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A large number of specialized graph processing systems have been developed to cope with the increasing 
demand of graph analytics. Most of them require users to deploy a new framework in the cluster 
for graph processing and switch to other systems to execute non-graph algorithms. This increases 
the complexity of cluster management and results in unnecessary data movement and duplication. In 
this paper, we propose our graph processing engine, named epiCG, which is built on top of epiC, 
an elastic data processing system. The core of epiCG is a new unit called GraphUnit, which is able 
to not only perform iterative graph processing efficiently, but also collaborate with other types of 
units to accomplish any complex/multi-stage data analytics. epiCG supports both edge-cut and vertex-
cut partitioning methods, and for the latter method, we propose a novel light-weight greedy strategy 
that enables all the GraphUnits to generate vertex-cut partitioning in parallel. Furthermore, unlike 
existing graph processing systems, failure recovery in epiCG is completely automatic. We compare 
epiCG with several prevalent graph processing systems via extensive experiments with real-life dataset 
and applications. The results show that epiCG possesses high efficiency and scalability, and performs 
exceptionally well in large dataset settings, showcasing its suitability for large-scale graph processing.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The increasing demand of graph analytics is the inevitable con-
sequence of the growing scale and importance of graph data. Big 
graph examples including social network graphs, email and in-
stance message graphs typically involve billions of vertices and 
edges. For example, Facebook has over 1.5 billion monthly active 
users at present. In recent years, a large number of specialized 
distributed graph processing systems such as Pregel [1], Power-
Graph [2], Giraph [3] and GPS [4] have been proposed to han-
dle complex graph analytics tasks. These specialized systems gain 
their popularities for two reasons. First, they follow the vertex-
centric programming model introduced by Pregel that allows users 
to express various graph algorithms in a natural way. Second, 
most graph processing systems are designed for iterative compu-
tation and are in-memory processing systems [5] since they hold 
the graph data in memory during iterations. Therefore, such sys-
tems outperform the general-purpose distributed systems such as 
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MapReduce [6,7] and its open-source implementation Hadoop [8]
that typically flush data to the distributed file system at the end 
of each iteration and reload data into memory in the beginning of 
the next iteration.

1.1. Issues and opportunities

While specialized graph processing systems are efficient for 
graph analytics, the specialization itself is a double-edged sword. 
We observe that most graph processing systems require users to 
establish a new framework in the cluster and conduct necessary 
configuration before running. This is always a daunting job for 
cluster managers. In particular, given various types of data analyt-
ics applications, we cannot afford to set up a new system for each 
of them. Furthermore, graph analytics may only be one part of a 
complex analytics job and we have to switch to other systems if 
the graph processing system is unsuitable for the analytics tasks 
afterwards. For example, consider a top k PageRank application 
which tries to find k web pages with highest PageRank values. This 
application involves two tasks, one for calculating PageRank for all 
the web pages and another for computing k pages with the highest 
PageRank values. Intuitively, the first task can be easily handled by 
graph processing systems such as Pregel, while MapReduce-based 
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systems such as Hadoop are more suitable to solve the second one. 
However, switching among different systems will introduce com-
plexity and increase the job execution time due to data movement.

As opposed to the specialized graph processing systems, GraphX 
[9] was introduced as an embedded graph processing framework 
on top of a general-purpose dataflow system, namely Apache 
Spark [10]. To support graph processing, GraphX defines a set 
of graph operators that are implemented based on the standard 
dataflow operators (e.g., map, join, group-by) in Spark. While the 
implementation of GraphX allows complex/multi-stage analytics 
tasks to be handled in a unified system Spark, it hinders all the 
optimizations proposed for the specialized graph processing sys-
tems and requires a bunch of dataflow optimizations to align its 
performance with the specialized ones. Furthermore, GraphX rep-
resents graph data as two collections (i.e., vertex collection and 
edge collection) and performs multi-way join over these collec-
tions to construct the view of a graph. This requires additional 
transformation workload since graph data is always represented in 
an adjacency list.

Opportunity: Is there any unified distributed platform which 
supports complex analytics tasks for various data types (e.g., graph 
and non-graph data), while retaining the optimizations and advan-
tages of the specialized graph processing system?

Another issue about graph processing systems is the high com-
munication overhead caused by cross-machine message forward-
ing. Pregel adopts the edge-cut based graph partitioning which 
distributes vertices among the compute nodes and allows edges 
to span across the nodes. Network communication overhead is in-
curred when a vertex in one compute node wants to send a mes-
sage to its neighbor in another node. It is worth noting that the 
overhead becomes more significant for natural graphs which fol-
low power-law degree distribution. Consequently, PowerGraph [11]
proposed vertex-cut based graph partitioning. The idea is to ran-
domly distribute edges among the compute nodes and allow ver-
tices to span across the nodes. Unlike edge-cut partitioning, the 
communication cost produced by a vertex-cut is restricted to the 
total number of compute nodes spanned by the vertices. However, 
when performing a vertex-cut partitioning, PowerGraph requires 
one compute node to load the entire graph into the main memory, 
execute the partitioning algorithm and forward edges to the com-
pute nodes accordingly. This limits the size of the graph that can 
be processed by the vertex-cut partitioning algorithm.

Opportunity: Can we implement a light-weight, distributed 
vertex-cut partitioning method for graph processing?

The third issue is fault tolerance. Most existing distributed 
graph processing systems adopt checkpoint-based recovery mech-
anism. That is, a checkpoint that records graph status is made 
periodically (e.g., every 10 iterations). Once a compute node fails 
or reports an exception, the job will resume its execution from the 
latest checkpoint. However, to our best knowledge, existing dis-
tributed graph processing systems such as GPS [4], Giraph [3] and 
PowerGraph [2] cannot recover from failures automatically. When 
a failure occurs, the job will be terminated and the system re-
quires users to manually restart the job from the latest checkpoint. 
GraphX [9] achieves fault tolerance by leveraging the features (e.g., 
lineage) from the dataflow system Spark. However, their approach 
can hardly be adapted to the advanced Pregel-like graph process-
ing systems.

Opportunity: Can we achieve automatic failure detection and 
recovery in the distributed graph processing systems?

1.2. Our solution and contributions

To address the above three challenging issues, we propose 
our graph processing engine, epiCG. We build epiCG on top of 
epiC [12], an elastic data processing system proposed for large-
scale data analytics. epiC adopts an Actor-like programming model 
that is able to execute any number of computations (called units). 
In epiC, users can process data with different computation mod-
els by defining their own units, e.g., MapUnit and ReduceUnit for 
MapReduce model, and SelectUnit, JoinUnit and AggregateUnit for 
relational model. The implementation of epiCG on top of epiC 
leverages the flexibility and extensibility of epiC and obtains the 
following benefits.

