valid ones efficiently. We refer to it as candidate verification

problem. One option is to individually verify whether the candi-
date query contains each row in ET in its output. We perform each
candidate query-row verification by issuing a SQL join query with
keyphrase containment predicates shown in Section 4.1; we refer to
them as CQ-row verification. The algorithm (referred to as VERI-
FYALL) performs a high number of CQ-row verifications.

We observe that most candidate queries are invalid. Figure 3(a)
and (b) shows the number of candidate and valid queries for two
real-life databases and real-life ETs (we vary the # rows in the
ETs). More than 90% candidate queries are invalid. The invalid
candidate queries typically contain some of the example tuples in
their output but not all. VERIFYALL performs many CQ-row ver-
ifications for such invalid queries; this is wasteful. How can we

quickly prune the invalid candidate queries without verifying them

for any tuple?

Our main insight is that there exists sub-join trees of the can-
didate queries which, when verified for carefully selected rows of
ET, can prune many invalid candidate queries. We refer to these as
filters. This happens when the filter fails and the sub-join tree is
shared by many candidate queries. Judiciously selecting the filters
and evaluating them can significantly reduce cost. It is important to
consider sub-join trees because the original candidate queries are
rarely shared by other candidate queries, no matter how judiciously
we select. We illustrate this through an example.

EXAMPLE 2. For the ET in Figure 2, suppose there are 4 can-

didate queries generated as shown in Figure 4. The baseline ap-

proach (VERIFYALL) performs 3 (CQ1 contains all 3 rows in its

output) +2 + 2 + 2 (CQ2, CQ3 and CQ4 contain row 1 in their

output but not row 2) = 9 CQ-row verifications. There is a com-

mon sub-join tree that is shared by CQ2 and CQ3 (shown using

green dashed line). If we can verify a common sub-join tree for a

row that is likely to be not contained in its output early on, we can

prune all the candidate queries that contain that sub-join tree. Sup-

pose we evaluate the following filter first: the common sub-join tree

between CQ2 and CQ3 for the second row. It fails. We can prune

CQ2 and CQ3, thus reducing the number of CQ-row verifications

to 3(CQ1) +2(CQ4) +1(sub-join tree)= 6.

Contributions: Our contributions are summarized as follows.
• We define the end-to-end system task, introduce the candidate
generation-verification framework and define the main technical
problem in the paper: candidate verification problem (Section 2).
•We develop efficient techniques to compute the valid queries from
the set of candidate queries. All techniques considered in this paper
produce the same output (the correct set of valid minimal queries);
they differ only in efficiency. We introduce a set of filters which
can be used to prune the invalid candidate queries. We then for-
malize the candidate verification problem as the following filter se-
lection problem: find the set of filters that verifies the validity of



all the valid candidate queries and prunes all the invalid ones while
incurring the least evaluation cost. We show the problem is NP-
hard even if we have perfect knowledge about which candidates are
valid/invalid and which filters succeed/fail. In reality, where we do
not have this knowledge, we show that an algorithm can be much
worse than the optimal solution. We propose a novel algorithm and
show that it has provable performance guarantee with respect to the
optimal solution (Section 4 and 5).
•We perform extensive experiments on two real-life datasets, a real
customer support database as well as IMDB. Our experiments show
that our proposed solution significantly outperforms the baseline
approach (by a factor of 2-10) in terms of the number of CQ-row
verifications as well as execution time (Section 6).

2. MODEL AND PROBLEM
We first introduce our data model and some notations. We then

formally define the problem of discovering queries by example ta-

ble. Finally, we introduce our candidate generation-verification
framework to discover all the valid queries w.r.t. a given example
table and discuss the challenges.

2.1 Notations and Data Model
We consider a database D with m relations R1, R2, · · · , Rm.

For a relation R, let R[i] denote its ith column, and col(R) =
{R[i]}i=1,2,...|col(R)| denote the set of columns of R. For a tuple t
in R, let t[i] denote its value on the column R[i].

Let G(V, E) denote the directed schema graph of D where the
vertices in V represent the relations in D, and the edges in E rep-
resent foreign key references between two relations: there is an
edge from Rj to Rk in E iff the primary key defined on Rk is ref-
erenced by a foreign key defined in Rj . In general, there can be
multiple edges from Rj to Rk and we label each edge with the cor-
responding foreign key’s attribute name. For simplicity, we omit
edge labels in our examples and description if they are clear from
the context.

In a relation Ri, we refer to a column as text column if keyword
search is allowed on that column. Example 1 illustrates an exam-
ple database of seven relations, with arrowed lines denoting foreign
key references (i.e., edges in the directed schema graph). There are
five text columns: Customer.CustName, Employee.EmpName,
Device.DevName, App.AppName, and ESR.Desc. In the rest of
this paper, when we refer to a column, it is a text column by default.

2.2 Discovering Queries by Example Table
For a user-provided example table T , the goal of our system is

to discover (project join) queries whose answers in the database D
are consistent with T . We formally define an example table.

DEFINITION 1. (Example Table) An example table T is a table

with rows {r} and columns col(T ), where each cell of a row is

either a string (i.e., one or more tokens) or empty. For a row r ∈ T ,

let r[i] denote its value on the column i ∈ col(T ), and let r[i] = ∅
if r[i] is empty.

Without loss of generality, we assume that T does not contain
any empty row or column.

We focus on project join queries with foreign key joins. A project

join query (J , C) can be specified by: i) a join graph J ⊆ G, i.e.,
a subgraph of the schema graph G of D representing all the rela-
tions involved (vertices of J ) and all the joins (edges of J )–let
col(J ) be the set of columns of all the relations in J ; and ii) a set
of columns C ⊆ col(J ) from the relations in J , which the join
result are projected onto. Let A(J , C) be the resulting relation.

Informally, a project join query is said to be valid w.r.t. an ex-
ample table T , if every row of T can be found in the join-project
result in the database D, with the columns of T properly mapped

to the resulting relation.

DEFINITION 2. (Valid Project Join Queries) Given an exam-

ple table T in a database D, consider a project join query Q =
(J , C, φ) with a mapping φ : col(T ) → C from columns of T
to projection C. Let A(Q) be the resulting relation of the project

join query. Q is valid w.r.t. a row r ∈ T iff there exists a tuple

t ∈ A(Q) s.t. for any column i ∈ col(T ),

r[i] = ∅ ∨ r[i] ⊆ t[φ(i)], (1)

where “x ⊆ y” denotes that string x is contained in string y.

A project join query Q is valid w.r.t. an example table T , iff Q is

valid w.r.t. every row of T .

Remarks. There are various ways to define “x ⊆ y”. In our system,
we define it as: tokens in x appear consecutively in y. Synonyms
and approximate matching can be introduced to extend the defini-
tion of string containment. We can also enable users to specify that
x is a number and thus needs to exactly match y. Our system and
algorithms can be easily revised to accommodate such extensions.

Among all valid project join queries, we are interested in the
minimal ones. A valid project join query is said to be minimal

if none of relations and its foreign key join constraints can be re-
moved so that it is still valid.

DEFINITION 3. (Minimal Valid Project Join Queries) A valid

project join query Q = (J , C, φ) w.r.t. an example table T is

minimal iff i) without directions on edges, J is an undirected tree;

and ii) for any degree-1 vertex (relation) R in J , there exists a

column i ∈ col(T ) s.t. φ(i) ∈ col(R), i.e., a column of T is

mapped to a column of R.

