
Big Data Research 4 (2016) 59–69
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

epiCG: A GraphUnit Based Graph Processing Engine on epiC

Yanyan Shen a, Qingchao Cai b,∗, Wei Lu d, Dalie Sun c, Zhongle Xie b

a Shanghai Jiao Tong University, PR China
b National University of Singapore, Singapore
c Harbin Institute of Technology, PR China
d Renmin University of China, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2015
Received in revised form 21 April 2016
Accepted 22 April 2016
Available online 9 June 2016

Keywords:
epiCG
epiC
Vertex-cut partitioning
Distributed graph processing systems
Big Data

A large number of specialized graph processing systems have been developed to cope with the increasing
demand of graph analytics. Most of them require users to deploy a new framework in the cluster
for graph processing and switch to other systems to execute non-graph algorithms. This increases
the complexity of cluster management and results in unnecessary data movement and duplication. In
this paper, we propose our graph processing engine, named epiCG, which is built on top of epiC,
an elastic data processing system. The core of epiCG is a new unit called GraphUnit, which is able
to not only perform iterative graph processing efficiently, but also collaborate with other types of
units to accomplish any complex/multi-stage data analytics. epiCG supports both edge-cut and vertex-
cut partitioning methods, and for the latter method, we propose a novel light-weight greedy strategy
that enables all the GraphUnits to generate vertex-cut partitioning in parallel. Furthermore, unlike
existing graph processing systems, failure recovery in epiCG is completely automatic. We compare
epiCG with several prevalent graph processing systems via extensive experiments with real-life dataset
and applications. The results show that epiCG possesses high efficiency and scalability, and performs
exceptionally well in large dataset settings, showcasing its suitability for large-scale graph processing.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The increasing demand of graph analytics is the inevitable con-
sequence of the growing scale and importance of graph data. Big
graph examples including social network graphs, email and in-
stance message graphs typically involve billions of vertices and
edges. For example, Facebook has over 1.5 billion monthly active
users at present. In recent years, a large number of specialized
distributed graph processing systems such as Pregel [1], Power-
Graph [2], Giraph [3] and GPS [4] have been proposed to han-
dle complex graph analytics tasks. These specialized systems gain
their popularities for two reasons. First, they follow the vertex-
centric programming model introduced by Pregel that allows users
to express various graph algorithms in a natural way. Second,
most graph processing systems are designed for iterative compu-
tation and are in-memory processing systems [5] since they hold
the graph data in memory during iterations. Therefore, such sys-
tems outperform the general-purpose distributed systems such as

* Corresponding author.
E-mail addresses: shenyy@sjtu.edu.cn (Y. Shen), caiqc@comp.nus.edu.sg (Q. Cai),

uqwlu@ruc.edu.cn (W. Lu), sdl@hit.edu.cn (D. Sun), zhongle@comp.nus.edu.sg
(Z. Xie).
http://dx.doi.org/10.1016/j.bdr.2016.04.002
2214-5796/© 2016 Elsevier Inc. All rights reserved.
MapReduce [6,7] and its open-source implementation Hadoop [8]
that typically flush data to the distributed file system at the end
of each iteration and reload data into memory in the beginning of
the next iteration.

1.1. Issues and opportunities

While specialized graph processing systems are efficient for
graph analytics, the specialization itself is a double-edged sword.
We observe that most graph processing systems require users to
establish a new framework in the cluster and conduct necessary
configuration before running. This is always a daunting job for
cluster managers. In particular, given various types of data analyt-
ics applications, we cannot afford to set up a new system for each
of them. Furthermore, graph analytics may only be one part of a
complex analytics job and we have to switch to other systems if
the graph processing system is unsuitable for the analytics tasks
afterwards. For example, consider a top k PageRank application
which tries to find k web pages with highest PageRank values. This
application involves two tasks, one for calculating PageRank for all
the web pages and another for computing k pages with the highest
PageRank values. Intuitively, the first task can be easily handled by
graph processing systems such as Pregel, while MapReduce-based

http://dx.doi.org/10.1016/j.bdr.2016.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:shenyy@sjtu.edu.cn
mailto:caiqc@comp.nus.edu.sg
mailto:uqwlu@ruc.edu.cn
mailto:sdl@hit.edu.cn
mailto:zhongle@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.bdr.2016.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2016.04.002&domain=pdf

60 Y. Shen et al. / Big Data Research 4 (2016) 59–69
systems such as Hadoop are more suitable to solve the second one.
However, switching among different systems will introduce com-
plexity and increase the job execution time due to data movement.

As opposed to the specialized graph processing systems, GraphX
[9] was introduced as an embedded graph processing framework
on top of a general-purpose dataflow system, namely Apache
Spark [10]. To support graph processing, GraphX defines a set
of graph operators that are implemented based on the standard
dataflow operators (e.g., map, join, group-by) in Spark. While the
implementation of GraphX allows complex/multi-stage analytics
tasks to be handled in a unified system Spark, it hinders all the
optimizations proposed for the specialized graph processing sys-
tems and requires a bunch of dataflow optimizations to align its
performance with the specialized ones. Furthermore, GraphX rep-
resents graph data as two collections (i.e., vertex collection and
edge collection) and performs multi-way join over these collec-
tions to construct the view of a graph. This requires additional
transformation workload since graph data is always represented in
an adjacency list.

Opportunity: Is there any unified distributed platform which
supports complex analytics tasks for various data types (e.g., graph
and non-graph data), while retaining the optimizations and advan-
tages of the specialized graph processing system?

Another issue about graph processing systems is the high com-
munication overhead caused by cross-machine message forward-
ing. Pregel adopts the edge-cut based graph partitioning which
distributes vertices among the compute nodes and allows edges
to span across the nodes. Network communication overhead is in-
curred when a vertex in one compute node wants to send a mes-
sage to its neighbor in another node. It is worth noting that the
overhead becomes more significant for natural graphs which fol-
low power-law degree distribution. Consequently, PowerGraph [11]
proposed vertex-cut based graph partitioning. The idea is to ran-
domly distribute edges among the compute nodes and allow ver-
tices to span across the nodes. Unlike edge-cut partitioning, the
communication cost produced by a vertex-cut is restricted to the
total number of compute nodes spanned by the vertices. However,
when performing a vertex-cut partitioning, PowerGraph requires
one compute node to load the entire graph into the main memory,
execute the partitioning algorithm and forward edges to the com-
pute nodes accordingly. This limits the size of the graph that can
be processed by the vertex-cut partitioning algorithm.

Opportunity: Can we implement a light-weight, distributed
vertex-cut partitioning method for graph processing?

The third issue is fault tolerance. Most existing distributed
graph processing systems adopt checkpoint-based recovery mech-
anism. That is, a checkpoint that records graph status is made
periodically (e.g., every 10 iterations). Once a compute node fails
or reports an exception, the job will resume its execution from the
latest checkpoint. However, to our best knowledge, existing dis-
tributed graph processing systems such as GPS [4], Giraph [3] and
PowerGraph [2] cannot recover from failures automatically. When
a failure occurs, the job will be terminated and the system re-
quires users to manually restart the job from the latest checkpoint.
GraphX [9] achieves fault tolerance by leveraging the features (e.g.,
lineage) from the dataflow system Spark. However, their approach
can hardly be adapted to the advanced Pregel-like graph process-
ing systems.

Opportunity: Can we achieve automatic failure detection and
recovery in the distributed graph processing systems?