• Reusability: implementation cycle of our graph engine is 
shortened by leveraging existing components provided in epiC.

• One-size-fits-all: users do not need to configure the cluster to 
run a new system for graph applications. A complex analytics task 
can be divided into multiple stages, each of which is handled by a 
different type of unit (e.g., MapUnit, ReduceUnit) in epiC.

We build epiCG by implementing a new computation unit 
called GraphUnit in epiC. We define two types of GraphUnits. The 
first one is called slave GraphUnit which manages a subset of the 
graph data and performs iterative graph computation in parallel 
with other slave GraphUnits. The second type is called master Gra-
phUnit which coordinates the computation activity among all the 
slave GraphUnits. It is worth mentioning that 1) the graph APIs 
provided by epiCG align to those defined in Pregel due to their 
expressiveness and simplicity, and 2) GraphUnit is independent of 
other types of units in epiC, thus allowing all the optimizations 
proposed for the specialized graph processing systems to be im-
plemented in epiCG seamlessly.

However, the basic unit programming for GraphUnit is inef-
ficient due to the following two reasons. First, epiC employs a 
disk-based generic programming model (see details in Section 2). 
Like MapReduce-based systems, during each iteration, GraphUnit 
will go through three phases: data loading, one-iteration compu-
tation and data flushing. This incurs unnecessary data movement 
across all the iterations. Second, computation units in epiC cannot 
communicate with each other directly. Instead, if one GraphUnit 
wants to send a messages to another GraphUnit, it has to first send 
the message to the master node in epiC and the master node will 
then forward the message to the corresponding unit. Apparently, 
the master would become the bottleneck due to the high volume 
of the messages involved in most graph applications.

To solve both problems, we implement GraphUnit as an in-
memory computation unit. During the computation, all the slave 
GraphUnits are able to hold graph data in memory, thus elim-
inating unnecessary I/O cost across iterations. We also allow all 
the GraphUnits to communicate with each other directly via mes-
sages, so that the master node in epiC will not get overwhelmed 
in receiving and forwarding massive messages introduced by the 
graph computation. Furthermore, epiCG supports both edge-cut 
and vertex-cut partitioning methods and allows users to process 
different graph data with the most suitable partitioning methods. 
To generate a vertex-cut partitioning, we propose a light-weight 
partitioning method that allows every GraphUnit to generate a part 
of the vertex-cut in parallel with others. Finally, epiCG adopts the 
checkpoint-based recovery method and achieves automatic failure 
detection and recovery by maintaining the statuses of slave Graph-
Units inside the master GraphUnit. When a slave fails, the master 
GraphUnit will repartition the graph based on all the remaining 
healthy slaves and instruct them to resume the computation since 
the latest checkpoint.

We summarize the contribution of this paper as follows.
• We develop a novel graph processing engine epiCG on top of 

epiC. We build epiCG by implementing a new unit called Graph-
Unit in epiC. GraphUnit is an in-memory computation unit that 
can handle iterative computation efficiently and collaborate with 
other kinds of units to accomplish any complex/multi-stage data 
analytics.
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• epiCG supports both edge-cut and vertex-cut graph partition-
ing methods. To generate a vertex-cut partitioning, we propose a 
light-weight greedy strategy which uses multiple compute nodes 
to generate vertex-cut partitions collaboratively.

• epiCG adopts the checkpoint-based recovery method and 
leverages the remaining healthy compute nodes to perform recov-
ery automatically upon a failure.

• We conduct comprehensive experiments to demonstrate the 
efficiency and scalability of epiCG, compared with advanced graph 
processing systems.

The rest of the paper is organized as follows. Section 2 provides 
background about epiC and distributed graph processing. Section 3
gives an overview of epiCG, followed by implementation details 
in Section 4. Section 5 presents fault tolerance in epiCG. Section 6
reports experimental results. We discuss related works in Section 7
and conclude the paper in Section 8.

2. Preliminaries

We first provide the background of epiC, the underlying plat-
form of epiCG. We then briefly review the key ideas of specialized 
graph processing and discuss the two graph partitioning methods: 
edge-cut partitioning and vertex-cut partitioning.

2.1. The epiC system

epiC [12] was proposed to address data variety challenge in Big 
Data. It adopts the Actor-like programming model and provides 
a simple yet efficient unit interface to support various computa-
tion models. In epiC, users can express different computation logics 
by defining different units. Each processing unit performs compu-
tation in parallel with other units and communicates with other 
units through message passing. Messages, however, cannot be sent 
directly between two units; each message is sent to the master 
network (which is responsible for routing messages) and then for-
warded to the corresponding units. A unit becomes active if it 
receives messages from the master network. After parsing the mes-
sage, the unit will load data from the underlying storage and apply 
the user-defined computation logic to process the data accordingly. 
When the unit completes its computation, it flushes the output to 
the storage and becomes inactive until it receives a new message.

epiC adopts the master-worker architecture. There is only a sin-
gle master node in epiC (this is different from the nodes in the 
master network which are mainly responsible for message rout-
ing). The master node runs a master daemon which monitors the 
healthy statues of the slaves and commands workers to execute 
tasks. Each worker node establishes a worker tracker daemon. The 
worker tracker manages a pool of worker processes which accept 
and execute assigned unit tasks. In epiC, we assign one unit task 
to one worker process.

2.2. Distributed graph processing

The key idea of distributed graph processing is a vertex-centric 
programming model proposed by Pregel [1], which abstracts graph 
algorithms as the computation for every vertex and message ex-
change between different vertices. Typically, the execution of a 
graph job consists of three phases: data loading, iterative compu-
tation and the output. In the data loading phase, an input graph is 
loaded from the underlying storage system and distributed among 
the compute nodes. During iterative computation, each compute 
node sequentially scans its received vertices and executes a user-
defined compute function for each of them. Every vertex can up-
date its value and send messages to other vertices during the 
computation. Pregel-like systems follow Bulk Synchronous Parallel 
(BSP) model [13] and all the compute nodes will proceed to the 
Fig. 1. Two graph partitioning methods.

next iteration synchronously, while some systems such as Power-
Graph [2] perform computation in an asynchronous manner. Fi-
nally, in the output phase, compute nodes flush the results (e.g., 
the computed values of the vertices) to the storage system. Es-
sentially, distributed graph processing distributes graph data and 
parallelizes computation tasks among a cluster of compute nodes, 
thus accelerating the processing significantly.