EXAMPLE 3. Figure 2 shows an example table with three rows

and three columns {A,B,C}. Consider the database shown in Fig-

ure 1. Figure 2 shows the only minimal valid project join query

for the example table. The mapping φ defined from {A, B, C}
to projection C = {Customer.CustName, Device.DeviceName,

App.AppName} is shown using red arrows in Figure 2. We also

label each projected column with the ET column (A, B or C) it is

mapped from. The query is valid w.r.t. the first row as there is a

tuple (Mike Jones, ThinkPad X1, Office 2013) in the resulting rela-

tion that contains the three keywords in the first row. Similarly, it is

valid w.r.t. the second and third rows. It is minimal because there

is an example table column mapped to at least one column of each

degree-1 relation (Customer, Device, App).

End-to-end system task. For a user-provided example table T in
a database D, the goal of this paper is to find all the minimal valid

project join queries w.r.t. T inD.

2.3 Candidate Generation-Verification

Candidates of valid queries. In order to discover all the minimal
valid project join queries w.r.t. a given example table, our system
first generates a list of “candidates” of the final results. The list
of candidates is relatively cheap to be generated, and should be a
superset of all the valid queries.

DEFINITION 4. (Candidate Project Join Queries) Given an ex-

ample table T in a database D, a project join query Q = (J , C, φ)
is said to be a candidate project join query w.r.t. T iff for any col-

umn i ∈ col(T ),

∀r ∈ T ∃t ∈ A(Q) s.t. r[i] ⊆ t[φ(i)]. (2)
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Similarly, a candidate project join query is said to be minimal if it

satisfies the conditions i) and ii) in Definition 3.

The minimal candidate project join queries are defined on the
schema level, and no join is needed to generate them, so we can
enumerate them efficiently. Details will be discussed in Section 3.
We will call them candidate queries or candidates for short in the
rest of this paper.

Intuitively, the strings in each column of the example table should
appear in the corresponding (mapped) column of the resulting re-
lation of the candidate query. Equation (2) states this intuition for-
mally. We can easily prove the following result to ensure the set of
candidates is complete.

COROLLARY 1. Any (minimal) valid project join query must

also be a (minimal) candidate project join query, for a given exam-

ple table in any database.

EXAMPLE 4. Figure 4 shows the four candidate queries for the

example table in Figure 2. The candidate query CQ1 is the only

valid query, and the rest of them are invalid.

Candidate verification. Suppose the set of all the candidate queries
QC has been generated, in the rest of this paper, the task we focus
on is to remove all the false positives.

3. SYSTEM ARCHITECTURE
The query discovery system has two components: offline prepro-

cessing and query time processing.

3.1 Offline Pre-processing
There are 2 main steps in this component:
• Build FTS and other indexes on relations: As discussed in
Section 1, we perform CQ-row verifications by executing SQL join
queries with keyphrase containment predicates. Hence, we build a
full text search (FTS) index on each text column of each relation in
the database. All major commercial DBMSs support FTS indexes
on text columns. We also assume appropriate physical design for
efficient execution of the SQL join queries, specifically indexes on
the primary and foreign key columns.
• Build master inverted index on columns: Our candidate gener-
ation step first identifies base table columns that satisfy the column
constraints; we build a single master inverted index over all text
columns in the database for that purpose. We refer to it as column

index (CI). Given a string W , CI(W ) returns the cells (and their
corresponding columns) containing W . Since commercial DBMSs
do not support such a master index, we implement CI using an in-
formation retrieval (IR) engine. We scan each text column in the
database. For each token in each cell in each column, we create a
“posting” containing the column identifier (which uniquely identi-
fies it across all columns in the database), the cell identifier (which

1 for each column i ∈ col(T )
2 Compute the set Ci of candidate projection columns
3 QC← GenerateCandidateQueries(G, C1, C2, · · · , C|col(T )|)
4 QV ← VerifyCandidateQueries(QC , T , D)

Table 1: Query discovery algorithm

uniquely identifies it within the column) and token position within
the cell and store it in the posting list of the token. We can sup-
port the operation CI(W ) using these posting lists. Any IR engine
(e.g., Lucene) that allows customization of the payload in a posting
can be used to implement CI.

3.2 Query Time Processing
Figure 5 shows the architecture of this component. The pseu-

docode of the overall query discovery is shown in Table 1. There
are two main steps in this component:
• Candidate query generation. The input to this step is the ET T
and the output is the set QC of candidate queries of T (as defined
in Definition 4). This step consists of two substeps:
(1) Candidate projection column retrieval: For each column i ∈
col(T ) in the ET T , we first identify the set of base table columns
that satisfies the column constraint (lines 1-2 in Table 1). These
are the ones that contain all the values in column i. We refer to
them as the candidate projection columns for column i. For ex-
ample, the candidate projection columns for the ET in Figure 2
are Customer.CustName and Employee.EmpName (for column
A), Device.DevName (for column B) and Apps.AppName and
ESR.Desc (for column C).

We leverage the column index (CI) for this purpose. For each
non-empty cell T [i, j] in column j, we issue a query CI(T [i, j])
against the CI. Let cols(T [i, j]) denote the distinct columns in the
output of CI(T [i, j]). Then the set Cj of candidate projection
columns for column j of ET T is:

Cj =
⋂

i,T [i,j] 6= empty

cols(T [i, j]) (3)

(2) Candidate query enumeration: Given the candidate projection
columns Cj of each column j in ET, we enumerate the candidate
queries QC by traversing the schema graph. We use a straight-
forward adaptation of candidate network generation algorithm pro-
posed in [10] (line 3 in Table 1).

This step does not perform any joins and represents a negligible
fraction of the overall query processing time.
• Candidate query verification. The input to this step is the ET
T and the set QC of candidate queries. The output is set QV of
valid queries. This is the main contribution of the paper. The rest
of the paper focuses on this step. Section 4 presents two baseline
algorithms for candidate verification while Section 5 presents the
proposed approach.

4. BASELINES FOR CANDIDATE VERIFI-

CATION

4.1 Baseline Algorithm (VERIFYALL)
One way to verify whether a candidate query is valid is to ex-

ecute it and check whether its output contains all the rows in the
ET [23]. This is typically very expensive, hence we do not follow
this approach.

Since ET typically contains a few rows (typically less than 10), a
more efficient alternative is to individually verify whether the can-
didate query contains each of the rows in ET in its output. We
henceforth refer to it as verifying the candidate query “for the row”.
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Recall that a candidate query (J , C, φ) contains the row r ∈ T in
its output iff there exists a tuple t in its output such that every non-
empty cell r[i] in that row is textually contained in t[φ(i)] (Defini-
tion 2). Hence, we can verify the candidate query (J , C, φ) for row
r by issuing the following SQL query and checking the results:
SELECT * TOP 1

FROM V (J )

WHERE E(J ) ∧
∧

i∈col(T ),r[i] 6=∅ CONTAINS(φ(i), r[i])

where V (J ) denotes the set of vertices (relations) of J and E(J )
the set of edges (join conditions) inJ . For example, the SQL query
to verify the candidate query CQ1 in Figure 4 for the second row
in the ET in Figure 2 is:

SELECT * TOP 1 FROM Sales, Customer, Device, App

WHERE Sales.CustId=Customer.CustId AND

Sales.DevId=Device.DevId AND Sales.AppId=App.AppId AND

CONTAINS(CustName,‘Mary’) AND CONTAINS(DevName,‘iPad’)

If the result is non-empty, the candidate query (J , C, φ) contains
row r, if it is empty, it does not. We also refer to it as candidate
query “satisfies” the row r and “fails” for the row r respectively.
Since we just need to check the existence of a row, we use TOP 1
in the SELECT clause to reduce the data transfer cost. We refer to
these SQL queries as “CQ-row verifications”.