1.2. Our solution and contributions

To address the above three challenging issues, we propose
our graph processing engine, epiCG. We build epiCG on top of
epiC [12], an elastic data processing system proposed for large-
scale data analytics. epiC adopts an Actor-like programming model
that is able to execute any number of computations (called units).
In epiC, users can process data with different computation mod-
els by defining their own units, e.g., MapUnit and ReduceUnit for
MapReduce model, and SelectUnit, JoinUnit and AggregateUnit for
relational model. The implementation of epiCG on top of epiC
leverages the flexibility and extensibility of epiC and obtains the
following benefits.

• Reusability: implementation cycle of our graph engine is
shortened by leveraging existing components provided in epiC.

• One-size-fits-all: users do not need to configure the cluster to
run a new system for graph applications. A complex analytics task
can be divided into multiple stages, each of which is handled by a
different type of unit (e.g., MapUnit, ReduceUnit) in epiC.

We build epiCG by implementing a new computation unit
called GraphUnit in epiC. We define two types of GraphUnits. The
first one is called slave GraphUnit which manages a subset of the
graph data and performs iterative graph computation in parallel
with other slave GraphUnits. The second type is called master Gra-
phUnit which coordinates the computation activity among all the
slave GraphUnits. It is worth mentioning that 1) the graph APIs
provided by epiCG align to those defined in Pregel due to their
expressiveness and simplicity, and 2) GraphUnit is independent of
other types of units in epiC, thus allowing all the optimizations
proposed for the specialized graph processing systems to be im-
plemented in epiCG seamlessly.

However, the basic unit programming for GraphUnit is inef-
ficient due to the following two reasons. First, epiC employs a
disk-based generic programming model (see details in Section 2).
Like MapReduce-based systems, during each iteration, GraphUnit
will go through three phases: data loading, one-iteration compu-
tation and data flushing. This incurs unnecessary data movement
across all the iterations. Second, computation units in epiC cannot
communicate with each other directly. Instead, if one GraphUnit
wants to send a messages to another GraphUnit, it has to first send
the message to the master node in epiC and the master node will
then forward the message to the corresponding unit. Apparently,
the master would become the bottleneck due to the high volume
of the messages involved in most graph applications.

To solve both problems, we implement GraphUnit as an in-
memory computation unit. During the computation, all the slave
GraphUnits are able to hold graph data in memory, thus elim-
inating unnecessary I/O cost across iterations. We also allow all
the GraphUnits to communicate with each other directly via mes-
sages, so that the master node in epiC will not get overwhelmed
in receiving and forwarding massive messages introduced by the
graph computation. Furthermore, epiCG supports both edge-cut
and vertex-cut partitioning methods and allows users to process
different graph data with the most suitable partitioning methods.
To generate a vertex-cut partitioning, we propose a light-weight
partitioning method that allows every GraphUnit to generate a part
of the vertex-cut in parallel with others. Finally, epiCG adopts the
checkpoint-based recovery method and achieves automatic failure
detection and recovery by maintaining the statuses of slave Graph-
Units inside the master GraphUnit. When a slave fails, the master
GraphUnit will repartition the graph based on all the remaining
healthy slaves and instruct them to resume the computation since
the latest checkpoint.

We summarize the contribution of this paper as follows.
• We develop a novel graph processing engine epiCG on top of

epiC. We build epiCG by implementing a new unit called Graph-
Unit in epiC. GraphUnit is an in-memory computation unit that
can handle iterative computation efficiently and collaborate with
other kinds of units to accomplish any complex/multi-stage data
analytics.

Y. Shen et al. / Big Data Research 4 (2016) 59–69 61
• epiCG supports both edge-cut and vertex-cut graph partition-
ing methods. To generate a vertex-cut partitioning, we propose a
light-weight greedy strategy which uses multiple compute nodes
to generate vertex-cut partitions collaboratively.

• epiCG adopts the checkpoint-based recovery method and
leverages the remaining healthy compute nodes to perform recov-
ery automatically upon a failure.

• We conduct comprehensive experiments to demonstrate the
efficiency and scalability of epiCG, compared with advanced graph
processing systems.

The rest of the paper is organized as follows. Section 2 provides
background about epiC and distributed graph processing. Section 3
gives an overview of epiCG, followed by implementation details
in Section 4. Section 5 presents fault tolerance in epiCG. Section 6
reports experimental results. We discuss related works in Section 7
and conclude the paper in Section 8.

2. Preliminaries

We first provide the background of epiC, the underlying plat-
form of epiCG. We then briefly review the key ideas of specialized
graph processing and discuss the two graph partitioning methods:
edge-cut partitioning and vertex-cut partitioning.

2.1. The epiC system

epiC [12] was proposed to address data variety challenge in Big
Data. It adopts the Actor-like programming model and provides
a simple yet efficient unit interface to support various computa-
tion models. In epiC, users can express different computation logics
by defining different units. Each processing unit performs compu-
tation in parallel with other units and communicates with other
units through message passing. Messages, however, cannot be sent
directly between two units; each message is sent to the master
network (which is responsible for routing messages) and then for-
warded to the corresponding units. A unit becomes active if it
receives messages from the master network. After parsing the mes-
sage, the unit will load data from the underlying storage and apply
the user-defined computation logic to process the data accordingly.
When the unit completes its computation, it flushes the output to
the storage and becomes inactive until it receives a new message.

epiC adopts the master-worker architecture. There is only a sin-
gle master node in epiC (this is different from the nodes in the
master network which are mainly responsible for message rout-
ing). The master node runs a master daemon which monitors the
healthy statues of the slaves and commands workers to execute
tasks. Each worker node establishes a worker tracker daemon. The
worker tracker manages a pool of worker processes which accept
and execute assigned unit tasks. In epiC, we assign one unit task
to one worker process.

2.2. Distributed graph processing

The key idea of distributed graph processing is a vertex-centric
programming model proposed by Pregel [1], which abstracts graph
algorithms as the computation for every vertex and message ex-
change between different vertices. Typically, the execution of a
graph job consists of three phases: data loading, iterative compu-
tation and the output. In the data loading phase, an input graph is
loaded from the underlying storage system and distributed among
the compute nodes. During iterative computation, each compute
node sequentially scans its received vertices and executes a user-
defined compute function for each of them. Every vertex can up-
date its value and send messages to other vertices during the
computation. Pregel-like systems follow Bulk Synchronous Parallel
(BSP) model [13] and all the compute nodes will proceed to the
Fig. 1. Two graph partitioning methods.

next iteration synchronously, while some systems such as Power-
Graph [2] perform computation in an asynchronous manner. Fi-
nally, in the output phase, compute nodes flush the results (e.g.,
the computed values of the vertices) to the storage system. Es-
sentially, distributed graph processing distributes graph data and
parallelizes computation tasks among a cluster of compute nodes,
thus accelerating the processing significantly.

Graph partitioning. We denote the input graph to the dis-
tributed graph processing systems by G = (V, E), where V con-
tains all the vertices and E ⊆ V × V represents directed edges1

among vertices. Typically, there are two approaches to distribute
input graph to multiple compute nodes, using edge-cut and vertex-
cut partitioning methods respectively. The edge-cut partitioning
method distributes the vertices among compute nodes and allows
edges to span across the nodes. An optimal edge-cut partition-
ing minimizes cross-node edges (to reduce network communica-
tion cost) as well as balances the computation workload (i.e., the
number of vertices) among different compute nodes. However, the
complexity of finding an optimal edge-cut partitioning is NP-hard.
Consequently, most existing graph systems adopt efficient greedy
strategies such as distributing vertices to the compute nodes in a
round-robin or hash manner. Fig. 1(a) gives an example of edge-cut
partitioning, where we distribute a 7-vertex (A–G) graph G over
two compute nodes N1, N2. This edge-cut partitioning results in
two cross-node edges, D→E and D→F.