Graph partitioning. We denote the input graph to the dis-
tributed graph processing systems by G = (V, E), where V con-
tains all the vertices and E ⊆ V × V represents directed edges1

among vertices. Typically, there are two approaches to distribute 
input graph to multiple compute nodes, using edge-cut and vertex-
cut partitioning methods respectively. The edge-cut partitioning 
method distributes the vertices among compute nodes and allows 
edges to span across the nodes. An optimal edge-cut partition-
ing minimizes cross-node edges (to reduce network communica-
tion cost) as well as balances the computation workload (i.e., the 
number of vertices) among different compute nodes. However, the 
complexity of finding an optimal edge-cut partitioning is NP-hard. 
Consequently, most existing graph systems adopt efficient greedy 
strategies such as distributing vertices to the compute nodes in a 
round-robin or hash manner. Fig. 1(a) gives an example of edge-cut 
partitioning, where we distribute a 7-vertex (A–G) graph G over 
two compute nodes N1, N2. This edge-cut partitioning results in 
two cross-node edges, D→E and D→F.

In contrast, the vertex-cut graph partitioning distributes the 
edges among compute nodes and allows vertices to span across 
the nodes. We say that a vertex has multiple copies if it spans 
across multiple nodes. One copy is selected as the master vertex, 
while others are mirrors. Fig. 1(b) shows a vertex-cut partitioning 
for G . There is no cross-node edge and vertex D has two copies 
in N1, N2, respectively. The communication cost using vertex-cut 
is mainly caused by synchronizing all the copies of the same ver-
tex, which is proportional to the total number of compute nodes 
spanned by the vertices. It has been theoretically and experimen-
tally proved in [2] that vertex-cut outperforms edge-cut in many 
real-life graphs which have power-law degree distribution. How-
ever, the partitioning algorithm proposed in [2] requires a compute 
node to load the entire input data into memory and assign the 
(i + 1)-th edge based on the assignment of the previous i edges. 
This results in large memory footprint and restricts the size of the 
graphs to be processed.

3. Overview of epiCG

In this section, we present the computation model and the ar-
chitecture of epiCG.

3.1. Computation model

epiCG adopts the vertex-centric programming model of Pregel 
and applies a user-defined compute function for each vertex. 
Specifically, every vertex carries two statuses: active and inactive.

1 For indirected graphs, we can represent each undirected edge (u, v) by two 
directed edges 〈u, v〉 and 〈u, v〉.
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Fig. 2. The Architecture of epiCG.

During the computation, a vertex can process the messages sent 
by other vertices, update its value and send messages to other ver-
tices. If a vertex finds there is no message to send in the current 
iteration, it can call VoteToHalt() to inactivate itself. An inactive ver-
tex will be automatically activated upon receiving messages from 
other vertices. When all vertices become inactive or there is no 
message to send at each vertex, the job is then terminated. epiCG 
follows the BSP model and the execution of an epiCG program 
is organized by supersteps. That is, a global synchronous point is 
reached when all the vertices finish computation in one super-
step. After that, all the vertices proceed to the next superstep 
synchronously.

3.2. epiCG architecture

Fig. 2 shows the architecture of epiCG. epiCG deploys the dis-
tributed file system (DFS) as its underlying storage. Typically, DFS 
contains the initial graph data to be processed by epiCG and the 
final results produced by epiCG. epiCG follows the single master-
multiple worker architecture of epiC. The master runs a master 
daemon which maintains the healthy statuses of all the workers 
and instructs workers to execute unit programs. We divide workers 
into three categories to execute masterGraphUnit, slaveGraphUnit
and Zookeeper, respectively. The masterGraphUnit coordinates su-
persteps among all the workers who execute slaveGraphUnit and 
the Zookeeper maintains information shared among these workers, 
e.g., which worker has finished the execution of the current su-
perstep, how many workers have dumped a checkpoint. Typically, 
given a set of workers, we choose one worker to run the master-
GraphUnit program. The functionalities of the GraphUnits are listed 
as follows.

MasterGraphUnit. The MasterGraphUnit program performs two 
tasks:

1. partition and distribute the input graph among the workers 
that run SlaveGraphUnit program;

2. coordinate the SlaveGraphUnit workers to perform supersteps 
synchronously.

To perform these tasks correctly, MasterGraphUnit maintains sev-
eral important objects.

• MasterPartitioner: generate the vertex-to-partition mapping 
for the input graph (see details in Section 4.1);

• MasterClient: notify workers of the newly computed global ag-
gregated values;

• MasterAggregator: retrieve local aggregated values from the 
workers and generate the global aggregated ones.

SlaveGraphUnit. The SlaveGraphUnit program is responsible for 
the following four tasks.
1. load its assigned graph data and flush computation results 
from/to the storage system;

2. loop over vertices and execute compute() function;
3. forward messages generated during the computation;
4. generate aggregated values and write to the zookeeper.

SlaveGraphUnit maintains four important objects:

• WorkerServer: retrieves and manages the graph data that is 
assigned to the worker;

• WorkerPartitioner: maintains partition information for the ver-
tices residing in the worker;

• WorkerClient: forwards messages to the zookeeper and other 
workers;

• WorkerAggregator: computes aggregated values and writes to 
the zookeeper.

Once a graph job is submitted to epiCG, all the workers will 
be activated immediately. At the beginning of the execution, epiCG 
establishes pairwise connections between GraphUnits. This is dif-
ferent from epiC where units cannot communicate with each other 
directly, but rely on the message service provided by the master 
network. As most graph applications such as PageRank and short-
est path computation involve a large number of messages, setting 
up direct connections between units allows them to communicate 
with each other more efficiently and prevents the master network 
being the bottleneck.

4. Implementation details

The implementation of epiCG addresses two important prob-
lems in graph processing: graph partitioning and iterative graph 
computation. epiCG supports both edge-cut and vertex-cut graph 
partitioning methods, which allows users to perform graph com-
putation with the most appropriate partitioning method. In this 
section, we first introduce the graph representation in epiCG and 
our light-weight vertex-cut generation algorithm. We next present 
how epiCG performs iterative computation using two partitioning 
methods.

4.1. Graph partitioning

4.1.1. Partition-based graph representation
Consider a graph G = (V, E). epiCG first divides all the vertices 

into partitions and distributes partitions among the workers that 
execute slaveGraphUnit. Let P be the set of all the partitions. For 
any partition Pi ∈ P , we have Pi = (Vi, Ei) where Vi ⊆ V and 
Ei = {(u, v) ∈ E | u ∈ Vi}. Typically, the number of partitions is 
much larger than the number of compute nodes and each com-
pute node will be assigned with multiple partitions. The benefit of 
partition-based graph representation is to support dynamic repar-
titioning. For example, every slaveGraphUnit can collect statistics 
such as the execution time for each of its partitions and report 
this information to the masterGraphUnit, who may ask some of 
slaveGraphUnits to exchange partitions for the purpose of load bal-
ance. Instead of repartitioning the graph in the vertex granularity, 
partition-based repartitioning is obviously more cost effective.