The baseline algorithm (referred to as VERIFYALL) iterates over
the candidate queries QC in the outer loop and the rows in ET in
the inner loop (or vice versa) and executes the SQL queries. If a
candidate query fails for a row, we eliminates it right away, i.e., do
not verify it for the remaining rows. Note that the order of the can-
didate queries does not affect the number of CQ-row verifications
performed but the order of the rows does. In our experiments, we
consider random ordering of rows. We also consider the rows in
decreasing order of number of non-empty cells. This is because a
candidate query is more likely to fail for densely populated rows;
verifying them first might lead to early elimination of candidate
queries.

EXAMPLE 5. Figure 4 shows a subset of the candidate queries

(4 of them) for the ET in Figure 2 on the example database in Figure

1. VERIFYALL performs 3 CQ-row verifications for CQ1 as it

satisfies all 3 rows and 2 each for the other 3 candidate queries as

they all satisfy row 1 but fail for row 2. Hence, it performs a total

of 9 CQ-row verifications.

Although simple, VERIFYALL is wasteful as it performs many
CQ-row verifications for invalid candidate queries. In the worst
case, it performs |T |× |QC| CQ-row verifications, where |T | is the
number of rows in ET. This is expensive as each CQ-row verifica-
tion involves one or more joins.

4.2 Simple Pruning Algorithm
Since most candidate queries are invalid, we can speed up candi-

date verification by quickly pruning the invalid candidate queries.
We observe that there exist dependencies among the results of CQ-
row verifications. This can be used to prune candidate queries, i.e.,
eliminate them without verifying for any rows.

Consider the ET in Figure 2 and two candidate queries in Fig-
ure 6. CQ2 fails for the second row. This implies that CQ5 will

also fail for that row. This is because: (1) the join tree in CQ2

is a subtree of that in CQ5 and (2) the non-empty columns in the
second row (i.e., columns A and B) are mapped to the same base
table columns; they both map A and B to Employee.EmpName and
Device.DevName respectively. Since CQ2 does not contain a tuple
whose values on Employee.EmpName and Device.DevName con-
tains ‘Mary’ and ‘iPad’ respectively in its output, any “supertree”
(e.g., CQ5) is more restrictive and hence cannot contain such a tu-
ple in its output. We refer to it as the “failure dependency”:

LEMMA 1 (FAILURE DEPENDENCY). For an ET T , the fail-

ure of candidate query Q1 = (J1, C1, φ1) on row r in T implies

the failure of candidate query Q2 = (J2, C2, φ2) for row r in T if:

i) J1 is a subtree of J2 and ii) for any column i ∈ col(T ),

r[i] = ∅ ∨ φ(i) = φ′(i)

We denote (Q1, r) ≻− (Q2, r) iff Q1 and Q2 satisfies i) and ii)
in Lemma 1.

If we evaluate CQ2 on row 2 earlier, we can prune CQ5 right
away. We present a simple algorithm SIMPLEPRUNE that leverages
the above observation to save CQ-row verifications. Like VERI-
FYALL, SIMPLEPRUNE iterates over the candidate queries in the
outer loop and the rows in the inner loop. It maintains the list of
CQ-row verifications performed so far that failed. When we en-
counter a new candidate query Q during the outer loop iteration,
we first check whether there exists a CQ-row evaluation (Q′, r) in
that list such that (Q′, r) ≻− (Q, r). If so, we can prune Q imme-
diately as it is guaranteed to fail for row r and hence is not valid.
Otherwise, we verify it for all the rows.

Since the join trees corresponding to the candidate queries are
small, the overhead of checking failure dependencies is negligible;
the cost is dominated by that of executing the CQ-row verifications.

Unlike VERIFYALL, the order of candidate queries affects the
number of CQ-row verifications performed by SIMPLEPRUNE. In-
tuitively, smaller join trees are more likely to have supertrees and
verifying them first will result in more pruning. Hence, we order
the candidate queries in increasing join tree size.

EXAMPLE 6. Consider the ET in Figure 2 and two candidate

queries in Figure 6. VERIFYALL performs 4 CQ-row verifications

(both candidate queries satisfy row 1 and fail for row 2). SIM-
PLEPRUNE verifies CQ2 first and then CQ5. It performs 2 CQ-

row verifications for CQ2. When it encounters CQ5, it finds a CQ-

row verification (CQ2, 2) in the failed list. Since (CQ2, 2) ≻−

(CQ5, 2), it prunes CQ5. The total number of CQ-row verifica-

tions reduces from 4 to 2.

5. FAST VERIFICATION VIA FILTERS
We focus on how to speedup candidate verification, which is the

bottleneck of our system. We first introduce the concept of filters

together with its properties in Section 5.1 and give intuitions on
why it is the key to the speedup. Intuitively, a filter is a substruc-
ture of a candidate query. A candidate is valid only if all of its
filters are valid, and a single filter is invalid implies that the candi-
date is invalid. Different candidates may share common filters and
evaluating filters is usually cheaper than evaluating the candidate
itself, so evaluating those shared filters first is usually beneficial.
On the other hand, the number of filters is usually much larger than
the number of candidates, so we need to select the filters to be eval-
uated judiciously, for which we define the filter selection problem

in Section 5.2. This problem is shown to be hard in theory but we
propose an effective adaptive solution in Section 5.3, which works
well in practice and has provable performance guarantee.
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Figure 7: Two filters of candidate query CQ2 (in Figure 4) on

the first row of the example table (in Figure 2)

5.1 Utilizing Filters of Candidate Queries
SIMPLEPRUNE can achieve significant pruning only if there are

many subtree-supertree relationship among the candidate queries.
Most pairs of candidates do not have this relationship. Figure 4
shows four candidates; and no pair has subtree-supertree relation-
ship. So SIMPLEPRUNE achieves limited pruning with little reduc-
tion in execution cost.

Inspired by SIMPLEPRUNE, we find that there is a high degree

of overlap of common subtrees among the candidate queries. A
subtree in a candidate’s join tree is more likely to be a subtree in
multiple other candidates. Failure of such a subtree for a single row
will imply the invalidness of all the candidates containing it. In Fig-
ure 4, failure of the common subtree shown using green dashed line
implies that the two candidate queries CQ2 and CQ3 are invalid.
Hence, considering subtree-row verifications can result in fast ver-
ification/pruning of candidates. Such subtree-row verifications are
formally defined as filters below.