In contrast, the vertex-cut graph partitioning distributes the
edges among compute nodes and allows vertices to span across
the nodes. We say that a vertex has multiple copies if it spans
across multiple nodes. One copy is selected as the master vertex,
while others are mirrors. Fig. 1(b) shows a vertex-cut partitioning
for G . There is no cross-node edge and vertex D has two copies
in N1, N2, respectively. The communication cost using vertex-cut
is mainly caused by synchronizing all the copies of the same ver-
tex, which is proportional to the total number of compute nodes
spanned by the vertices. It has been theoretically and experimen-
tally proved in [2] that vertex-cut outperforms edge-cut in many
real-life graphs which have power-law degree distribution. How-
ever, the partitioning algorithm proposed in [2] requires a compute
node to load the entire input data into memory and assign the
(i + 1)-th edge based on the assignment of the previous i edges.
This results in large memory footprint and restricts the size of the
graphs to be processed.

3. Overview of epiCG

In this section, we present the computation model and the ar-
chitecture of epiCG.

3.1. Computation model

epiCG adopts the vertex-centric programming model of Pregel
and applies a user-defined compute function for each vertex.
Specifically, every vertex carries two statuses: active and inactive.

1 For indirected graphs, we can represent each undirected edge (u, v) by two
directed edges 〈u, v〉 and 〈u, v〉.

62 Y. Shen et al. / Big Data Research 4 (2016) 59–69
Fig. 2. The Architecture of epiCG.

During the computation, a vertex can process the messages sent
by other vertices, update its value and send messages to other ver-
tices. If a vertex finds there is no message to send in the current
iteration, it can call VoteToHalt() to inactivate itself. An inactive ver-
tex will be automatically activated upon receiving messages from
other vertices. When all vertices become inactive or there is no
message to send at each vertex, the job is then terminated. epiCG
follows the BSP model and the execution of an epiCG program
is organized by supersteps. That is, a global synchronous point is
reached when all the vertices finish computation in one super-
step. After that, all the vertices proceed to the next superstep
synchronously.

3.2. epiCG architecture

Fig. 2 shows the architecture of epiCG. epiCG deploys the dis-
tributed file system (DFS) as its underlying storage. Typically, DFS
contains the initial graph data to be processed by epiCG and the
final results produced by epiCG. epiCG follows the single master-
multiple worker architecture of epiC. The master runs a master
daemon which maintains the healthy statuses of all the workers
and instructs workers to execute unit programs. We divide workers
into three categories to execute masterGraphUnit, slaveGraphUnit
and Zookeeper, respectively. The masterGraphUnit coordinates su-
persteps among all the workers who execute slaveGraphUnit and
the Zookeeper maintains information shared among these workers,
e.g., which worker has finished the execution of the current su-
perstep, how many workers have dumped a checkpoint. Typically,
given a set of workers, we choose one worker to run the master-
GraphUnit program. The functionalities of the GraphUnits are listed
as follows.

MasterGraphUnit. The MasterGraphUnit program performs two
tasks:

1. partition and distribute the input graph among the workers
that run SlaveGraphUnit program;

2. coordinate the SlaveGraphUnit workers to perform supersteps
synchronously.

To perform these tasks correctly, MasterGraphUnit maintains sev-
eral important objects.

• MasterPartitioner: generate the vertex-to-partition mapping
for the input graph (see details in Section 4.1);

• MasterClient: notify workers of the newly computed global ag-
gregated values;

• MasterAggregator: retrieve local aggregated values from the
workers and generate the global aggregated ones.

SlaveGraphUnit. The SlaveGraphUnit program is responsible for
the following four tasks.
1. load its assigned graph data and flush computation results
from/to the storage system;

2. loop over vertices and execute compute() function;
3. forward messages generated during the computation;
4. generate aggregated values and write to the zookeeper.

SlaveGraphUnit maintains four important objects:

• WorkerServer: retrieves and manages the graph data that is
assigned to the worker;

• WorkerPartitioner: maintains partition information for the ver-
tices residing in the worker;

• WorkerClient: forwards messages to the zookeeper and other
workers;

• WorkerAggregator: computes aggregated values and writes to
the zookeeper.

Once a graph job is submitted to epiCG, all the workers will
be activated immediately. At the beginning of the execution, epiCG
establishes pairwise connections between GraphUnits. This is dif-
ferent from epiC where units cannot communicate with each other
directly, but rely on the message service provided by the master
network. As most graph applications such as PageRank and short-
est path computation involve a large number of messages, setting
up direct connections between units allows them to communicate
with each other more efficiently and prevents the master network
being the bottleneck.

4. Implementation details

The implementation of epiCG addresses two important prob-
lems in graph processing: graph partitioning and iterative graph
computation. epiCG supports both edge-cut and vertex-cut graph
partitioning methods, which allows users to perform graph com-
putation with the most appropriate partitioning method. In this
section, we first introduce the graph representation in epiCG and
our light-weight vertex-cut generation algorithm. We next present
how epiCG performs iterative computation using two partitioning
methods.

4.1. Graph partitioning

4.1.1. Partition-based graph representation
Consider a graph G = (V, E). epiCG first divides all the vertices

into partitions and distributes partitions among the workers that
execute slaveGraphUnit. Let P be the set of all the partitions. For
any partition Pi ∈ P , we have Pi = (Vi, Ei) where Vi ⊆ V and
Ei = {(u, v) ∈ E | u ∈ Vi}. Typically, the number of partitions is
much larger than the number of compute nodes and each com-
pute node will be assigned with multiple partitions. The benefit of
partition-based graph representation is to support dynamic repar-
titioning. For example, every slaveGraphUnit can collect statistics
such as the execution time for each of its partitions and report
this information to the masterGraphUnit, who may ask some of
slaveGraphUnits to exchange partitions for the purpose of load bal-
ance. Instead of repartitioning the graph in the vertex granularity,
partition-based repartitioning is obviously more cost effective.

Table 1 lists several important data structures managed by each
slaveGraphUnit for partition maintenance. Vertex records the in-
formation for a vertex in the input graph, including the identity
of the vertex, its value, outgoing edges, and status (active or inac-
tive). For each vertex, we also attach two variables, isMaster and
#allEdges, to support vertex-cut graph partitioning. isMaster is a
boolean variable indicating whether the vertex is a master version;
#allEdges records the total number of edges associated with the
vertex in the original graph. Partition is a list of vertices and

Y. Shen et al. / Big Data Research 4 (2016) 59–69 63
Table 1
Graph-related objects maintained by each worker.

Object Description

Vertex information of a vertex in the input graph
Partition a set of vertex in a partition
PartitionStore a set of partition residing in the worker
PartitionOwner indicating a partition belongs to which worker
PartitionOwnerList partition-worker mapping

each partition is associated with an identifier “pid”. We use Par-
titionStore to keep track of all the partitions assigned to the
worker. In order to forward messages to the corresponding desti-
nation vertices, every worker needs to know in which worker and
which partition every destination vertex resides. To do this, we
maintain two mappings, one vertex-to-partition mapping ϕ and
one partition-to-worker mapping φp in each worker, where ϕ in-
dicates which vertex belongs to which partition and φp indicates
which partition is assigned to which worker. If the worker wants
to forward a message to vertex u, it can easily conclude that u
belongs to partition ϕ(u) in the worker φp(ϕ(u)).