Table 1 lists several important data structures managed by each 
slaveGraphUnit for partition maintenance. Vertex records the in-
formation for a vertex in the input graph, including the identity 
of the vertex, its value, outgoing edges, and status (active or inac-
tive). For each vertex, we also attach two variables, isMaster and 
#allEdges, to support vertex-cut graph partitioning. isMaster is a 
boolean variable indicating whether the vertex is a master version; 
#allEdges records the total number of edges associated with the 
vertex in the original graph. Partition is a list of vertices and 
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Table 1
Graph-related objects maintained by each worker.

Object Description

Vertex information of a vertex in the input graph
Partition a set of vertex in a partition
PartitionStore a set of partition residing in the worker
PartitionOwner indicating a partition belongs to which worker
PartitionOwnerList partition-worker mapping

each partition is associated with an identifier “pid”. We use Par-
titionStore to keep track of all the partitions assigned to the 
worker. In order to forward messages to the corresponding desti-
nation vertices, every worker needs to know in which worker and 
which partition every destination vertex resides. To do this, we 
maintain two mappings, one vertex-to-partition mapping ϕ and 
one partition-to-worker mapping φp in each worker, where ϕ in-
dicates which vertex belongs to which partition and φp indicates 
which partition is assigned to which worker. If the worker wants 
to forward a message to vertex u, it can easily conclude that u
belongs to partition ϕ(u) in the worker φp(ϕ(u)).

By default, epiCG adopts a simple hash mapping method to 
generate ϕ and φp. That is, let P be the set of all the partitions. 
For a vertex v and a partition P ∈P ,

ϕ(v) = P ⇔ v.vid ≡ P .pid (mod |P|) (1)

Similarly, let W be the set of all the slaveGraphUnit workers. For a 
partition P ∈P and a worker W ∈W ,

φp(P ) = W ⇔ P .pid ≡ W .workerid (mod |W|) (2)

epiCG provides various partitioning methods to generate the 
two mappings ϕ and φp including hash partitioning, block parti-
tioning. We also allow users to provide their own mappings by 
overriding the partitioning method in the MasterPartitioner. More-
over, the partitioning can also be decided before graph loading 
by using advanced graph partitioning tools such as Metis [14]. In 
epiCG, we use PartitionOwner to keep information for a parti-
tion, i.e., to which worker this partition is assigned. Every worker 
maintains a list PartitionOwnerList (i.e., φp) recording Par-
titionOwners for all the partitions. During the computation, 
every worker can easily forward a message to the destination ver-
tex by referring to the vertex-partition mapping ϕ and Parti-
tionOwnerList.

The input graph of an epiCG job is stored as a plain file in the 
distributed file system. Typically, a graph file consists of a set of 
lines, each containing a vertex id and all the ids of its neighbors. In 
the beginning of graph loading, the masterGraphUnit will generate 
the PartitionOwnerList and inform slaveGraphUnits of the list via 
zookeeper. Initially, every slaveGraphUnit loads several data splits 
(i.e., lines) of the input graph and then iterates over the splits. For 
each line, it checks whether the vertex belongs to any of its parti-
tions. If so, the vertex and its outgoing edges are appended to its 
local partition accordingly. Otherwise, slaveGraphUnit forwards this 
line to the corresponding compute node based on Partition-
OwnerList.

4.1.2. Light-weight vertex-cut generation
We observe that a cross-node edge is caused by assigning the 

source vertex and the destination vertex to two compute nodes. By 
creating a copy of the source vertex in the node which contains the 
destination vertex, the cross-node edge is dismissed. This inspires 
us to generate a vertex-cut partitioning by distributing edges based 
on the assignment of destination vertices and creating copies for a 
source vertex if the source and destination vertices are assigned to 
different nodes. More specifically, given a vertex v and its outgoing 
edges Ev , we generate a cut for v in the following steps.
1. We split Ev into n groups, E1, . . . , En , which satisfy:
1)

⋃n
i=1 Ei = Ev and ∀i, j ∈ [1, n] ∧ i �= j, Ei ∩ E j = ∅, and 

2) ∀e1 = 〈v, u1〉, e2 = 〈v, u2〉 ∈ Ev , e1, e2 belong to the same 
group iff φp(ϕ(u1)) = φp(ϕ(u2)).

2. We create a copy vi of vertex v for each edge group Ei and 
replace with it the source vertex v of each edge in this edge 
group. We then assign each copy to a compute node where at 
least one of the destination vertices of its edges reside.

3. We choose the copy assigned to node φp(ϕ(v)) as the mas-
ter vertex, and others as mirrors. If no copy is generated in 
φp(ϕ(v)), we create a copy in partition ϕ(v) as the master 
vertex.

4. We assign every copy to the corresponding partition. The mas-
ter vertex is assigned to ϕ(v). For each mirror, we only know 
the worker to which it is assigned. We then randomly choose 
a partition in that worker and assign the mirror to that parti-
tion. Note that assigning mirror to any partition in that worker 
will not affect computation cost and message forwarding cost.

For example, consider the graph G in Fig. 1(a). Suppose every 
vertex composes a partition and we have B, C, D assigned to N1
and E, F assigned to N2. To generate a cut for vertex D , we first 
split its four outgoing edges into two groups E1 = {D → B, D → C}
and E2 = {D → E, D → F }. We then create two copies D1, D2 of D , 
replace vertex D of E1(E2) with D1(D2), and assign D1(D2) to 
N1(N2). Since D is assigned to N1, we choose copy D1 as the 
master vertex and D2 as its mirror. Finally, we obtain the cut of 
vertex D in Fig. 1(b).

Thus far, we obtain a vertex-cut for each vertex. However, an-
other important issue of vertex-cut generation is that we should 
avoid spanning vertices with low out-degrees (i.e., the total num-
ber of the outgoing edges). This is because the copies of these ver-
tices increase network cost for synchronizing vertex values, while 
their contributions to reducing the cost of forwarding cross-node 
message is insignificant [15]. To address the problem, we set a 
threshold θ on the out-degrees of the vertices. If the out-degree 
of a vertex is no larger than θ , we assign all the edges to the ver-
tex without generating any copies for the vertex. Otherwise, we 
decompose it into several parts to obtain a vertex-cut.