DEFINITION 5. (Filter) Given project join query Q = (J , C, φ)
w.r.t. an example table T in a database D, a filter is defined for

each connected sub-join tree J ′ ⊆ J and each row r ∈ T as

Q(J ′, r) = (J ′, C′, φ′, r), where:

(i) C′ = col(J ′) ∩ C is the set of common columns in relations of

J ′ and projection C, and;

(ii) φ′ = φ ⊲ C′ is the range restriction of φ on the set of columns

C′: for any column i ∈ col(T ), φ′(i) = φ(i) if φ(i) ∈ C′ and is

undefined (φ′(i) = ∗) otherwise.

If J ′ = J , Q(J ′, r) is called a basic filter. We denote the set of

all filters of Q as F(Q), and the set of all basic filters as FB(Q),
if T and D are clear from the context.

Remarks. Two filters F1 = (J1, C1, φ1, r1) and F2 = (J2, C2,
φ2, r2) are identical iff the four parameters Ji’s, Ci’s, φi’s, and ri’s
are identical. So two candidate queries Q1 and Q2 may share the
same filter Q1(J

′, r) = Q2(J
′, r) as long as they are the same

within the sub-join tree J ′.

EXAMPLE 7. Figure 7 shows two filters of candidate query CQ2

in Figure 4 on the first row of the example table in Figure 2. Each of

them has the sub-join tree specified on the top, and C′, φ′ specified

below. The right one is a basic filter.

Finally, we discuss the evaluation of a filter and its result. A
filter succeeds if the row r is found to be consistent to the join
result according to the mapping φ′, and fails otherwise. Formally,
we have

DEFINITION 6. (Filter Success and Failure) Consider an ex-

ample table T in a database D. A filter Q(J ′, r) = (J ′, C′,

φ′, r) of a candidate query Q succeeds iff there exists a tuple

t ∈ A(J ′, C′) s.t. for any column i ∈ col(T ) with φ′(i) ∈ C′,
we have r[i] 6= ∅ ⇒ r[i] ⊆ t[φ(i)], and fails otherwise.

Filters can be easily verified using a SQL query. For example,
the SQL to evaluate the left filter in Figure 7 is:

SELECT * TOP 1 FROM Owner, Employee, Device

WHERE Owner.EmpId=Employee.EmpId AND

Owner.DevId=Device.DevId AND

CONTAINS(EmpName,‘Mike’) AND CONTAINS(DevName,‘ThinkPad’)

5.1.1 Dependency Properties of Filters

The goal of the filters is to quickly prune the invalid candidate
queries. We do so by leveraging the dependencies among the eval-
uation results of filters as well as between results of filters and the
candidate queries.

Filter-query dependency. We first consider dependencies between
the evaluation result of filters and the candidate queries. Directly
from the definition, we have:

LEMMA 2. (Filter-Query Dependency) The failure of a filter

F ∈ F implies a candidate Q is invalid iff F ∈ F(Q).

We denote F ≻− Q iff F ∈ F(Q), and letQ→−(F ) = {Q | F ∈
F(Q)} be the set of candidates whose invalidness can be implied
by the failure of filter F .

Inter-filter dependency. Failure of a filter may imply failure of
other filters. Lemma 3 presents such failure dependencies among
the basic filters; this result generalizes to all filters.

LEMMA 3. (Inter-Filter Failure Dependency) the failure of a

filter F1 = (J1, C1, φ1, r) implies the failure of a filter F2 =
(J2, C2, φ2, r) if i) J1 is a sub-join tree of J2 and ii) for any col-

umn i ∈ col(T ), r[i] = ∅ ∨ φ1(i) = ∗ ∨ φ1(i) = φ2(i).

We denote F1 ≻− F2 iff F1 and F2 satisfies i) and ii) in Lemma 3.
We also write F→−(F1) = {F2 | F1 ≻− F2} as the set of filters
whose failure is implied by F1’s failure.

Success of a filter may also imply success of other filters.

LEMMA 4. (Inter-Filter Success Dependency) The success of

a filter F1 = (J1, C1, φ1, r) implies the success of a filter F2 =
(J2, C2, φ2, r) if i) J2 is a sub-join tree of J1 and ii) for any col-

umn i ∈ col(T ), r[i] = ∅ ∨ φ2(i) = ∗ ∨ φ1(i) = φ2(i).

We denote F1 ≻+ F2 iff F1 and F2 satisfies i) and ii) in Lemma 4.
We also write F→+(F1) = {F2 | F1 ≻+ F2} as the set of filters
whose success is implied by F1’s success.

EXAMPLE 8. Again consider the two filters F1 and F2 in Fig-

ure 7 of the candidate query CQ2 in Figure 4 on the same row of

the example table. It is not hard to verify the conditions in Lem-

mas 3-4 and thus F1 ≻− F2 and F2 ≻+ F1.

5.1.2 Adaptive Filter Selection

We use a running example to show intuitions on why and how
we can benefit from filters when verifying candidates.

Consider the example table in Figure 2 over the database in Fig-
ure 1. Let’s focus on three candidates queries CQ2, CQ3, and
CQ4 in Figure 4. Figure 8 shows four sub-join trees J1, . . . ,J4

of these candidates, with the projection columns in the underlined
relations. Columns {A, B, C} in the example table are mapped to
the projection columns as labeled in the figure. We use (Ji, j) to
denote a filter for the sub-join tree Ji on the jth row of the ex-
ample table–projection column and φ are omitted for simplicity as
they have been specified with the sub-join trees in the figure.
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Figure 8: Utilize filters for candidate verification

The lower part of Figure 8 shows twelve filters (four sub-join
trees on three rows). Each filter F = (Ji, j) is connected to a
candidate CQi if F ∈ F(CQi). The node corresponding to a filter
is filled if the filter successes, and is not filled otherwise, which is
unknown before evaluating.

Judicious. The three candidates CQ2, CQ3, and CQ4 are all
invalid. To verify this, we only need to evaluate two filters (J1, 3)
and (J2, 3). However, even if we know the evaluation results be-
forehand, how to choose the minimum set of failed filters to cover
those invalid candidates is a hard problem (consider the Set Cover
problem). So our algorithm needs to be judicious in choosing filters
to evaluate.

Information of failure likelihood. Without any additional infor-
mation about the likelihood to fail for each filter, it is possible for
our algorithm to ends up with evaluating all the successful filters
before evaluating the failed ones. So we need at least a rough esti-
mation of how likely a filter fails.

Adaptive. We need to choose the next filter to evaluate adap-
tively. For example, suppose we evaluated (J2, 3) at some point
and found it failed. Then the next filter we want to choose should be
among {(J1, 1), (J1, 2), (J1, 3)}, because now, only the validness
of CQ3 is unknown and we can focus on only the filters associated
with CQ3.

We will take into account these three intuitions in the following
problem formulation and algorithm design.

5.2 Filter Selection Problem
We now introduce the filter selection problem. For all the can-

didate queries QC of a given example table T , we want to verify
the validness of these queries by evaluating filters. Recall F =
∪Q∈QC

F(Q) is the set of all filters derived from the candidates,
and FB = ∪Q∈QC

FB(Q) ⊆ F be the basic ones. Indeed, it is not
necessary to evaluate all the filters in F , and our goal is to evalu-
ate the set of filters with the least cost so that all the candidates are
verified as valid/invalid. More formally, when the following termi-

nation condition is satisfied, all the candidates have been verified.