By default, epiCG adopts a simple hash mapping method to
generate ϕ and φp. That is, let P be the set of all the partitions.
For a vertex v and a partition P ∈P ,

ϕ(v) = P ⇔ v.vid ≡ P .pid (mod |P|) (1)

Similarly, let W be the set of all the slaveGraphUnit workers. For a
partition P ∈P and a worker W ∈W ,

φp(P) = W ⇔ P .pid ≡ W .workerid (mod |W|) (2)

epiCG provides various partitioning methods to generate the
two mappings ϕ and φp including hash partitioning, block parti-
tioning. We also allow users to provide their own mappings by
overriding the partitioning method in the MasterPartitioner. More-
over, the partitioning can also be decided before graph loading
by using advanced graph partitioning tools such as Metis [14]. In
epiCG, we use PartitionOwner to keep information for a parti-
tion, i.e., to which worker this partition is assigned. Every worker
maintains a list PartitionOwnerList (i.e., φp) recording Par-
titionOwners for all the partitions. During the computation,
every worker can easily forward a message to the destination ver-
tex by referring to the vertex-partition mapping ϕ and Parti-
tionOwnerList.

The input graph of an epiCG job is stored as a plain file in the
distributed file system. Typically, a graph file consists of a set of
lines, each containing a vertex id and all the ids of its neighbors. In
the beginning of graph loading, the masterGraphUnit will generate
the PartitionOwnerList and inform slaveGraphUnits of the list via
zookeeper. Initially, every slaveGraphUnit loads several data splits
(i.e., lines) of the input graph and then iterates over the splits. For
each line, it checks whether the vertex belongs to any of its parti-
tions. If so, the vertex and its outgoing edges are appended to its
local partition accordingly. Otherwise, slaveGraphUnit forwards this
line to the corresponding compute node based on Partition-
OwnerList.

4.1.2. Light-weight vertex-cut generation
We observe that a cross-node edge is caused by assigning the

source vertex and the destination vertex to two compute nodes. By
creating a copy of the source vertex in the node which contains the
destination vertex, the cross-node edge is dismissed. This inspires
us to generate a vertex-cut partitioning by distributing edges based
on the assignment of destination vertices and creating copies for a
source vertex if the source and destination vertices are assigned to
different nodes. More specifically, given a vertex v and its outgoing
edges Ev , we generate a cut for v in the following steps.
1. We split Ev into n groups, E1, . . . , En , which satisfy:
1)

⋃n
i=1 Ei = Ev and ∀i, j ∈ [1, n] ∧ i �= j, Ei ∩ E j = ∅, and

2) ∀e1 = 〈v, u1〉, e2 = 〈v, u2〉 ∈ Ev , e1, e2 belong to the same
group iff φp(ϕ(u1)) = φp(ϕ(u2)).

2. We create a copy vi of vertex v for each edge group Ei and
replace with it the source vertex v of each edge in this edge
group. We then assign each copy to a compute node where at
least one of the destination vertices of its edges reside.

3. We choose the copy assigned to node φp(ϕ(v)) as the mas-
ter vertex, and others as mirrors. If no copy is generated in
φp(ϕ(v)), we create a copy in partition ϕ(v) as the master
vertex.

4. We assign every copy to the corresponding partition. The mas-
ter vertex is assigned to ϕ(v). For each mirror, we only know
the worker to which it is assigned. We then randomly choose
a partition in that worker and assign the mirror to that parti-
tion. Note that assigning mirror to any partition in that worker
will not affect computation cost and message forwarding cost.

For example, consider the graph G in Fig. 1(a). Suppose every
vertex composes a partition and we have B, C, D assigned to N1
and E, F assigned to N2. To generate a cut for vertex D , we first
split its four outgoing edges into two groups E1 = {D → B, D → C}
and E2 = {D → E, D → F }. We then create two copies D1, D2 of D ,
replace vertex D of E1(E2) with D1(D2), and assign D1(D2) to
N1(N2). Since D is assigned to N1, we choose copy D1 as the
master vertex and D2 as its mirror. Finally, we obtain the cut of
vertex D in Fig. 1(b).

Thus far, we obtain a vertex-cut for each vertex. However, an-
other important issue of vertex-cut generation is that we should
avoid spanning vertices with low out-degrees (i.e., the total num-
ber of the outgoing edges). This is because the copies of these ver-
tices increase network cost for synchronizing vertex values, while
their contributions to reducing the cost of forwarding cross-node
message is insignificant [15]. To address the problem, we set a
threshold θ on the out-degrees of the vertices. If the out-degree
of a vertex is no larger than θ , we assign all the edges to the ver-
tex without generating any copies for the vertex. Otherwise, we
decompose it into several parts to obtain a vertex-cut.

Algorithm 1 provides the pseudo code of our vertex-cut gen-
eration algorithm. Given a vertex v , we first check whether its
out-degree exceeds the threshold θ (line 3). If not, we assign all
the edges to the vertex and the vertex will be forwarded to parti-
tion ϕ(v) using Equation (1) (line 4). Otherwise, we start to assign
the edges of v among the workers (line 7–14). Specifically, we
maintain a map function N from workers to the copies indicat-
ing which worker owns which copy (line 7) and iterates over all
the outgoing edges of the vertex (line 8). For each edge 〈v, u〉, we
first compute the worker W where u resides (line 9). We then
check whether N contains worker W (line 10–11). If so, we re-
trieve from N the copy v ′ that is assigned to W and attach 〈v ′, u〉
to the edge list of v ′ . If N does not contain worker W , we create
a copy v ′ and assign edge 〈v ′, u〉 to the copy. Besides, we add the
pair (W , v ′) to N (line 13). We then choose master vertex and as-
sign every copy to a partition (line 16–31). Furthermore, for each
copy of v , we record the out-degree of v in the original graph
(line 28) and for the master version, we record a list of partition
identifiers indicating the locations of the mirrors (line 32).

This is easy to verify that the vertex-cut partitioning produced
by Algorithm 1 has the following properties.

Property 1. Consider a vertex v and the set Ev of its outgoing edges. Let
{(v1, P1), · · · , (vn, Pn)} be the list M produced by Algorithm 1 and Ei
be the set of edges associated with vi , 1 ≤ i ≤ n. We have:

∀〈vi, u〉 ∈ Ei, φp(Pi) = φp(ϕ(u))

64 Y. Shen et al. / Big Data Research 4 (2016) 59–69
Algorithm 1: GenerateVertexCut.
Input : v , a vertex

φp, PartitionOwnerList
n, the number of partitions

Output: M: list of (copy, partition) pairs
1 M ← ∅;
2 Ev ← v .GetEdges ();
3 if |Ev | ≤ θ then
4 M ← {〈v, GetPartition(v.vid)〉};

5 else
6 /* generate vertex-cut for v */
7 N ← ∅;
8 foreach Edge 〈v, u〉 ∈ Ev do
9 W ← GetWorkerInfo(GetPartition(u.vid), φp);

10 v ′ ← N.get(W);
11 if v ′ = null then
12 v ′ ← CreateVertex(v);
13 N ← N ∪ {(W , v ′)};

14 v ′.AddEdge(〈v ′, u〉);

15 /* select master vertex and assign copies to partitions */
16 W ∗ ← GetWorkerInfo(GetPartition(v.vid), φp);
17 vm ← null; Pm ← ∅;
18 foreach (W , v ′) ∈ N do
19 if W = W ∗ then
20 v ′.isMaster ← true;
21 M ← M ∪ {v ′, GetPartition(v.vid)};
22 vm ← v ′;
23 else
24 v ′.isMaster ← f alse;
25 P ← ChooseOnePartition(W);
26 M ← M ∪ {(v ′, P)};
27 Pm ←Pm ∪ {P .pid};

28 v ′.#allEdges ← |Ev |;
29 if W /∈ N.keySet() then
30 v ′ ← CreateVertex(v);
31 M ← {v ′, GetPartition(v.vid)};

32 vm.AddMirrorPartitionIds(Pm);

This guarantees that forwarding messages from any copy to its neighbors
does not incur network communication cost.