Algorithm 1 provides the pseudo code of our vertex-cut gen-
eration algorithm. Given a vertex v , we first check whether its 
out-degree exceeds the threshold θ (line 3). If not, we assign all 
the edges to the vertex and the vertex will be forwarded to parti-
tion ϕ(v) using Equation (1) (line 4). Otherwise, we start to assign 
the edges of v among the workers (line 7–14). Specifically, we 
maintain a map function N from workers to the copies indicat-
ing which worker owns which copy (line 7) and iterates over all 
the outgoing edges of the vertex (line 8). For each edge 〈v, u〉, we 
first compute the worker W where u resides (line 9). We then 
check whether N contains worker W (line 10–11). If so, we re-
trieve from N the copy v ′ that is assigned to W and attach 〈v ′, u〉
to the edge list of v ′ . If N does not contain worker W , we create 
a copy v ′ and assign edge 〈v ′, u〉 to the copy. Besides, we add the 
pair (W , v ′) to N (line 13). We then choose master vertex and as-
sign every copy to a partition (line 16–31). Furthermore, for each 
copy of v , we record the out-degree of v in the original graph 
(line 28) and for the master version, we record a list of partition 
identifiers indicating the locations of the mirrors (line 32).

This is easy to verify that the vertex-cut partitioning produced 
by Algorithm 1 has the following properties.

Property 1. Consider a vertex v and the set Ev of its outgoing edges. Let 
{(v1, P1), · · · , (vn, Pn)} be the list M produced by Algorithm 1 and Ei
be the set of edges associated with vi , 1 ≤ i ≤ n. We have:

∀〈vi, u〉 ∈ Ei, φp(Pi) = φp(ϕ(u))
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Algorithm 1: GenerateVertexCut.
Input : v , a vertex

φp, PartitionOwnerList
n, the number of partitions

Output: M: list of (copy, partition) pairs
1 M ← ∅;
2 Ev ← v .GetEdges ();
3 if |Ev | ≤ θ then
4 M ← {〈v, GetPartition(v.vid)〉};

5 else
6 /* generate vertex-cut for v */
7 N ← ∅;
8 foreach Edge 〈v, u〉 ∈ Ev do
9 W ← GetWorkerInfo(GetPartition(u.vid), φp);

10 v ′ ← N.get(W );
11 if v ′ = null then
12 v ′ ← CreateVertex(v);
13 N ← N ∪ {(W , v ′)};

14 v ′.AddEdge(〈v ′, u〉);

15 /* select master vertex and assign copies to partitions */
16 W ∗ ← GetWorkerInfo(GetPartition(v.vid), φp);
17 vm ← null; Pm ← ∅;
18 foreach (W , v ′) ∈ N do
19 if W = W ∗ then
20 v ′.isMaster ← true;
21 M ← M ∪ {v ′, GetPartition(v.vid)};
22 vm ← v ′;
23 else
24 v ′.isMaster ← f alse;
25 P ← ChooseOnePartition(W );
26 M ← M ∪ {(v ′, P )};
27 Pm ←Pm ∪ {P .pid};

28 v ′.#allEdges ← |Ev |;
29 if W /∈ N.keySet() then
30 v ′ ← CreateVertex(v);
31 M ← {v ′, GetPartition(v.vid)};

32 vm.AddMirrorPartitionIds(Pm);

This guarantees that forwarding messages from any copy to its neighbors 
does not incur network communication cost.

Furthermore, in the graph loading phase, every slaveGraphUnit
worker can apply Algorithm 1 to the vertices in its own data splits 
in parallel with other workers. After obtaining a vertex-cut for a 
particular vertex, the worker can forward each copy and its edges 
to the corresponding partition based on its computed list M . Af-
ter all the workers finish shuffling vertex copies and edges, every 
worker obtains the following information:

• for every vertex v in its own partitions, the worker knows 
the out-degree of the vertex in the original graph based on 
v.#allEdges and whether it is the master version based on 
v.isMaster.

• for a master vertex v in its own partitions, the worker records 
in which partition of v.Mirror PartitionIds each mirror of v
resides, and further decide to which worker this partition be-
longs using Equation (2).

• for each vertex in the graph, the worker knows the partition 
and worker where the master version of the vertex resides 
based on Equation (1) and (2).

In essence, an edge-cut partitioning can be regarded as a special 
case of vertex-cut partitioning where all the vertices has a single 
copy which is the master vertex. Hence, without loss of generality, 
Fig. 3. ProduceMsg(Edge e) for PageRank.

we next describe how epiCG performs iterative graph computation 
based on vertex-cut partitioning.

4.2. Iterative computation

epiCG performs graph computation via a set of iterations, i.e., 
supersteps. In each superstep, every slaveGraphUnit worker under-
goes the following three phases.

4.2.1. Mirror message delivery
Every master vertex will forward its updated vertex value to all 

of its mirrors at the end of each superstep. Once a worker receives 
an updated vertex value, it will store the value into a Vertex-
ValueUpdateCache. At the beginning of a superstep, the worker 
will first update its mirrors with the new values received in the 
last superstep. Specifically, every worker will go through all of 
its residing vertices. If a vertex is a mirror and VertexValue-
UpdateCache contains a new value for the vertex, the worker 
will update its value accordingly. When all the values in Vertex-
ValueUpdateCache are processed, the worker will clear this 
cache.

After a mirror updates its value, it needs to produce and for-
ward messages to its own neighbors. That is, a message that should 
be forwarded directly from the master vertex will now be pro-
duced and forwarded by the mirror. To achieve this, we define a 
new API, produceMsg(Edge e), in Vertex class, which allows 
any mirror to generate and send messages to its own neighbors. In 
epiCG, if a user submits a graph job and chooses to use vertex-cut 
partitioning method, we require the user to define produceMsg
function that will be executed by the mirrors. Fig. 3 shows an im-
plementation of produceMsg for PageRank computation. A mir-
ror retrieves its value via getValue() and computes the PageR-
ank share of its neighbor, which is the vertex value divided by the 
out-degree of the vertex in the original graph.

One limitation of produceMsge function is that the message 
generated by a mirror can only rely on the value of the vertex, 
the out-degree of the vertex in the original graph (stored in Ver-
tex.#allEdges) and the information (e.g., value) of the edge. This 
limitation, however, does not restrict the applicability of the pro-
posed epiCG system, as it fits into the message model of a large 
range of graph analytics applications, including PageRank, breadth 
first search, graph keyword search, triangle counting, connected 
component computation, graph coloring, minimum spanning for-
est computation, k-means, shortest path, minimum cut, and clus-
tering/semi-clustering. All these applications possess the property 
that the content of any message from u to v is determined by 
the latest value of u, the out-degree of the vertex (in the original 
graph) and the information of the edge 〈u, v〉.

