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ABSTRACT
Entity Matching is a classic research problem in any data analytics

pipeline, aiming to identify records referring to the same real-world

entity. It plays an important role in data cleansing and integration.

Advanced entity matching techniques focus on extracting syntactic

or semantic features from record pairs via complex neural architec-

tures or pre-trained language models. However, the performances

always suffer from noisy or missing attribute values in the records.

We observe that comparing one record with several relevant records

in a collective manner allows each pairwise matching decision to

be made by borrowing valuable insights from other pairs, which

is beneficial to the overall matching performance. In this paper,

we propose a generic one-to-set neural framework named GNEM

for entity matching. GNEM predicts matching labels between one

record and a set of relevant records simultaneously. It constructs a

record pair graph with weighted edges and adopts the graph neural

network to propagate information among pairs. We further show

that GNEM can be interpreted as an extension and generalization

of the existing pairwise matching techniques. Extensive experi-

ments on real-world data sets demonstrate that GNEM consistently

outperforms the existing pairwise entity matching techniques and

achieves up to 8.4% improvement on F1-Score compared with the

state-of-the-art neural methods.

CCS CONCEPTS
• Information systems→Data cleaning; Search results dedu-
plication;Deduplication; • Computing methodologies→Ar-
tificial intelligence.
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1 INTRODUCTION
In the era of Big Data, high-quality data is required in many data-

driven applications. Entitymatching (EM), aiming to identify records
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Table 1: Motivating Examples for One-to-Set EM

(a) (𝑟𝑎
1
, 𝑟𝑏

1
) matched ∧ (𝑟𝑏

1
, 𝑟𝑏

2
) matched ⇒ (𝑟𝑎

1
, 𝑟𝑏

2
) matched

No. Name Gender City Occupation (𝑟𝑎
1
, ·)

𝑟𝑎
1

John Smith female Seattle, Washington – –

𝑟𝑏
1

J. Smith female Seattle, Washington teacher matched

𝑟𝑏
2

J. Smith – Seattle, WA teacher matched

(b) (𝑟𝑎
2
, 𝑟𝑏

3
) unmatched ∧ (𝑟𝑏

3
, 𝑟𝑏

4
) matched⇒ (𝑟𝑎

2
, 𝑟𝑏

4
) unmatched

No. Title Artist Genre Tag (𝑟𝑎
2
, ·)

𝑟𝑎
2

My Love Westlife pop Band, Heart Touching –

𝑟𝑏
3

My Love Sia Indie rock OST, Heart Touching unmatched

𝑟𝑏
4

My Love – – OST, Heart Touching unmatched

referring to the same real-world entity over one or multiple data

sources, is an essential task in data cleaning and integration. Early

researches [4, 8] on entity matching mainly used string similarity

measures such as Jaccard or TF-IDF to judge whether two records re-

fer to the same entity. However, these methods assume that records

referring to the same entity always share similar tokens and this as-

sumption may not hold in practice. A line of researches [16, 17, 27]

tried to understand the relationship between two records at seman-

tic level. They developed a set of domain-specific rules and applied

them to every pair of records. The pairs that satisfy all the rules

are regarded as matched. However, the rule-based methods usually

suffer from poor generalization ability.

In the past few years, machine learning algorithms has been

widely applied in real-world applications and yields the state-of-

the-art performance. Hence, recent efforts [7, 12, 15, 20, 30, 32]

have been devoted to developing learning-based approaches to

solve the EM problem. Magellan [15] created handcrafted features

for records and applied classic machine learning techniques such

as SVM and Decision Tree to classify the matching label of two

records. DeepER [12], DeepMatcher [20] and MCA [30] proposed

neural network models incorporating LSTM, Attention, Highway

Network to learn latent semantic features for a pair of records

automatically. BERT [7] and Auto-EM [32] adopted the pre-trained

models to transfer collective knowledge from external data to get a

better understanding of the semantics of records.