Furthermore, in the graph loading phase, every slaveGraphUnit
worker can apply Algorithm 1 to the vertices in its own data splits
in parallel with other workers. After obtaining a vertex-cut for a
particular vertex, the worker can forward each copy and its edges
to the corresponding partition based on its computed list M . Af-
ter all the workers finish shuffling vertex copies and edges, every
worker obtains the following information:

• for every vertex v in its own partitions, the worker knows
the out-degree of the vertex in the original graph based on
v.#allEdges and whether it is the master version based on
v.isMaster.

• for a master vertex v in its own partitions, the worker records
in which partition of v.Mirror PartitionIds each mirror of v
resides, and further decide to which worker this partition be-
longs using Equation (2).

• for each vertex in the graph, the worker knows the partition
and worker where the master version of the vertex resides
based on Equation (1) and (2).

In essence, an edge-cut partitioning can be regarded as a special
case of vertex-cut partitioning where all the vertices has a single
copy which is the master vertex. Hence, without loss of generality,
Fig. 3. ProduceMsg(Edge e) for PageRank.

we next describe how epiCG performs iterative graph computation
based on vertex-cut partitioning.

4.2. Iterative computation

epiCG performs graph computation via a set of iterations, i.e.,
supersteps. In each superstep, every slaveGraphUnit worker under-
goes the following three phases.

4.2.1. Mirror message delivery
Every master vertex will forward its updated vertex value to all

of its mirrors at the end of each superstep. Once a worker receives
an updated vertex value, it will store the value into a Vertex-
ValueUpdateCache. At the beginning of a superstep, the worker
will first update its mirrors with the new values received in the
last superstep. Specifically, every worker will go through all of
its residing vertices. If a vertex is a mirror and VertexValue-
UpdateCache contains a new value for the vertex, the worker
will update its value accordingly. When all the values in Vertex-
ValueUpdateCache are processed, the worker will clear this
cache.

After a mirror updates its value, it needs to produce and for-
ward messages to its own neighbors. That is, a message that should
be forwarded directly from the master vertex will now be pro-
duced and forwarded by the mirror. To achieve this, we define a
new API, produceMsg(Edge e), in Vertex class, which allows
any mirror to generate and send messages to its own neighbors. In
epiCG, if a user submits a graph job and chooses to use vertex-cut
partitioning method, we require the user to define produceMsg
function that will be executed by the mirrors. Fig. 3 shows an im-
plementation of produceMsg for PageRank computation. A mir-
ror retrieves its value via getValue() and computes the PageR-
ank share of its neighbor, which is the vertex value divided by the
out-degree of the vertex in the original graph.

One limitation of produceMsge function is that the message
generated by a mirror can only rely on the value of the vertex,
the out-degree of the vertex in the original graph (stored in Ver-
tex.#allEdges) and the information (e.g., value) of the edge. This
limitation, however, does not restrict the applicability of the pro-
posed epiCG system, as it fits into the message model of a large
range of graph analytics applications, including PageRank, breadth
first search, graph keyword search, triangle counting, connected
component computation, graph coloring, minimum spanning for-
est computation, k-means, shortest path, minimum cut, and clus-
tering/semi-clustering. All these applications possess the property
that the content of any message from u to v is determined by
the latest value of u, the out-degree of the vertex (in the original
graph) and the information of the edge 〈u, v〉.

Each message produced by a mirror will be forwarded to the
master version of the destination vertex. According to Property 1,
such master vertices reside in the same compute node as the
mirror. Hence, each generated message will be appended by the
worker to its local incoming message store without any network
transmission.

Y. Shen et al. / Big Data Research 4 (2016) 59–69 65
4.2.2. Master vertex computation and message delivery
After all the mirrors finish producing and forwarding messages,

vertex computation starts. In this phase, every worker checks
its partitions in the PartitionStore. For each partition, the
worker loops over the vertices in it and performs computation for
a vertex v iff (1) v is a master vertex; (2) v receives at least one
message sent by other vertices.

When a master vertex performs computation, it may produce
messages. Note that a master vertex may only has a subset of the
edges and hence can only send messages to its known neighbors.
Every worker collects the messages produced by the master ver-
tices during the computation and forwards them to the workers
where the destination vertices reside accordingly. If the destina-
tion vertex of a message has multiple replicas, the message will
only be forwarded to the master vertex, and none of the mirrors
will receive any messages. In epiCG, all the workers forward their
messages asynchronously.

4.2.3. Vertex value synchronization
When a master vertex finishes its computation, it may produce

a new vertex value and all of its mirrors must be informed of this
new value. In epiCG, every worker is responsible for sending the
updated value of a master vertex (obtained after vertex computa-
tion) to all the mirrors. Recall that every master vertex maintains
a list MirrorPartitionIds recording the partitions where the
mirrors reside. By checking this list, the worker forwards the
updated vertex value to the mirrors via syncVertexValue-
Request requests. To ensure the correctness of vertex value syn-
chronization (i.e., every mirror must receive the updated vertex
value successfully), the requests of syncVertexValueRequest
are handled by a TCP-like three-way handshake protocol. When
a worker W1 forwards a syncVertexValueRequest request
to another worker W2, W1 will wait for a completion signal
sent by W2. If W1 does not receive the completion signal for
a while, it will re-send the request. Any worker who receives a
syncVertexValueRequest request will parse the request and
put the updated value into VertexValueUpdateCache for the
corresponding mirror. Every worker will continue its processing
only if all of its requests are sent successfully and all of its re-
ceived requests are handled properly.

5. Fault tolerance

Failure detection and recovery are two key problems to achieve
fault tolerance. epiCG detects failures by asking every slaveGraphU-
nit worker to register its healthy status periodically. At the end of
each superstep, the masterGraphUnit worker will check healthy sta-
tuses for all the slave workers. If a slave worker does not register
its status over a time period, the master worker will regard it as
failed.

For failure recovery, epiCG adopts one of the most widely used
recovery mechanisms, namely checkpoint-based recovery. Specifi-
cally, all the slaveGraphUnits write a global checkpoint (recording
graph status) periodically and restarts from the latest checkpoint
upon a failure. However, we observe that in most existing dis-
tributed graph processing systems such as Giraph and GraphLab,
the master will report error messages for the failed workers and
terminate the job accordingly. To resume the execution of a failed
job, existing systems require users to manually launch a new job
that starts from the latest checkpoint. Apparently, such kind of im-
plementation for failure recovery requires long downtime. Further-
more, it violates the fault tolerance requirement that the system
should be able to recover from failures and resume normal execu-
tion automatically.

To achieve automatic recovery, upon slave worker failures,
epiCG leverages the remaining healthy slave workers to continue
the execution instead of terminating the job. Specifically, the mas-
ter worker will create a JobState indicating: 1) the next su-
perstep (i.e., the latest checkpointing superstep) to perform, and
2) every slave worker should load graph data from the latest
checkpoint in the next superstep. The master worker then broad-
casts JobState to all the healthy slave workers. At the beginning
of next superstep, for edge-cut partitioning, the master worker will
generate a new partition-to-worker mapping based on the remain-
ing healthy slave workers and inform them of the new mapping
via zookeeper; the slave workers will first load graph data from
the latest checkpoint, exchange vertices and edges using edge-cut
partitioning or vertex-cut partitioning based on the newly received
partition-to-worker mapping. After that, all the workers redo the
lost computation from the latest checkpointing superstep auto-
matically. Note that even if healthy workers retain the up-to-date
vertex values, they do need to redo the lost computation to re-
produce messages which are demanded for the recovery of failed
vertices. We also implement the parallel recovery mechanism pro-
posed in [16] to accelerate the recovery process.