Each message produced by a mirror will be forwarded to the 
master version of the destination vertex. According to Property 1, 
such master vertices reside in the same compute node as the 
mirror. Hence, each generated message will be appended by the 
worker to its local incoming message store without any network 
transmission.
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4.2.2. Master vertex computation and message delivery
After all the mirrors finish producing and forwarding messages, 

vertex computation starts. In this phase, every worker checks 
its partitions in the PartitionStore. For each partition, the 
worker loops over the vertices in it and performs computation for 
a vertex v iff (1) v is a master vertex; (2) v receives at least one 
message sent by other vertices.

When a master vertex performs computation, it may produce 
messages. Note that a master vertex may only has a subset of the 
edges and hence can only send messages to its known neighbors. 
Every worker collects the messages produced by the master ver-
tices during the computation and forwards them to the workers 
where the destination vertices reside accordingly. If the destina-
tion vertex of a message has multiple replicas, the message will 
only be forwarded to the master vertex, and none of the mirrors 
will receive any messages. In epiCG, all the workers forward their 
messages asynchronously.

4.2.3. Vertex value synchronization
When a master vertex finishes its computation, it may produce 

a new vertex value and all of its mirrors must be informed of this 
new value. In epiCG, every worker is responsible for sending the 
updated value of a master vertex (obtained after vertex computa-
tion) to all the mirrors. Recall that every master vertex maintains 
a list MirrorPartitionIds recording the partitions where the 
mirrors reside. By checking this list, the worker forwards the 
updated vertex value to the mirrors via syncVertexValue-
Request requests. To ensure the correctness of vertex value syn-
chronization (i.e., every mirror must receive the updated vertex 
value successfully), the requests of syncVertexValueRequest
are handled by a TCP-like three-way handshake protocol. When 
a worker W1 forwards a syncVertexValueRequest request 
to another worker W2, W1 will wait for a completion signal 
sent by W2. If W1 does not receive the completion signal for 
a while, it will re-send the request. Any worker who receives a
syncVertexValueRequest request will parse the request and 
put the updated value into VertexValueUpdateCache for the 
corresponding mirror. Every worker will continue its processing 
only if all of its requests are sent successfully and all of its re-
ceived requests are handled properly.

5. Fault tolerance

Failure detection and recovery are two key problems to achieve 
fault tolerance. epiCG detects failures by asking every slaveGraphU-
nit worker to register its healthy status periodically. At the end of 
each superstep, the masterGraphUnit worker will check healthy sta-
tuses for all the slave workers. If a slave worker does not register 
its status over a time period, the master worker will regard it as 
failed.

For failure recovery, epiCG adopts one of the most widely used 
recovery mechanisms, namely checkpoint-based recovery. Specifi-
cally, all the slaveGraphUnits write a global checkpoint (recording 
graph status) periodically and restarts from the latest checkpoint 
upon a failure. However, we observe that in most existing dis-
tributed graph processing systems such as Giraph and GraphLab, 
the master will report error messages for the failed workers and 
terminate the job accordingly. To resume the execution of a failed 
job, existing systems require users to manually launch a new job 
that starts from the latest checkpoint. Apparently, such kind of im-
plementation for failure recovery requires long downtime. Further-
more, it violates the fault tolerance requirement that the system 
should be able to recover from failures and resume normal execu-
tion automatically.

To achieve automatic recovery, upon slave worker failures, 
epiCG leverages the remaining healthy slave workers to continue 
the execution instead of terminating the job. Specifically, the mas-
ter worker will create a JobState indicating: 1) the next su-
perstep (i.e., the latest checkpointing superstep) to perform, and 
2) every slave worker should load graph data from the latest 
checkpoint in the next superstep. The master worker then broad-
casts JobState to all the healthy slave workers. At the beginning 
of next superstep, for edge-cut partitioning, the master worker will 
generate a new partition-to-worker mapping based on the remain-
ing healthy slave workers and inform them of the new mapping 
via zookeeper; the slave workers will first load graph data from 
the latest checkpoint, exchange vertices and edges using edge-cut 
partitioning or vertex-cut partitioning based on the newly received 
partition-to-worker mapping. After that, all the workers redo the 
lost computation from the latest checkpointing superstep auto-
matically. Note that even if healthy workers retain the up-to-date 
vertex values, they do need to redo the lost computation to re-
produce messages which are demanded for the recovery of failed 
vertices. We also implement the parallel recovery mechanism pro-
posed in [16] to accelerate the recovery process.

Note that the job completion time would increase dramatically 
when too many slave workers get failed. A user may prefer to ter-
minate the job and restart with a fixed number of healthy slave 
workers to continue the execution. In epiCG, we provide a thresh-
old MinWorker on the minimal number of healthy slave workers.
MinWorker is set to 1 by default, but we allow users to set their 
own values for MinWorker via job configuration. Upon failures, 
the master worker will first check whether the number of remain-
ing healthy slave workers is smaller than MinWorker. If not, it 
will perform automatic recovery as mentioned before. Otherwise, 
it will terminate the execution immediately.

6. Experimental evaluation

We evaluate the performance of epiCG by comparing it with 
several popular distributed graph processing systems [17], Gi-
raph [3], PowerGraph [11] and GraphX [9]. Giraph employs edge-
cut graph partitioning, and the other two use vertex-cut graph 
partitioning. It has been experimentally shown that PowerGraph is 
the most efficient graph processing engine on small graphs com-
pared with several other popular graph processing systems such as 
Hama and GraphX [18]. In all the experiments, we use Giraph ver-
sion 1.0.0 and PowerGraph version 2.2. Our comparisons include 
running time, communication cost, scalability and speedup.

6.1. Experiment setup

We ran all the experiments on our in-house clusters. The cluster 
consists of 72 compute nodes, each of which is equipped with one 
Intel X3430 2.4 GHz CPU, 8 GB of memory, two 500 GB SATA hard 
disks and gigabit ethernet. For each node in the cluster, we in-
stalled CentOS 5.5 operating system, Java 1.7.0 with a 64-bit server 
VM and Hadoop 0.20.203.0 [8]. Giraph runs as a Map-only job on 
top of Hadoop, and hence we made the following changes to the 
default Hadoop configurations: (1) the replication factor is set to 1; 
(2) each node is configured to run one map task; (3) the size of 
virtual memory for each map task is set to 4 GB. For Giraph, one 
node was selected as the master running Hadoop’s NameNode and 
JobTracker, while the remaining compute nodes were the slaves 
running TaskTracker daemons. For PowerGraph/epiCG, we chose 
one node as the master/master worker and all the others to be the 
slaves/slave workers. We required every node to execute only one 
master or slave thread and set the virtual memory size for each 
thread to 4 GB. To make a fair comparison, we ran PowerGraph 
in the synchronous mode. Note that the gains in asynchronous 
mode is often compromised by the complex concurrency control 
and there is no dominating mode [19]. By default, we chose 31 
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Fig. 4. Scalability.
Table 2
Dataset description.