Motivation. EM neural methods have been shown to act as strong

baselines [7, 12, 20, 30, 32]. They introduced elaborate neural net-

work designs to extract semantic information from each record

and model feature interactions within a record pair towards higher

https://doi.org/10.1145/3442381.3450119
https://doi.org/10.1145/3442381.3450119
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prediction accuracy. However, to the best of our knowledge, all

the existing neural methods follow a pairwise EM framework that

accepts a pair of records and predicts a binary matching label. The

performance may suffer from noisy or insufficient information

in the records. For instance, it is difficult to compare the pairs of

(𝑟𝑎
1
, 𝑟𝑏
2
) and (𝑟𝑎

2
, 𝑟𝑏
4
) in Table 1 due to the missing values. The key

inspiration of this paper comes from a recent work [28] which

posited that displaying multiple images simultaneously plays an

important role in making labelling judgement on image pairs by

human. For instance, consider three images 𝑎, 𝑏, 𝑐 showing the faces

of the same person at young, middle and older ages, respectively.

If all the three images are provided and compared, we may easily

determine that they all refer to the same person. When only 𝑎 and

𝑐 are available, it is difficult for us to tell whether they point to the

same person or not. This fact also holds true in the context of EM,

where relevant records may provide insights on the matching result

of a pair of records.

Motivating Example 1. Table 1a shows three records 𝑟𝑎
1
, 𝑟𝑏
1
, 𝑟𝑏
2
re-

ferring to the same entity. Suppose we aim to determine whether

(𝑟𝑎
1
, 𝑟𝑏

2
) is a matched pair. The similarity between 𝑟𝑎

1
and 𝑟𝑏

2
is rela-

tively low due to the missing attribute values in the records. Hence,

given only 𝑟𝑎
1
and 𝑟𝑏

2
, it is difficult for a pairwise EM method to

recognize that they are matched. Interestingly, when 𝑟𝑏
1
is provided,

we can easily tell that (𝑟𝑎
1
, 𝑟𝑏

1
) is matched, and 𝑟𝑏

1
, 𝑟𝑏

2
are similar.

This allows us to infer that (𝑟𝑎
1
, 𝑟𝑏

2
) is also a matched pair.

Motivating Example 2. Consider three records 𝑟𝑎
2
, 𝑟𝑏
3
, 𝑟𝑏
4
in Ta-

ble 1b, where 𝑟𝑏
3
, 𝑟𝑏
4
refers to the same entity and 𝑟𝑎

2
is different from

both of them. Our task is to decide whether (𝑟𝑎
2
, 𝑟𝑏

4
) is a matched

pair. Since 𝑟𝑎
2
and 𝑟𝑏

4
share the same or similar values on Title and

Tag attributes, it is difficult to conclude they are unmatched. By

referring to 𝑟𝑏
3
, we realize that (𝑟𝑎

2
, 𝑟𝑏
3
) is unmatched, and 𝑟𝑏

4
is more

similar to 𝑟𝑏
3
than 𝑟𝑎

2
. This provides a clue that (𝑟𝑎

2
, 𝑟𝑏
4
) is unmatched.

The above two examples illustrate the benefits of referring to

relevant records during the EM process, especially for difficult

pairs. To be more specific, in the Motivating Example 1, 𝑟𝑏
1
plays a

transition role to help us identify the truth matching pair (𝑟𝑎
1
, 𝑟𝑏
2
),

which reduces the chance of a false negative; in the Motivating

Example 2, 𝑟𝑏
3
is used to distinguish 𝑟𝑎

2
from 𝑟𝑏

4
, thus preventing a

false alarm. We argue that the existing EM neural methods mainly

focus on measuring syntactic or semantic similarity via pairwise

records comparison. They fail to exploit valuable information from

relevant records, and the performance is compromised.

Solution. In this paper, we develop a generic One-to-Set EM neural

framework named GNEM. It prepares matching instances in the

format of (𝑟,𝑉𝑟 ), where 𝑟 is a record and 𝑉𝑟 involves all the rele-

vant records to be matched with 𝑟 . Different from the conventional

pairwise matching process that infers the matching labels between

𝑟 and each record in 𝑉𝑟 independently, GNEM is able to predict the

matching labels for 𝑟 against all the records in 𝑉𝑟 simultaneously.