Note that the job completion time would increase dramatically
when too many slave workers get failed. A user may prefer to ter-
minate the job and restart with a fixed number of healthy slave
workers to continue the execution. In epiCG, we provide a thresh-
old MinWorker on the minimal number of healthy slave workers.
MinWorker is set to 1 by default, but we allow users to set their
own values for MinWorker via job configuration. Upon failures,
the master worker will first check whether the number of remain-
ing healthy slave workers is smaller than MinWorker. If not, it
will perform automatic recovery as mentioned before. Otherwise,
it will terminate the execution immediately.

6. Experimental evaluation

We evaluate the performance of epiCG by comparing it with
several popular distributed graph processing systems [17], Gi-
raph [3], PowerGraph [11] and GraphX [9]. Giraph employs edge-
cut graph partitioning, and the other two use vertex-cut graph
partitioning. It has been experimentally shown that PowerGraph is
the most efficient graph processing engine on small graphs com-
pared with several other popular graph processing systems such as
Hama and GraphX [18]. In all the experiments, we use Giraph ver-
sion 1.0.0 and PowerGraph version 2.2. Our comparisons include
running time, communication cost, scalability and speedup.

6.1. Experiment setup

We ran all the experiments on our in-house clusters. The cluster
consists of 72 compute nodes, each of which is equipped with one
Intel X3430 2.4 GHz CPU, 8 GB of memory, two 500 GB SATA hard
disks and gigabit ethernet. For each node in the cluster, we in-
stalled CentOS 5.5 operating system, Java 1.7.0 with a 64-bit server
VM and Hadoop 0.20.203.0 [8]. Giraph runs as a Map-only job on
top of Hadoop, and hence we made the following changes to the
default Hadoop configurations: (1) the replication factor is set to 1;
(2) each node is configured to run one map task; (3) the size of
virtual memory for each map task is set to 4 GB. For Giraph, one
node was selected as the master running Hadoop’s NameNode and
JobTracker, while the remaining compute nodes were the slaves
running TaskTracker daemons. For PowerGraph/epiCG, we chose
one node as the master/master worker and all the others to be the
slaves/slave workers. We required every node to execute only one
master or slave thread and set the virtual memory size for each
thread to 4 GB. To make a fair comparison, we ran PowerGraph
in the synchronous mode. Note that the gains in asynchronous
mode is often compromised by the complex concurrency control
and there is no dominating mode [19]. By default, we chose 31

66 Y. Shen et al. / Big Data Research 4 (2016) 59–69
Fig. 4. Scalability.
Table 2
Dataset description.

Dataset Data size #Vertices #Edges Avg. degree

Livejournal 1.0 GB 3,997,962 34,681,189 8.67
Friendster 31.16 GB 65,608,366 1,806,067,135 27.53
Ftiny 1.9 GB 12,739,496 221,933,535 17.42
Fsmall 3.7 GB 17,694,120 428,192,865 24.19
Fmedium 7.5 GB 25,126,704 862,648,522 34.33

compute nodes out of the 72 compute nodes for the experiments.
For all the three systems, we used HDFS as the underlying storage
system.

6.2. Benchmark tasks and datasets

We study the performance of different distributed graph pro-
cessing systems using the following two benchmark tasks.

1) Shortest path. Shortest path computing is to select one ver-
tex as the source and compute the shortest distances to the source
for all the vertices. For all the three systems, we always use the
same vertex as the source.

2) PageRank. The PageRank algorithm is an iterative graph pro-
cessing algorithm. We refer the readers to the original paper [20]
for the details of the algorithm. Without loss of generality, we run
all the tasks for 10 supersteps and all the results are averaged over
ten runs.

We conduct the experiments using several publicly available
real-life datasets.2 Table 2 provides the details for each of them.

1) Livejournal. Livejournal is an online social networking ser-
vice that enables users to post blogs, journals, and dairies. It con-
tains more than 4 million vertices (users) and over 30 million
directed edges (friendships between users). We use this dataset to
evaluate the execution of Shortest path tasks.

2) Friendster. Friendster is an online social networking and
gaming service. It contains more than 60 millions vertices and
1 billion edges. We use it to evaluate the execution of PageRank
tasks. To evaluate the speedup of various systems, we prepare
three down-samples, Ftiny, Fsmall, Fmedium, of Friendster by ran-
domly selecting a subset of vertices from the original Friendster

2 http :/ /snap .stanford .edu/.
dataset and only keeping the edges associated with the selected
vertices.

6.3. Results

For the experiments, we compare the performance of epiCG-E
(using edge-cut), epiCG-V (using vertex-cut) with Giraph (using
edge-cut), PowerGraph (using vertex-cut) and GraphX [9] over two
metrics: running time and communication cost. For the commu-
nication cost, we calculate the number of cross-node messages
(i.e., sendMsgRequests) to be forwarded during the computation as
well as the number of cross-node messages (i.e., syncVertexVal-
ueRequests) to synchronize vertex values from master vertices to
their mirrors. We measure the number of messages instead of to-
tal message size because each type of message has the same size
across all the systems. The vertex-cut degree threshold is initially
set to 60, and the impact of different values of θ on the perfor-
mance of epiCG-V will be investigated in Section 6.3.3 in detail.

6.3.1. Performance comparison
Fig. 4(a)–4(c) show the execution time per superstep and com-

munication cost in Shortest path task for each of the five systems
with varied number of compute nodes. As we can see, epiCG-V
and PowerGraph perform best among all five systems as they in-
cur fewer messages than the other three. Although the number of
sendMsgRequests in epiCG-V is larger than PowerGraph, there is a
little difference in the execution time between epiCG-V and Power-
Graph. This is because such messages are sent asynchronously,
and PowerGraph requires much more synchronous syncVertex-
ValueRequests than epiCG-V, as shown in Fig. 4(c). epiCG-E per-
forms slightly worse than epiCG-V, which is mainly due to that
epiCG-V leverages vertex-cut to reduce the message forwarding
cost during computation. As shown in Fig. 4(b), the number of
sendMsgRequests in epiCG-V is only two-thirds as much as that in
epiCG-E and Giraph. epiCG-E and Giraph require the same number
of sendMsgRequests as they use the same partitioning function,
and both of them do not generate syncVertexValueRequests as a
result of edge-cut graph partitioning. However, Giraph experiences
a longer execution time than epiCG-E. The reason is that Giraph
is built on top of Hadoop, which is a MapReduce framework and
does not suit graph computing very well. The high running time
of GraphX can be attributed in a similar way, as it is built on
Spark [21], which is an in-memory MapReduce framework.

http://snap.stanford.edu/

Y. Shen et al. / Big Data Research 4 (2016) 59–69 67
Fig. 5. Speedup.

Fig. 6. Effect of vertex-cut degree threshold θ .
Fig. 4(d) provides the execution time per superstep in PageRank
task. The execution time in all the graph systems decreases al-
most linearly with the number of compute nodes. Compared with
Shortest path task, PageRank task requires 10x more execution
time due to the large size of the Friendster dataset. We fail to
get PowerGraph result for the cases with 10 and 20 nodes and
GraphX results for all cases, because PowerGraph and GraphX gen-
erated a large number of mirrors and exhausted memory space.
epiCG-V requires the least execution time in all scenarios with var-
ious numbers of compute nodes. On average, epiCG-V runs over 2x
and 1.5x faster than Giraph and epiCG-E, respectively. This is be-
cause we tested PageRank task on Friendster dataset, which follows
power-law degree distribution, and vertex-cut is able to reduce
the communication cost significantly for such natural graphs. For
30 and 40 nodes, epiCG-V runs slightly faster than PowerGraph,
which can be attributed to the 3x more sendMsgRequests and 1.5x
more syncVertexValueRequests generated by PowerGraph than by
epiCG-V, as shown in Fig. 4(e) and Fig. 4(f).