Termination condition. Let F̂ ⊆ F be the set of evaluated filters.
F̂ satisfies the termination condition if: i) for each valid query Q
in QC, FB(Q) ⊆ F̂ : we have evaluated all the basic filters in
FB(Q) to verify this query is valid w.r.t. every row in the example
table T ; and ii) for each invalid query Q, there exists a failed filter
Q(J , r) ∈ F̂ : we have evaluated at least one failed filter Q(J , r)
in F(Q).

Problem statement (FILTERSELECTION)
Given the set of filtersF for all the candidate queriesQC of a user-

specified example table T in a database D, and suppose each filter

F ∈ F is associated with some cost, denoted by cost(F ) ∈ ℜ, to

find the set of filters F̂ ⊆ F that satisfies the termination condition

defined above, with the objective to minimize total evaluation cost

for filters in F̂:

minimize
∑

F∈F̂

cost(F ) (4)

s.t. F̂ ⊆ F satisfies the termination condition.

Remarks. We want to point out that the cost of evaluating a filter is
hard to be estimated in general. In our system, we use the number
of joins in a filter F to approximate the cost. Although this approx-
imation is not perfect, it is sufficient as a guideline for our filter
selection algorithm. Furthermore, the overhead of the filter selec-
tion algorithm is negligible compared with the cost of evaluating
the filters. So, we ignore the former in our cost model.

Hardness results. The hardness of FILTERSELECTION lies in two
aspects. First, even if our algorithm has perfect knowledge about
which candidates are valid or invalid and which filters success or
fail (but still need to perform the evaluation action), FILTERSE-
LECTION is hard as a combinatorial problem. Second, as the valid-
ness of each candidate and the evaluation result for each filter are
unknown before the evaluation starts, without the perfect knowl-
edge, an algorithm can be much worse than the optimal solution.
The two aspects of hardness are formulated as follows.

THEOREM 1. The FILTERSELECTION problem is NP-hard, with

|F|+ |QC| as the input size of the problem.

THEOREM 2. Let MIN be the minimum number of filters that

need to be evaluated in FILTERSELECTION. For any algorithm,

there exists an instance of FILTERSELECTION s.t. the algorithm

choses to evaluate Ω(|T |) ·MIN filters, where |T | is the number of

rows in the example table T .

In the following part of this subsection, we will introduce an
algorithm that performs much better in practice, and provide theo-
retical analysis for its performance.

5.3 Adaptive Verification Algorithm
The algorithm we propose for FILTERSELECTION is adaptive, in

the sense that it chooses to evaluate a sequence of filtersF1, F2, . . .,
in F in a way that the choice of Fi depends on the evaluation re-
sults of F1, . . . , Fi−1. We use ex(Fi) ∈ {+,−} to denote the
evaluation result of Fi, with “+” representing success and “−” rep-
resenting failure. Similarly, we use ex(Q) ∈ {+,−} to denote the
validness of a candidate query Q, with “+” representing valid and
“−” representing invalid. Initially, we have FX = F as the set of
filters whose evaluation result is unknown, and QX = QC as the
set of candidate queries whose validness is unknown.

In each iteration, when we choose to evaluate filter Fi, if the re-
sult is success, the evaluation result of all queries that have success
dependency can be also determined to be success, and thus we re-
move Fi together with {F | Fi ≻+ F} from FX; and if the result
is failure, we know every query Q with Fi ∈ F(Q) is invalid, so
we remove those queries from QX, and also remove Fi and filters
in {F | Fi ≻− F} that are known to be failed from FX. At the
same time, if at some point, all the basic filters of a candidate query
Q are evaluated to be success, we know Q is valid and thus Q can
be also removed from QX. The algorithm can terminate when QX

is empty, i.e., the validness of all candidate queries is known. The
framework is formalized in Algorithm 1.

Based on the properties of failure and success dependencies (Lem-
mas 2-4), we can prove the above algorithm correctly verifies the
validness of all candidate queries. As long as SelectNext (in line
3) picks a filter Fi ∈ FX each time, the final sequence of queries



Algorithm 1: AdaptiveVerify(F ,QC)

Input : all filters F and all candidate queries QC

Output: validness ex(Q) for each Q ∈ QC

1 FX ← F , QX ← QC, i← 1;
2 whileQX 6= ∅ do

3 Fi ←
SelectNext(F ,QC, F1, . . . , Fi−1, ex(F1), . . . , ex(Fi−1)),
evaluate Fi, and let FX ← FX − {Fi};

4 if Fi succeeds then

5 FX ← FX − {F | Fi ≻+ F};
6 for each Q ∈ QX, if FB(Q) ⊆ F − FX:
7 ex(Q)← “+” andQX ← QX − {Q};

8 else

9 FX ← FX − {F | Fi ≻− F};
10 for each Q ∈ QX, if Fi ∈ F(Q):
11 ex(Q)← “−” andQX ← QX − {Q};

12 Return ex(Q) for all candidate queries;

{F1, . . . , Fn} satisfies the termination condition defined earlier for
FILTERSELECTION problem.

THEOREM 3. Algorithm 1 can correctly verify the validness of

all candidate queries inQC.

The only missing block in Algorithm 1 is how to choose the next
filter to evaluate based on the current evaluation results, i.e., func-
tion SelectNext in line 3. The choice of Fi in each iteration is
critical to the overall performance (measured by the total cost of
filters needed to be evaluated). We will introduce our solution and
analyze why it performs well using a probabilistic model in the fol-
lowing part.

5.3.1 Greedy Filter Selection

Intuitively, the selection of Fi depends on i) its evaluation cost;
and ii) how much it can benefit the following verification process. i)
has been modeled as cost(Fi) when we define the FILTERSELEC-
TION problem. However, ii) is hard to be modeled as the algorithm
has no knowledge about whether a filter successes or fails before
evaluating it, which leads to the hardness result in Theorem 2. We
first introduce a probabilistic model which provides the algorithm
clue on how likely a filter will succeed to make the decision.

Probabilistic model on filter failure. Consider the set of all can-
didate queries QC and all the filters F . All the valid candidates
Q+ and invalid candidates Q− (Q+ ∪ Q− = QC) are fixed. Let
F(Q+) be the set of filters associated with some query inQ+, and
F(Q−) be the ones associated with some inQ−. Indeed, all filters
in F(Q+) must success. The probabilistic model is about filters
in F(Q−) − F(Q+), i.e., the ones that are possible to fail. For
each filter F ∈ F(Q−) − F(Q+), we assume it will fail with
certain probability p(F ) = Pr [F fails], because the user’s input
example table T is “random”. For each filter F ∈ F(Q+), define
p(F ) = 0 (i.e., F must succeed). It is hard to estimate p(F ) in
general. And in our system, the estimation should not be compu-
tationally expensive. Therefore, we employ the following simple
model to approximate p(F ).

Consider filter F = (J , C, φ, r) for a row r in T . Let nF be the
number of non-empty cells in r that are mapped to a column in C ⊆
col(J ), i.e., nF = |{i | φ(i) 6= ∗ ∧ r[i] 6= ∅}|. Recall |col(T )| is
the total number of columns in T . And we assume that the average
failure probability is a constant p̄. Intuitively, p(F ) is proportional

to nF and inversely proportional to col(T ) (more constraints imply
higher probability to fail). It should also be proportion to p̄. Putting
them together, we let p(F ) = p̄ · nF

|col(T )| . Again, it is a very rough

estimation (similar to cost(F )), but it suffices for our theoretical
performance analysis, as a guideline for choosing filters, and it is
shown to be effective in experiments.