To achieve this, we construct a matching pair graph G𝑟 for (𝑟,𝑉𝑟 ),
where each node represents a record pair (𝑟, 𝑟 ′ ∈ 𝑉𝑟 ). We associate

every two nodes in G𝑟 with a weighted edge, and adopt a gated

version of graph neural network to facilitate the interaction among

pairs. By doing so, each pair is able to borrow valuable informa-

tion from other pairs such as the similarity/dissimilarity signals

when making its own matching decision. Further, we show that

GNEM can be interpreted as either an extension or a generalization

of the existing pairwise EM techniques. Extensive experiments on

three EM tasks demonstrate the effectiveness of GNEM compared

with the state-of-the-art pairwise EM methods.

Contributions. In summary, the major contributions of this paper

are the following:

• Interaction We propose a generic One-to-Set neural frame-

work named GNEM for entity matching. GNEM allows each

record pair to interact with relevant records and exploit valu-

able information from other pairs during the decision of its

matching label, which is beneficial to the overall matching

performance.

• GeneralityWe show that GNEM can be interpreted as an

extension and generalization of the existing pairwise EM

neural methods. It enhances the pairwise matching process

by devising a record pair graph to facilitate the interaction

among pairs for information propagation.

• EffectivenessWe conduct extensive experiments on three

public entity matching datasets. The results demonstrate the

promise of one-to-set EM framework and GNEM achieves

significant improvement in thematching accuracy, compared

with eight EM methods. Our codes are publicly available at

https://github.com/ChenRunjin/GNEM

The remainder of this paper is organized as follows. Section 2

presents the entity matching problem and the existing pairwise

methods. Section 3 introduces our proposed one-to-set EM frame-

work. Section 4 provides the experimental results. We review the

related works in Section 5 and conclude this paper in Section 6.

2 PRELIMINARIES
2.1 Notations and Problem
We consider a set E of real-world entities, where each entity 𝑒 ∈ E
is associated with a set A of 𝑛 attributes, i.e., 𝑒.𝐴1, · · · , 𝑒 .𝐴𝑛 . Let Ra

and Rb denote two collections of records following the same schema

A, where each record 𝑟 ∈ Ra ∪ Rb refers to an entity in E. The goal
of entity matching is to determine, given two records from Ra and
Rb respectively, whether they refer to the same entity in E.

Definition 1 (Entity Matching). Let E be a domain of entities
described by an attribute set A and Ra,Rb be two sets of records in the
format of (𝑥1, · · · , 𝑥𝑛). For any record 𝑟 ∈ Ra ∪ Rb, 𝑟 .𝑥𝑖 is the record
value on attribute 𝐴𝑖 , which can be a textual description, or empty.
Given two records 𝑟 ∈ Ra, 𝑟 ′ ∈ Rb, the Entity Matching problem is to
predict the probability that 𝑟, 𝑟 ′ refers to the same real-world entity
in E, i.e., 𝑃𝑟 (𝑦 = matched | 𝑟, 𝑟 ′).

2.2 Pairwise EM Neural Methods
Typically, the entity matching problem is treated as a binary classi-

fication task, i.e., 𝑦 ∈ {matched, unmatched}. Recent efforts have
been devoted to developing pairwise EM neural network models [7,
12, 15, 20, 30, 32] towards higher classification accuracy. These

models take as input a pair of records from Ra and Rb respectively
and produce the probability that the two records refer to the same

entity. The key idea is to learn a common feature space where

records referring to different entities can distinguish with each

https://github.com/ChenRunjin/GNEM
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Figure 1: Pairwise EM neural methods.

other based a learned similarity function. As depicted in Figure 1,

a pairwise EM neural network model generally consists of an em-
bedding module to encode the textual description in each attribute,

followed by a pairwise similarity module to compute a semantic

similarity vector for the two input records, and finally a classifi-
cation module to produce the matching probability based on the

similarity vector. We use the collection of deep learning models

SIF, RNN, Attention, and Hybrid proposed in [20] as the instances

of pairwise EM neural methods. Consider an input pair of records

𝑟 = (𝑥1, · · · , 𝑥𝑛) ∈ Ra, 𝑟 ′ = (𝑥 ′
1
, · · · , 𝑥 ′𝑛) ∈ Rb.