6.3.2. Graph size
We now study the effect of different input graph size on the

performance of the four systems. To this end, we perform Page-
Rank task against 4 datasets with various sizes, i.e., Ftiny, Fsmall,
Fmedium and Friendster (see details in Table 2), using 30 compute
nodes. Since GraphX is not able to run over the largest Friendster
dataset, the corresponding result is thus absent. Fig. 5(a) shows the
execution time per superstep required for each dataset. As shown
in this figure, epiCG-V performs best among all five systems in
the case of the largest dataset (i.e., Friendster), and only second
to PowerGraph in the other cases. Furthermore, epiCG-V shows the
best adaptivity to input graph size in the sense that the execution
time of epiCG-V increase slowest as the graph size increases. In ad-
dition, for all datasets, epiCG-V requires less execution time than
Giraph, epiCG-E and GraphX, and this gap becomes more signifi-
cant with the increase of input dataset size.

Fig. 5(b) and 5(c) respectively provide the number of sendMsg-
Requests and that of syncVertexValueRequests generated for the
four datasets. As we can see, epiCG-V incurs least sendMsgRequests
and syncVertexValueRequests among all three vertex-cut systems,
i.e., epiCG-V, PowerGraph and GraphX, and the total number of
messages generated by epiCG-V is much less than that of the two
edge-cut systems, i.e., Giraph and epiCG-E. Furthermore, as the size
of input dataset increases, the increasing rate of generated mes-
sages in epiCG-V is slower than other systems, especially in the
case of large graphs. This also explains the best performance of
epiCG-V in the Friendster dataset case.

6.3.3. Vertex-cut degree threshold θ
Finally, we study the effect of vertex-cut degree threshold θ on

the performance of epiCG-V. Recall that θ decides whether we
need to generate mirrors for a vertex. Fig. 6(a)–6(c) show how
the number of cross-node requests forwarded in Shortest path task
changes with θ in several scenarios with various numbers of com-
pute nodes. In each scenario, when θ becomes larger, the number
of sendMsgRequests also increases. In particular, the number of
sendMsgRequests for θ = 100 is around 3x larger than that for
θ = 20. This is because larger values of θ result in more vertices
without mirrors and hence more sendMsgRequests forwarded di-
rectly from vertices to their neighbors. In contrast, the number of
syncVertexValueRequests decreases as θ becomes larger, due to the
fact that for larger values of θ , more vertices have no mirrors and
fewer number of requests is required for vertex value synchroniza-
tion. Interestingly, when the number of compute nodes increases
from 10 to 30, the number of sendMsgRequests for each particular
value of θ remains constant while the number of syncVertexValue-
Requests increases significantly. This is because the neighbors of

68 Y. Shen et al. / Big Data Research 4 (2016) 59–69
a vertex can be assigned to multiple different compute nodes,
and consequently, with more available compute nodes, the num-
ber of mirrors generated for a vertex is also likely to increase.
Fig. 6(e)–6(g) demonstrate the communication cost for PageRank
task. Compared with Shortest path task, PageRank incurs large
numbers of sendMsgRequests and syncVertexValueRequests in all
the cases. This is because PageRank task is performed over Friend-
ster dataset, which is 30x larger than Livejournal dataset used for
Shortest path task.

Fig. 6(d) and 6(h) provide the execution time per superstep for
Shortest path and PageRank task, respectively. The number of com-
pute nodes used for this experiment is 30, and we omit the results
for the cases with 10 an 20 compute nodes, since they exhibit sim-
ilar behaviors as in the 30-node case. It can be observed from the
two figures that although the numbers of sendMsgRequests and
syncVertexValueRequests vary significantly with the threshold θ ,
the execution time keeps almost unchanged. This is easy to un-
derstand. On one hand, a small value of θ results in less sendMs-
gRequests being forwarded during computation, but more mirrors
for vertex as well as the cost for mirror synchronization; on the
other hand, a large value of θ incurs more sendMsgRequests but
less synchronization cost. As a result, we conclude that our previ-
ous result for execution time of epiCG-V also holds for the value
of θ other than 60, and one does not need to tune it for the best
performance.

7. Related work

Distributed graph processing. There have been a large number
of systems proposed for graph processing. Pregel [1] follows the
Bulk Synchronous Parallel (BSP) model and introduces a vertex-
centric programming model that allows users to express graph
algorithms in a natural way. Later on, various implementation of
Pregel have been developed. Giraph [3] treats the computation
as a map-only job in MapReduce framework [6] where the in-
put and output data are stored in HDFS. Bu et al. [18] proposed
Pregelix, which runs iterative dataflows dealing with computations,
to conduct graph analysis. Yan et al. [22] implemented Pregel+,
a C/C++ graph system eliminating serialization cost introduced by
Java. Graphlab [23] introduces a shared memory abstraction which
allows the adjacent vertices and edges to be accessed by the local
vertex and hence enables users to concentrate on the sequential
computation by hiding the details of data movement between ver-
tices.

Since synchronization is indispensable in BSP model, the strag-
glers, i.e., the workers who run much slower than others, can
significantly slow down the synchronization process. Hence, Sal-
ihoglu et al. [4] introduced GPS which follows the same storage
design with Giraph but provides two optimizations. The first one
is to maintain dynamic partitions among workers, and the second
one is to divide the adjacency list of high-degree vertices into dif-
ferent workers to balance the loads of workers. Graphlab [23] and
PowerGraph [2] employ Gather-Apply-Scatter (GAS) model and can
run in synchronous or asynchronous mode. Asynchronous mode
migrates the stragglers by eliminating global synchronization cost.
However, this increases system complexity due to the concurrency
control for serializability.

Recent efforts focused on leveraging existing platforms for
graph processing. Simmen et al. [24] introduced Aster 6 which
provides SQL-like interface for graph analytics. Similarly, Fan et al.
[17] proposed Grail, a syntactic layer for querying graph on
top of RDBMS, which translates graph queries into SQL queries.
GraphX [9] is built on Spark [10], which implements Pregel by
leveraging general dataflow operators in Spark. To align the per-
formance with the specialized graph processing systems, various
optimizations for dataflow operators have been proposed. This is
different from our work as we develop epiCG as one unit in epiC
for graph processing and reply on epiC to leverage different units
for complex analytics query processing. As an independent unit,
epiCG allows us to implement all the optimizations proposed for
the specialized graph processing systems.

Graph partitioning. Graph partitioning is critical to distributed
graph processing. While various edge-cut partitioning methods [14,
25–27] have been proposed to balance the computation workload
among multiple compute nodes and try to minimize the network
communication cost, less attention has been paid to vertex-cut
partitioning. PowerGraph [2] proposed a greedy strategy to gen-
erate vertex-cut partitioning, which require to use a single com-
pute node to load the entire graph into memory, thus restricting
the size of graph that can be handled. SBV-cut [28] and JA-BE-

JA-VC [29] are two recent works for distributed vertex-cut parti-
tioning. However, both of them requires iterative computation over
the entire graph, which does not allow multiple compute nodes to
generate a vertex-cut partitioning in parallel.