Verification workload. Now we quantify the workload that is done
by evaluating a filter Fi. We use W(Fi | F1, . . . , Fi−1) to de-
note the workload done, or benefit, by evaluating Fi given that
F1, . . . , Fi−1 have been evaluated. Let QX and FX be as before
line 3 in Algorithm 1. Two cases are considered separately (Fi

succeeds or fails):

i) Fi succeeds: For each candidate Q ∈ QX, if a filter F ∈
F(Q) is not verified yet, i.e., F ∈ FX, the success of Fi

implies the success of F if Fi ≻+ F . Recall F→+(Fi) =
{F | Fi ≻+ F}. The workload done by Fi is defined to be
all such (query, filter) pairs:

W+(Fi|F1 . . . , Fi−1) =
∑

Q∈QX

|F(Q)∩FX∩F→+(Fi)|. (5)

ii) Fi fails: In this case, every candidate query Q ∈ QX with
Fi ∈ F(Q) can be verified as invalid. So all the remaining
workload on Q can be considered done, which is the number
of unevaluated filters in F(Q) ∩ FX:

W−(Fi|F1 . . . , Fi−1) =
∑

Q∈QX: Fi∈F(Q)

|F(Q) ∩ FX|. (6)

Within our probabilistic model described above, the workload
W(Fi|F1 . . . , Fi−1) done by Fi is a random variable:

W(Fi| . . .) =

{

W+(Fi| . . .) with probability 1− p(Fi)
W−(Fi| . . .) with probability p(Fi)

.

(7)
But no matter which sequence F1, F2, . . . , Fn Algorithm 1 takes

from the beginning to the termination and whether each filter Fi

succeeds or fails, we have the total workload to be done fixed by
input, as stated in the following lemma.

LEMMA 5. For any sequence of filters F1, F2, . . . , Fn such that

the termination condition is achieved after they are evaluated in or-

der, we have:

n
∑

i=1

W(Fi | F1, . . . , Fi−1) =
∑

Q∈QC

|F(Q)|. (8)

Filter selection criterion. Now we are ready to present our cri-
terion for selecting the next filter to evaluate in Algorithm 1, i.e.,
function SelectNext:

In line 3 of each iteration, we choose Fi from the set of all filters
that are not evaluated yet (and not implied by the previously eval-
uated ones), i.e., the set FX. We choose the one that maximizes
expected workload per unit cost:

Fi ← arg max
F∈FX

E [W(F |F1, . . . , Fi−1)]

cost(F )
, (9)

where the expectation done by F is E [W(F | . . .)] = (1− p(F )) ·
W+(F | . . .) + p(F ) ·W−(F | . . .).

We want to emphasize that Algorithm 1 can be executed with-
out any probabilistic model/assumption. All the quantities in (9)
can be computed from the data. The probabilistic model is only



used for the analytical purpose. We will demonstrate that Algo-
rithm 1 with the SelectNext function defined in (9) is effective in
practice in Section 6. In the rest of this section, we explain why it
performs well from a theoretical point of view based on the proba-
bilistic model.

5.3.2 Performance Analysis

The toolbox we use to analyze the performance of Algorithm 1 is
called adaptive submodularity introduced by [7]. It is an extension
to submodularity on probabilistic data to capture diminishing return
in expectation. In our case, the definition in [7] can be revised as
follows.

DEFINITION 7. (Adaptive Diminishing Marginal) The function

W(F | . . .) is said to be adaptive diminishing on marginal, iff for

any two sets of filters F1 and F2 with F1 ⊆ F2 and the same eval-

uation results on the common filters (in F1), we have W(F |F1) ≥
W(F |F2) for any filter F /∈ F2.

We can prove that the workload function W(F | . . .) defined by
Equations (5)-(7) is indeed diminishing on marginal. The proof is
omitted because of space limit.

LEMMA 6. The workload function W(F | . . .) defined by Equa-

tions (5)-(7) is adaptive diminishing on marginal.

With Theorem 7.1 in [8] and Lemmas 5-6 here, we can prove the
following performance ratio of Algorithm 1.

THEOREM 4. Let SOL be the total cost of filters evaluated by

Algorithm 1. Let OPT be the minimum expected total cost of filters

chosen by any algorithm with no knowledge about which filters
succeed or fail. We have

E [SOL] ≤ (1 + ln |F|+ ln |QC|+ 2|col(T )|) ·OPT.

Remark. Because of the space limit, we omit the proof of the
above theorem. But we want to mention several important points.
i) The performance guarantee holds under the probabilistic model
described in Section 5.3.1 with a reasonable independence assump-
tion: when two filters have no success/failure dependency between
them, they are independent. But the algorithm itself does not rely

on any probabilistic model or assumption and can be applied for

any dataset. ii) The factor 2|col(T )| seems to be large, but in fact,
in our analysis, it only applies to the portion of cost for verifying
the set of valid candidate queries, which is usually a small subset
of all candidates QC. The form of bound we present in Theorem 4
is not tight, and Algorithm 1 performs well in practice as shown in
the experiments.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of the tech-

niques proposed in this paper. The goals of our study are:
• To compare the performance of our FILTER approach with VER-
IFYALL and SIMPLEPRUNE

• To evaluate the sensitivity of VERIFYALL, SIMPLEPRUNE and
FILTER on various example tables
• To compare our FILTER approach with WEAVE algorithm pro-
posed in [18]

6.1 Experimental Setting
Datasets. We perform experiments on two real-world datasets:
IMDB and CUST. IMDB is a database of information related to
movies, directors and actors, with size of 10GB. CUST is a large

Table 2: Datasets
Relations Edges Columns Text Columns

IMDB 21 22 101 42

CUST 100 63 1263 614

Table 3: Parameter ranges and default values(underlined)
Parameter Description Range

m row number 2, 3, 4, 5, 6
n column number 2, 3, 4, 5, 6
s sparsity 0, 0.2, 0.3, 0.5, 0.7
v cell value length 1, 2, 3
l maximal join length 3, 4, 5

data collection about customer service and IT support from a For-
tune 500 company, with size of 90GB. Table 2 provides the details
for these two datasets.
Example table generation. We generate example tables for the
experiments as follows. First, we choose 10 meaningful join graphs
based on database schema graph. Each join graph contains more
than 6 text columns. We execute the join query for each graph and
project the result on all the text columns involved. The project join
result forms a matrix. Thus, we have 10 matrices.