The embedding module applies the de-facto word embeddings [5,

11] to transform each token in an attribute into a latent vector. Let

𝑟 .𝑥𝑖 be a sequence of tokens (𝑤1, · · · ,𝑤𝑘 ) on attribute 𝐴𝑖 , which

can be an empty string. The corresponding embedding vectors are

denoted by (w1, · · · ,w𝑘 ).
The pairwise similarity module absorbs two sequences of embed-

ding vectors of 𝑟, 𝑟 ′, and computes a similarity representation vector
u𝑟,𝑟 ′ . For each attribute𝐴𝑖 , the first step is to aggregate the involved

embedding vectors properly to derive the attribute representation
of 𝑟 .𝑥𝑖 , which is defined as follows:

𝑟 .x𝑖 = 𝜙 (w1, · · · ,w𝑘 ) (1)

where 𝜙 is the aggregating function such as averaging or a neural

network. The second step is to encode the sequences of attribute

representations of 𝑟, 𝑟 ′ and generate the similarity vector. Let r =
(𝑟 .x𝑖 , · · · , 𝑟 .x𝑛) denote the attribute representation sequence of 𝑟 .

Some implementations such as SIF [20] and RNN [20] learn a

semantic feature vector f𝑟 solely based on r and different records are
encoded separately. Some works such as Hybrid [20] and MCA [30]

compute f𝑟 , f𝑟 ′ by taking into account the correlations between r, r′.
In either way, the similarity vector u𝑟,𝑟 ′ is then derived by fusing

the feature vectors f𝑟 , f𝑟 ′ . Recently, since transformer architectures

have proven to be effective and bring a massive performance boost

on many NLP tasks, some works [7] adopted the pre-trained trans-

former architectures to learn the similarity vector of two records

for EM. Instead of performing comparison between two records,

the pre-trained transformer architectures simply concatenate the

attribute representation sequences of 𝑟, 𝑟 ′ and conduct one-pass

scan to obtain the similarity vector. In a nutshell, the similarity

vector u𝑟,𝑟 ′ can be computed in the following high-level way:

u𝑟,𝑟 ′ = 𝜑 (r, r′) (2)

The classification module takes the similarity vector u𝑟,𝑟 ′ as
input and outputs the matching probability between 𝑟, 𝑟 ′ via fully
connected layers or the Highway network [24].

As described before, the existing pairwise EM neural methods

have fully exploited the latent features of each record and mod-

eled the pairwise semantic relevance, reporting the state-of-the-art

matching accuracy. The key limitation is that they fail to utilize

the information of relevant records that are useful to eliminate

false alarms or identify truth matched pairs, especially when the

records involve noisy or missing attribute values. This inspires us

to develop a generic framework that could enhance the pairwise

matching process by taking multiple and relevant records into ac-

count simultaneously. We emphasize that our proposed framework

is developed on top of the pairwise EM neural methods and hence is

orthogonal to the existing approaches [7, 12, 15, 20, 30, 32], which

will be discussed in Section 3.6.

3 ONE-TO-SET NEURAL EM FRAMEWORK

Record Pair

Similarity
Module

Similarity Vector
matched unmatched

III. Interaction

Training

Training

IV. ClassificationI. Preprocessing

II. Graph Construction

Figure 2: Framework of GNEM.

In this section, we resort to the one-to-set entity matching pro-

cess and develop a generic EM neural framework named GNEM. As

depicted in Figure 2, GNEM consists of four major components: (1)

Preprocessing extracts relevant records to augment each record pair

and prepares one-to-set matching instances; (2) Graph construction
organizes the matching pairs in an instance into a graph structure
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with weighted edges; (3) Interaction propagates matching informa-

tion among nodes in the graph to boost the matching performance;

(4) Classification produces the final matching probabilities. In what

follows, we provide the details of each component in GNEM and

then discuss the relation of GNEM to the existing pairwise EM

neural methods.