Dataset Data size #Vertices #Edges Avg. degree

Livejournal 1.0 GB 3,997,962 34,681,189 8.67
Friendster 31.16 GB 65,608,366 1,806,067,135 27.53
Ftiny 1.9 GB 12,739,496 221,933,535 17.42
Fsmall 3.7 GB 17,694,120 428,192,865 24.19
Fmedium 7.5 GB 25,126,704 862,648,522 34.33

compute nodes out of the 72 compute nodes for the experiments. 
For all the three systems, we used HDFS as the underlying storage 
system.

6.2. Benchmark tasks and datasets

We study the performance of different distributed graph pro-
cessing systems using the following two benchmark tasks.

1) Shortest path. Shortest path computing is to select one ver-
tex as the source and compute the shortest distances to the source 
for all the vertices. For all the three systems, we always use the 
same vertex as the source.

2) PageRank. The PageRank algorithm is an iterative graph pro-
cessing algorithm. We refer the readers to the original paper [20]
for the details of the algorithm. Without loss of generality, we run 
all the tasks for 10 supersteps and all the results are averaged over 
ten runs.

We conduct the experiments using several publicly available 
real-life datasets.2 Table 2 provides the details for each of them.

1) Livejournal. Livejournal is an online social networking ser-
vice that enables users to post blogs, journals, and dairies. It con-
tains more than 4 million vertices (users) and over 30 million 
directed edges (friendships between users). We use this dataset to 
evaluate the execution of Shortest path tasks.

2) Friendster. Friendster is an online social networking and 
gaming service. It contains more than 60 millions vertices and 
1 billion edges. We use it to evaluate the execution of PageRank 
tasks. To evaluate the speedup of various systems, we prepare 
three down-samples, Ftiny, Fsmall, Fmedium, of Friendster by ran-
domly selecting a subset of vertices from the original Friendster 

2 http :/ /snap .stanford .edu/.
dataset and only keeping the edges associated with the selected 
vertices.

6.3. Results

For the experiments, we compare the performance of epiCG-E
(using edge-cut), epiCG-V (using vertex-cut) with Giraph (using 
edge-cut), PowerGraph (using vertex-cut) and GraphX [9] over two
metrics: running time and communication cost. For the commu-
nication cost, we calculate the number of cross-node messages 
(i.e., sendMsgRequests) to be forwarded during the computation as 
well as the number of cross-node messages (i.e., syncVertexVal-
ueRequests) to synchronize vertex values from master vertices to 
their mirrors. We measure the number of messages instead of to-
tal message size because each type of message has the same size 
across all the systems. The vertex-cut degree threshold is initially 
set to 60, and the impact of different values of θ on the perfor-
mance of epiCG-V will be investigated in Section 6.3.3 in detail.

6.3.1. Performance comparison
Fig. 4(a)–4(c) show the execution time per superstep and com-

munication cost in Shortest path task for each of the five systems 
with varied number of compute nodes. As we can see, epiCG-V 
and PowerGraph perform best among all five systems as they in-
cur fewer messages than the other three. Although the number of 
sendMsgRequests in epiCG-V is larger than PowerGraph, there is a 
little difference in the execution time between epiCG-V and Power-
Graph. This is because such messages are sent asynchronously, 
and PowerGraph requires much more synchronous syncVertex-
ValueRequests than epiCG-V, as shown in Fig. 4(c). epiCG-E per-
forms slightly worse than epiCG-V, which is mainly due to that 
epiCG-V leverages vertex-cut to reduce the message forwarding 
cost during computation. As shown in Fig. 4(b), the number of 
sendMsgRequests in epiCG-V is only two-thirds as much as that in 
epiCG-E and Giraph. epiCG-E and Giraph require the same number 
of sendMsgRequests as they use the same partitioning function, 
and both of them do not generate syncVertexValueRequests as a 
result of edge-cut graph partitioning. However, Giraph experiences 
a longer execution time than epiCG-E. The reason is that Giraph 
is built on top of Hadoop, which is a MapReduce framework and 
does not suit graph computing very well. The high running time 
of GraphX can be attributed in a similar way, as it is built on 
Spark [21], which is an in-memory MapReduce framework.

http://snap.stanford.edu/
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Fig. 5. Speedup.

Fig. 6. Effect of vertex-cut degree threshold θ .
Fig. 4(d) provides the execution time per superstep in PageRank 
task. The execution time in all the graph systems decreases al-
most linearly with the number of compute nodes. Compared with 
Shortest path task, PageRank task requires 10x more execution 
time due to the large size of the Friendster dataset. We fail to 
get PowerGraph result for the cases with 10 and 20 nodes and 
GraphX results for all cases, because PowerGraph and GraphX gen-
erated a large number of mirrors and exhausted memory space. 
epiCG-V requires the least execution time in all scenarios with var-
ious numbers of compute nodes. On average, epiCG-V runs over 2x 
and 1.5x faster than Giraph and epiCG-E, respectively. This is be-
cause we tested PageRank task on Friendster dataset, which follows 
power-law degree distribution, and vertex-cut is able to reduce 
the communication cost significantly for such natural graphs. For 
30 and 40 nodes, epiCG-V runs slightly faster than PowerGraph, 
which can be attributed to the 3x more sendMsgRequests and 1.5x 
more syncVertexValueRequests generated by PowerGraph than by 
epiCG-V, as shown in Fig. 4(e) and Fig. 4(f).

6.3.2. Graph size
We now study the effect of different input graph size on the 

performance of the four systems. To this end, we perform Page-
Rank task against 4 datasets with various sizes, i.e., Ftiny, Fsmall, 
Fmedium and Friendster (see details in Table 2), using 30 compute 
nodes. Since GraphX is not able to run over the largest Friendster 
dataset, the corresponding result is thus absent. Fig. 5(a) shows the 
execution time per superstep required for each dataset. As shown 
in this figure, epiCG-V performs best among all five systems in 
the case of the largest dataset (i.e., Friendster), and only second 
to PowerGraph in the other cases. Furthermore, epiCG-V shows the 
best adaptivity to input graph size in the sense that the execution 
time of epiCG-V increase slowest as the graph size increases. In ad-
dition, for all datasets, epiCG-V requires less execution time than 
Giraph, epiCG-E and GraphX, and this gap becomes more signifi-
cant with the increase of input dataset size.