We then generate example tables based on the above matrices.
We control the example tables generated via 4 parameters:
•m: number of rows
• n: number of columns
• s: sparsity of the table, i.e., fraction of empty cells
• v: value length (i.e., number of tokens) in non-empty cells

Given a matrix and the values for the four parameters, we gener-
ate an example table in three steps:
1) we generate a m×n grid by selecting m random complete rows
(i.e., without empty cells) from the matrix and projecting them onto
n random columns
2) we randomly choose ⌊m×n×s⌋ cells from the grid to be empty.
3) if there is no completely empty row or column in the grid, we
keep the first v tokens for each non-empty cell and get an example
table. Otherwise, go to Step 2.
Algorithms. We implement four algorithms for the experiments:
• VERIFYALL as described in Section 4.1
• SIMPLEPRUNE as described in Section 4.2
• FILTER: our proposed algorithm
•WEAVE: the approach proposed in [18]
Measure. We measure the performance of the algorithms via three
metrics: the number of verifications performed to find the valid
queries from the candidate queries, the total estimated cost of these
verifications (i.e., the sum of join tree sizes) and the execution time.
For the FILTER algorithm, the number of verifications is the num-
ber of filters evaluated. We observe the total estimated cost is con-
sistent with the number of verifications throughout the experiments;
we do not include those charts to avoid duplication.

We implement all the algorithms in C# and run experiments on
a 64-bit Windows 7 machine with 3.4GHz Intel CPU and 8GB of
RAM. We use SQL Server 2012 Enterprise Edition as the DBMS.

6.2 Comparison of Various Approaches
We compare our FILTER approach with VERIFYALL and SIM-

PLEPRUNE for ETs with different numbers of rows, columns, spar-
sities and cell value lengths. We also measure the effect of maxi-
mal join length l (i.e., the allowed maximal join tree size in a valid
query) on the performance of three algorithms. Table 3 shows the
ranges for the five parameters. Unless otherwise specified, we use
the underlined default values. For a given choice of the parameter
values, we generate 5 ETs from each of the 10 matrices, resulting
in 50 ETs. All results are averaged over the 50 ETs.
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Figure 9: Vary the number of rows (IMDB)
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Figure 10: Vary the number of columns (IMDB)

6.2.1 Results on IMDB

We first present the results on IMDB dataset.
Varying the number of rows. Figure 9(a) shows the number of
verifications for ETs with different numbers of rows (m). On aver-
age, FILTER outperforms VERIFYALL and SIMPLEPRUNE by per-
forming 5X and 2X fewer verifications respectively. Furthermore,
FILTER is robust to m, i.e., it requires similar number of verifi-
cations as m varies. On the other hand, VERIFYALL and SIM-
PLEPRUNE is sensitive to m. VERIFYALL performs more verifi-
cations for smaller m as there are more candidate queries. SIM-
PLEPRUNE has a U-shaped curve: it performs worse for very low
and high values of m (m = 2, 6) and better for medium values
(m = 3, 4, 5). For very low values of m, it performs too many ver-
ifications as there are many more candidate queries; for very high
values of m, there are fewer candidate queries but they need to be
verified for more rows, thus leading to higher number of verifica-
tions.

Figure 9(b) shows the execution time on IMDB. FILTER runs 4X

and 3X faster than VERIFYALL and SIMPLEPRUNE respectively
for all the values of m. The execution time is not always consistent
with the number of verifications as it is affected by various factors
such as number of joins in the candidate queries as well as their
execution plans determined by the database query optimizer.
Varying the number of columns. Figure 10(a) shows the num-
ber of verifications performed for ETs with different numbers of
columns (n). FILTER requires fewer verifications than VERIFYALL

and SIMPLEPRUNE over all the column values. The difference be-
comes larger when n increases. For n = 6, FILTER saves nearly
50% and 30% of verifications for VERIFYALL and SIMPLEPRUNE,
respectively. Furthermore, FILTER is robust to n while the other
two approaches perform more verifications as n becomes larger.

Figure 10(b) provides the execution time. FILTER is 2X and

1.5X faster faster than VERIFYALL and SIMPLEPRUNE respec-
tively. For both FILTER and SIMPLEPRUNE, the execution time de-
creases with the increase of n. This is because more input columns
lead to candidate queries with different join tree sizes; this pro-
vides more opportunities to leverage failure dependencies (for SIM-
PLEPRUNE) and shared filters (for FILTER) for pruning.
Varying sparsity. Figure 11(a) shows the average number of ver-
ifications for different values of sparsity (s). FILTER outperforms
SIMPLEPRUNE by performing 2X fewer verifications over all the
sparsity values, and is significantly better than VERIFYALL. FIL-
TER is robust to different values of s while VERIFYALL suffers
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Figure 11: Vary sparsity (IMDB)
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Figure 12: Vary cell value length (IMDB)

from larger s, e.g., it performs 5X more verifications than FILTER

for s = 0.7. This is because more sparse the ETs, less restrictive
the column constraints, higher the number of candidate queries.

Figure 11(b) provides the average execution time on IMDB for
various sparsity values. For all values of s except s = 0 (i.e.,
when ET has at least a few empty cells), FILTER is 3X and 2.25X

faster than VERIFYALL and SIMPLEPRUNE. For s = 0 (i.e.,
when ET has no empty cell at all), FILTER requires similar time
as VERIFYALL and SIMPLEPRUNE, which is within 20 seconds.
For s = 0, the improvement in the number of verifications does not
translate to improvement in execution time because SQL Server
could execute the CQ-row verifications for the invalid candidates
efficiently in this special case. This is because there are more
keyphrase containment predicates on the text columns for all such
queries; the joins are efficient due to low intermediate result sizes.
This is not the case for other sparsity values. The latter is more
common in practice as it is unlikely that the information worker
can provide all the cell values in the ET.
Varying cell value length. Figure 12(a) provides the number of
verifications for different cell value lengths (v). FILTER requires
the smallest number of verifications over all the values of v. When
v equals to 1, FILTER performs 5X and 3X fewer verifications than
VERIFYALL and SIMPLEPRUNE respectively. As v increases, the
number of verifications decreases for all the three algorithms. This
is because the input ETs are become more constrained and hence
produce fewer candidate queries.

Figure 12(b) shows the average execution time. FILTER is nearly
10X faster than VERIFYALL for v = 1 to 3, and outperforms SIM-
PLEPRUNE by a factor of 2.
Varying maximal join length. Figure 13(a) shows the number
of verifications on different maximal join lengths (l). When l in-
creases, all the three algorithms perform more verifications. This
is because a higher value of l allows more queries (with larger
join trees) to become candidates. We observe FILTER requires
the smallest number of verifications over all the values of l, and it
outperforms VERIFYALL and SIMPLEPRUNE by saving more than
60% and 40% verifications.

Figure 13(b) provides the execution time on IMDB. The result is
consistent with that for the number of verifications. Namely, all the
algorithms have longer running time as l becomes larger. FILTER

outperforms the other two algorithms over all the values of l. When
l equals to 5, FILTER is nearly 3X and 2X faster than VERIFYALL

and SIMPLEPRUNE, respectively.
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Figure 13: Vary maximal join length (IMDB)
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Figure 15: Case-by-case performance

6.2.2 Results on CUST

Figure 14 shows the results on CUST dataset. We find the re-
sults on CUST share similar trends as IMDB and hence only plot
the number of verifications by varying three most important pa-
rameters m, n and s. Figure 14(a) shows the number of verifica-
tions for ETs with different numbers of rows. FILTER performs the
fewest number of verifications over all the values of m, which out-
performs VERIFYALL and SIMPLEPRUNE by saving nearly 70%
and 60% of verifications respectively. Further, FILTER is robust as
m varies from 2 to 6, while the numbers of verifications performed
VERIFYALL and SIMPLEPRUNE vary for different m.