8. Conclusion

In this paper, we present our distributed graph processing
engine epiCG. We develop epiCG as one extension of epiC to
avoid extra configuration for a new system. epiCG supports both
edge-cut and vertex-cut partitioning, and a light-weight approach
is employed in epiCG to parallelize the generation of vertex-
cut partitions. epiCG also allows automatic failure detection and
recovery. The experiments on real-life datasets illustrate the high
efficiency and scalability of epiCG, compared with three state-of-
the-art distributed graph processing systems, Giraph, PowerGraph
and GiraphX.

References

[1] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Cza-
jkowski, Pregel: a system for large-scale graph processing, in: SIGMOD, 2010.

[2] K. Lang, Finding good nearly balanced cuts in power law graphs, Tech. Rep.
YRL-2004-036, Yahoo! Research Labs, 2004.

[3] http://giraph.apache.org/.
[4] S. Salihoglu, J. Widom, Gps: a graph processing system, in: SSDBM, ACM, New

York, NY, USA, 2013, pp. 22:1–22:12.
[5] H. Zhang, G. Chen, B.C. Ooi, K.-L. Tan, M. Zhang, In-memory big data man-

agement and processing: a survey, IEEE Trans. Knowl. Data Eng. 27 (7) (2015)
1920–1948.

[6] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
in: OSDI, 2004.

[7] F. Li, B.C. Ooi, M.T. Özsu, S. Wu, Distributed data management using mapre-
duce, ACM Comput. Surv. (CSUR) 46 (3) (2014) 31.

[8] http://hadoop.apache.org/.
[9] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica,

Graphx: graph processing in a distributed dataflow framework, in: OSDI, 2014,
pp. 599–613.

[10] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster
computing with working sets, in: HotCloud, 2010.

[11] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed
graph-parallel computation on natural graphs, in: OSDI, 2012.

[12] D. Jiang, G. Chen, B.C. Ooi, K.-L. Tan, S. Wu, epiC: an extensible and scalable
system for processing big data, Proc. VLDB Endow. 7 (7) (2014) 541–552.

[13] L.G. Valiant, A bridging model for parallel computation, Commun. ACM 33 (8)
(1990) 103–111.

[14] G. Karypis, V. Kumar, Metis-unstructured graph partitioning and sparse matrix
ordering system, version 2.0.

[15] R. Chen, J. Shi, Y. Chen, H. Guan, H. Chen, Powerlyra: differentiated graph com-
putation and partitioning on skewed graphs, Tech. rep., 2013.

[16] Y. Shen, G. Chen, H.V. Jagadish, W. Lu, B.C. Ooi, B.M. Tudor, Fast failure recov-
ery in distributed graph processing systems, Proc. VLDB Endow. 8 (4) (2014)
437–448.

[17] J. Fan, A.G.S. Raj, J.M. Patel, The case against specialized graph analytics en-
gines, in: CIDR, 2015.

[18] Y. Bu, V.R. Borkar, J. Jia, M.J. Carey, T. Condie, Pregelix: big(ger) graph analytics
on a dataflow engine, Proc. VLDB Endow. 8 (2) (2014) 161–172.

http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726772617068s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726772617068s1
http://giraph.apache.org/
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib677073s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib677073s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://hadoop.apache.org/
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4A69616E673A323031343A4545533A323733323238362E32373332323931s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4A69616E673A323031343A4545533A323733323238362E32373332323931s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib56616C69616E743A313939303A424D503A37393137332E3739313831s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib56616C69616E743A313939303A424D503A37393137332E3739313831s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F636964722F46616E52503135s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F636964722F46616E52503135s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F4275424A43433134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F4275424A43433134s1

Y. Shen et al. / Big Data Research 4 (2016) 59–69 69
[19] C. Xie, R. Chen, H. Guan, B. Zang, H. Chen, Sync or async: time to fuse for
distributed graph-parallel computation, in: PPoPP, 2015, pp. 194–204.

[20] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: bring-
ing order to the web, Tech. rep., 1999.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,
S. Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing, in: NSDI, 2012.

[22] D. Yan, J. Cheng, Y. Lu, W. Ng, Effective techniques for message reduc-
tion and load balancing in distributed graph computation, in: WWW, 2015,
pp. 1307–1317.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Graphlab:
a new parallel framework for machine learning, in: UAI, 2010.
[24] D. Simmen, K. Schnaitter, J. Davis, Y. He, S. Lohariwala, A. Mysore, V. Shenoi,
M. Tan, Y. Xiao, Large-scale graph analytics in aster 6: bringing context to big
data discovery, Proc. VLDB Endow. 7 (13) (2014) 1405–1416.

[25] D.A. Padua (Ed.), Encyclopedia of Parallel Computing, Springer, 2011.
[26] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for irregular

graphs, in: Supercomputing, 1996.
[27] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs, in:

Supercomputing, 1995.
[28] M. Kim, K.S. Candan, Sbv-cut: vertex-cut based graph partitioning using struc-

tural balance vertices, Data Knowl. Eng. 72 (2012) 285–303.
[29] F. Rahimian, A.H. Payberah, S. Girdzijauskas, S. Haridi, Distributed vertex-cut

partitioning, in: DAIS, 2014, pp. 186–200.

http://refhub.elsevier.com/S2214-5796(15)30034-4/bib5869653A323031353A5341543A323638383530302E32363838353038s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib5869653A323031353A5341543A323638383530302E32363838353038s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib726464737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib726464737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib726464737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib70726567656C706C7573s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib70726567656C706C7573s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib70726567656C706C7573s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4C6F772B616C3A756169313067726170686C6162s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4C6F772B616C3A756169313067726170686C6162s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib53696D6D656E3A323031343A4C47413A323733333030342E32373333303133s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib53696D6D656E3A323031343A4C47413A323733333030342E32373333303133s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib53696D6D656E3A323031343A4C47413A323733333030342E32373333303133s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A7265666572656E63652F706172616C6C656C2F32303131s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4B6172797069733A313939363A504D4B3A3336393032382E333639313033s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4B6172797069733A313939363A504D4B3A3336393032382E333639313033s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib48656E647269636B736F6E3A313939353A4D41503A3232343137302E323234323238s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib48656E647269636B736F6E3A313939353A4D41503A3232343137302E323234323238s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4B696D3A323031323A5356423A323130383332372E32313038353130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4B696D3A323031323A5356423A323130383332372E32313038353130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F646169732F526168696D69616E5047483134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F646169732F526168696D69616E5047483134s1

	epiCG: A GraphUnit Based Graph Processing Engine on epiC
	1 Introduction
	1.1 Issues and opportunities
	1.2 Our solution and contributions

	2 Preliminaries
	2.1 The epiC system
	2.2 Distributed graph processing

	3 Overview of epiCG
	3.1 Computation model
	3.2 epiCG architecture

	4 Implementation details
	4.1 Graph partitioning
	4.1.1 Partition-based graph representation
	4.1.2 Light-weight vertex-cut generation

	4.2 Iterative computation
	4.2.1 Mirror message delivery
	4.2.2 Master vertex computation and message delivery
	4.2.3 Vertex value synchronization

	5 Fault tolerance
	6 Experimental evaluation
	6.1 Experiment setup
	6.2 Benchmark tasks and datasets
	6.3 Results
	6.3.1 Performance comparison
	6.3.2 Graph size
	6.3.3 Vertex-cut degree threshold θ

	7 Related work
	8 Conclusion
	References