Fig. 5(b) and 5(c) respectively provide the number of sendMsg-
Requests and that of syncVertexValueRequests generated for the 
four datasets. As we can see, epiCG-V incurs least sendMsgRequests 
and syncVertexValueRequests among all three vertex-cut systems, 
i.e., epiCG-V, PowerGraph and GraphX, and the total number of 
messages generated by epiCG-V is much less than that of the two 
edge-cut systems, i.e., Giraph and epiCG-E. Furthermore, as the size 
of input dataset increases, the increasing rate of generated mes-
sages in epiCG-V is slower than other systems, especially in the 
case of large graphs. This also explains the best performance of 
epiCG-V in the Friendster dataset case.

6.3.3. Vertex-cut degree threshold θ
Finally, we study the effect of vertex-cut degree threshold θ on 

the performance of epiCG-V. Recall that θ decides whether we 
need to generate mirrors for a vertex. Fig. 6(a)–6(c) show how 
the number of cross-node requests forwarded in Shortest path task 
changes with θ in several scenarios with various numbers of com-
pute nodes. In each scenario, when θ becomes larger, the number 
of sendMsgRequests also increases. In particular, the number of 
sendMsgRequests for θ = 100 is around 3x larger than that for 
θ = 20. This is because larger values of θ result in more vertices 
without mirrors and hence more sendMsgRequests forwarded di-
rectly from vertices to their neighbors. In contrast, the number of 
syncVertexValueRequests decreases as θ becomes larger, due to the 
fact that for larger values of θ , more vertices have no mirrors and 
fewer number of requests is required for vertex value synchroniza-
tion. Interestingly, when the number of compute nodes increases 
from 10 to 30, the number of sendMsgRequests for each particular 
value of θ remains constant while the number of syncVertexValue-
Requests increases significantly. This is because the neighbors of 
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a vertex can be assigned to multiple different compute nodes, 
and consequently, with more available compute nodes, the num-
ber of mirrors generated for a vertex is also likely to increase. 
Fig. 6(e)–6(g) demonstrate the communication cost for PageRank 
task. Compared with Shortest path task, PageRank incurs large 
numbers of sendMsgRequests and syncVertexValueRequests in all 
the cases. This is because PageRank task is performed over Friend-
ster dataset, which is 30x larger than Livejournal dataset used for 
Shortest path task.

Fig. 6(d) and 6(h) provide the execution time per superstep for 
Shortest path and PageRank task, respectively. The number of com-
pute nodes used for this experiment is 30, and we omit the results 
for the cases with 10 an 20 compute nodes, since they exhibit sim-
ilar behaviors as in the 30-node case. It can be observed from the 
two figures that although the numbers of sendMsgRequests and 
syncVertexValueRequests vary significantly with the threshold θ , 
the execution time keeps almost unchanged. This is easy to un-
derstand. On one hand, a small value of θ results in less sendMs-
gRequests being forwarded during computation, but more mirrors 
for vertex as well as the cost for mirror synchronization; on the 
other hand, a large value of θ incurs more sendMsgRequests but 
less synchronization cost. As a result, we conclude that our previ-
ous result for execution time of epiCG-V also holds for the value 
of θ other than 60, and one does not need to tune it for the best 
performance.

7. Related work

Distributed graph processing. There have been a large number 
of systems proposed for graph processing. Pregel [1] follows the 
Bulk Synchronous Parallel (BSP) model and introduces a vertex-
centric programming model that allows users to express graph 
algorithms in a natural way. Later on, various implementation of 
Pregel have been developed. Giraph [3] treats the computation 
as a map-only job in MapReduce framework [6] where the in-
put and output data are stored in HDFS. Bu et al. [18] proposed 
Pregelix, which runs iterative dataflows dealing with computations, 
to conduct graph analysis. Yan et al. [22] implemented Pregel+, 
a C/C++ graph system eliminating serialization cost introduced by 
Java. Graphlab [23] introduces a shared memory abstraction which 
allows the adjacent vertices and edges to be accessed by the local 
vertex and hence enables users to concentrate on the sequential 
computation by hiding the details of data movement between ver-
tices.

Since synchronization is indispensable in BSP model, the strag-
glers, i.e., the workers who run much slower than others, can 
significantly slow down the synchronization process. Hence, Sal-
ihoglu et al. [4] introduced GPS which follows the same storage 
design with Giraph but provides two optimizations. The first one 
is to maintain dynamic partitions among workers, and the second 
one is to divide the adjacency list of high-degree vertices into dif-
ferent workers to balance the loads of workers. Graphlab [23] and 
PowerGraph [2] employ Gather-Apply-Scatter (GAS) model and can 
run in synchronous or asynchronous mode. Asynchronous mode 
migrates the stragglers by eliminating global synchronization cost. 
However, this increases system complexity due to the concurrency 
control for serializability.

Recent efforts focused on leveraging existing platforms for 
graph processing. Simmen et al. [24] introduced Aster 6 which 
provides SQL-like interface for graph analytics. Similarly, Fan et al. 
[17] proposed Grail, a syntactic layer for querying graph on 
top of RDBMS, which translates graph queries into SQL queries. 
GraphX [9] is built on Spark [10], which implements Pregel by 
leveraging general dataflow operators in Spark. To align the per-
formance with the specialized graph processing systems, various 
optimizations for dataflow operators have been proposed. This is 
different from our work as we develop epiCG as one unit in epiC 
for graph processing and reply on epiC to leverage different units 
for complex analytics query processing. As an independent unit, 
epiCG allows us to implement all the optimizations proposed for 
the specialized graph processing systems.

Graph partitioning. Graph partitioning is critical to distributed 
graph processing. While various edge-cut partitioning methods [14,
25–27] have been proposed to balance the computation workload 
among multiple compute nodes and try to minimize the network 
communication cost, less attention has been paid to vertex-cut 
partitioning. PowerGraph [2] proposed a greedy strategy to gen-
erate vertex-cut partitioning, which require to use a single com-
pute node to load the entire graph into memory, thus restricting 
the size of graph that can be handled. SBV-cut [28] and JA-BE-

JA-VC [29] are two recent works for distributed vertex-cut parti-
tioning. However, both of them requires iterative computation over 
the entire graph, which does not allow multiple compute nodes to 
generate a vertex-cut partitioning in parallel.

8. Conclusion

In this paper, we present our distributed graph processing 
engine epiCG. We develop epiCG as one extension of epiC to 
avoid extra configuration for a new system. epiCG supports both 
edge-cut and vertex-cut partitioning, and a light-weight approach 
is employed in epiCG to parallelize the generation of vertex-
cut partitions. epiCG also allows automatic failure detection and 
recovery. The experiments on real-life datasets illustrate the high 
efficiency and scalability of epiCG, compared with three state-of-
the-art distributed graph processing systems, Giraph, PowerGraph 
and GiraphX.
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