Figure 14(b) shows the number of verifications for ETs with dif-
ferent number of columns. FILTER outperforms VERIFYALL and
SIMPLEPRUNE over all the column values, and the advantage of
FILTER becomes more significant when n increases. For n = 6,
FILTER performs one and two orders of magnitude fewer verifica-
tions compared with VERIFYALL and SIMPLEPRUNE respectively.

Figure 14(c) shows the number of verifications for ETs with dif-
ferent sparsities. FILTER requires the fewest verifications over all
the sparsities. Its advantage over VERIFYALL and SIMPLEPRUNE

becomes more significant as s increases. For s = 0.7, FILTER per-
forms nearly 5X and 2X fewer verifications compared with VERI-
FYALL and SIMPLEPRUNE respectively. Further, FILTER is more
robust to different sparsities than the other two algorithms.

Henceforth, we only report the results for IMDB as we observe
very similar results for the CUST dataset.

6.2.3 Case-by-case Comparison

In order to study their worst-case behavior, we now present the
performance of the three algorithms on individual cases. We gen-
erated 250 ETs with default values of the five parameters as shown
in Table 3. Figure 15(a) shows the number of verifications for the
250 ETs. FILTER outperforms VERIFYALL and SIMPLEPRUNE

by performing significantly fewer verifications in most cases. We
observe FILTER requires less than 200 verifications in all the 250
cases, while VERIFYALL and SIMPLEPRUNE require more than
200 verifications in 169 and 223 cases respectively. The number of
verifications in the worst case for VERIFYALL and SIMPLEPRUNE

are over 1200 and 400 respectively.
Figure 15(b) reports the corresponding execution time. FIL-

TER is more efficient than VERIFYALL and SIMPLEPRUNE in most
cases. For the ETs that can be answered quickly (i.e., within 20
seconds), the performance of the 3 algorithms is similar. But in the
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Figure 16: Memory usage for WEAVE

Table 4: Comparison between WEAVE and FILTER

s = 0 Avg. query# Avg. cost Avg. time(s)

WEAVE 611 1982.9 76.1

FILTER 56 143.5 13.2

s = 0.2 Avg. query# Avg. cost Avg. time(s)

WEAVE 585 1893.1 79.5

FILTER 54 141.3 14.3

s = 0.5 Avg. query# Avg. cost Avg. time(s)

WEAVE 583 1892.8 81.2

FILTER 64 179.3 21.9

worst cases, VERIFYALL and SIMPLEPRUNE run for nearly one
thousand seconds, while FILTER is 10X faster. The results indicate
that FILTER is more robust to handle bad cases which is a desirable
property in real systems.

6.3 Comparison with WEAVE

We now compare FILTER with the WEAVE approach proposed
in [18]. WEAVE generates candidates for first row and verifies for
remaining rows. WEAVE keeps interconnected tuple trees in mem-
ory as they progressively “weave” these tuple trees to obtain the
final set of tuple trees. In our implementation, we store the tuple
trees in temporary tables in SQL Server, thus delegating the mem-
ory management to the DBMS. We observe that the performance
of WEAVE suffers due to the high memory usage and thrashing of
data between memory and disk; We tested WEAVE on 100 ETs with
default settings, and find only 56 ETs finished within 10 minutes.
Figure 16 shows the size of in-memory tuple trees for the finished
cases; WEAVE requires a large amount of memory in many cases.

To reduce the memory usage, we studied an alternate implemen-
tation of WEAVE that weaves the join trees instead of tuple trees. To
make the comparison fair, we push column constraints down as in
our approaches. Table 4 presents the comparison results of WEAVE

and FILTER for ETs with different values of sparsity (s = 0, 0.2
and 0.5). The results are averaged over 100 ETs for each sparsity
value. FILTER significantly outperforms WEAVE for all the three
metrics over all the sparsity values. On average, FILTER performs
10X fewer verifications and it runs 4X faster than WEAVE. Our
filter-based approach judiciously selects filters based on their cost
and benefit; this can prune candidate queries much more effectively
compared with the weaving approach which does not consider such
cost/benefit.
Summary: In summary, our experiments show that the filter-based
solution can prune invalid candidate queries more quickly and hence
significantly outperforms the baseline algorithms. Furthermore, it
is robust to different characteristics of the ETs. Finally, the filter-
based solution significantly outperforms WEAVE due to the better
pruning achieved by judicious cost-benefit based filter selection.

7. RELATED WORK
Our work is related to works on keyword search in databases [1,

10, 2, 14, 9, 19, 4, 6, 15, 12, 5]. In keyword search, the user can
provide only a single tuple as input and the system returns all join
trees that contain at least one tuple containing all the keywords.
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Figure 14: Results on CUST dataset

An enterprise information worker often has knowledge of multi-
ple rows and that can help constrain the valid queries; this is not
expressible in keyword search. Straightforward adaption of the so-
lutions for keyword search would compute the set of valid mini-
mal queries for each tuple and then intersect those sets; this leads
to poor performance. The sample driven schema mapping system
proposed by Qian et. al. allows multiple tuples as input (but needs
to be completely filled) and produces the valid minimal project join
queries [18]. However, like keyword search in databases, the algo-
rithm focuses on computing the valid minimal queries for a sin-
gle row and then prunes the queries based on the subsequent rows.
This solution has much less pruning power than our filter based ap-
proach as shown in Section 6. Furthermore, this approach has a
high memory footprint as it needs to keep the current set of tuple
trees in memory; this is validated by our experiments as well.

Our work is also related to approaches for query by output [22,
23]. These approaches take a table as input (needs to be completely
filled) and return the query that produces that exact table. Their fo-
cus is not on finding the minimal project join query; they compute
the minimal project join queries using naive techniques and try to
find selection conditions or additional joins that yield exact equiv-
alence. Hence, these approaches are orthogonal to our problem.

A related problem is that of expanding a few, user-provided ex-
ample rows with more rows [17]. Gupta and Sarawagi propose to
harness unstructured lists on the web for this task. This is quite
different from our goal of discovering project join queries. The
challenges they address (e.g., record segmentation, row resolution)
are also quite different from those that arise in our problem.

The filter-query verification problem we map our system task to
is similar to the works on shared filter evaluation [16, 13]. There
are two important differences. First, the items in their problem
are streaming, so the query result is not fixed and follows some
distribution. In our case, the validness of candidates is fixed. This
leads to a different probabilistic model. Second, previous works
assume all filters are independent while we consider dependencies
among the filters.

Finally, our technique for filter selection is related to identify-
ing common subexpressions in multi-query optimization [20, 21].
The main difference is that filter selection is motivated by pruning
invalid candidate queries.

8. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of discovering minimal

project join queries based on an example table. The main technical
challenge is to efficiently verify which queries, among a candidate
set of queries, are valid answers. We formalize the problem as
the filter selection and develop a novel solution. Our experiments
demonstrate that our filter-based approach is much more efficient
than straightforward adaptation of known techniques.

Our work can be extended in multiple directions. In this paper,
we require the valid query to contain all the tuples in its output;
this might sometimes lead to empty answers. How to relax this

requirement is an item of future work. Typically, the user would
like the valid queries to be ranked, especially in the above relaxed
setting. How to rank the valid queries is also an open challenge.
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