3.1 Preprocessing
Given two collections of records Ra and Rb, the goal of preprocess-
ing is for each record in Ra, to identify relevant records in Rb and
vice versa. A record in Ra (resp. Rb) with a set of relevant records in

Rb (resp. Ra) compose a one-to-set matching instance to be supplied

to the remaining components.

Initially, we consider all the record pairs in Ra × Rb, where × is

the cartesian product over two sets. In order to identify relevant

records, we resort to the blocking mechanism [21, 22, 31] which has

been widely used to filter out irrelevant record pairs and improve

the matching efficiency. The key idea is to divide records in Ra∪Rb

into disjoint blocks and only the records in the same block are likely

to be matched. After blocking, we are able to eliminate matching

irrelevant records and obtain a candidate set C ⊆ Ra × Rb. Note
that the blocking mechanism is assumed to have no false negatives

but the candidate set may include relevant yet unmatched pairs,

which are also useful according to examples in Table 1. There exist

a number of blocking methods [21, 22, 31] in the literature. Our

framework is flexible to apply any one of them.

To derive the one-to-set matching instances, for each record 𝑟 in

Ra ∪ Rb, we retrieve all the pairs in C involving 𝑟 , i.e., {(𝑟𝑖 , 𝑟 𝑗 ) ∈
C | 𝑟𝑖 = 𝑟 ∨ 𝑟 𝑗 = 𝑟 }. We now recognize the set 𝑉𝑟 of records that

are relevant to 𝑟 as follows:

𝑉𝑟 = {𝑟 ′ | (𝑟, 𝑟 ′) ∈ C ∨ (𝑟 ′, 𝑟 ) ∈ C} (3)

Hence, we obtain (𝑟,𝑉𝑟 ) as a one-to-set matching instance. Different
from the prior works that compute the matching probabilities be-

tween 𝑟 and any record in𝑉𝑟 independently, we propose one-to-set

matching process that infers matching results for 𝑟 against all the

records in 𝑉𝑟 in a collective manner.

Note that each record pair (𝑟, 𝑟 ′) inC is included in twomatching

instances. The matching results can be different by referring to

different relevant record sets, i.e., 𝑉𝑟 and 𝑉𝑟 ′ . The two matching

results will be fused to produce the final matching score.

3.2 Graph Construction
After preprocessing, the input to this component is the setD of one-

to-set matching instances, i.e., D = {(𝑟,𝑉𝑟 )}𝑟 ∈Ra∪Rb . Our ultimate

goal is to compute the matching probabilities between 𝑟 and all

the records in 𝑉𝑟 simultaneously. The rationale behind is that the

matching information encoded in a pair (𝑟, 𝑟 ′ ∈ 𝑉𝑟 ) might be useful

to infer the matching results between 𝑟 and other records in 𝑉𝑟 .

In order to propagate pair information properly, we propose to

construct a matching pair graph G𝑟 = (V𝑟 , E𝑟 ) for (𝑟,𝑉𝑟 ) ∈ D.
Each node inV𝑟 represents a pair (𝑟, 𝑟 ′ ∈ 𝑉𝑟 ) and hence the total

number of nodes inV𝑟 is |𝑉𝑟 |. By doing so, we are able to transform
the one-to-set matching problem into a set of node classification

problems, i.e., predicting the binary matching labels for all the

nodes in V𝑟 . There are still two problems to be addressed: (1) how

to obtain the initial node representations in the graph? (2) how to
establish edges among nodes?

(1) Initializing node representations forV𝑟 .Consider a node
𝑣 = (𝑟, 𝑟 ′) where 𝑟 ′ ∈ 𝑉𝑟 . Ideally, the initial representation of 𝑣

should encode the features of 𝑟 as well as the feature interactions

between 𝑟 and 𝑟 ′. This inspires us to leverage the off-the-shelf

embedding module and similarity module developed by pairwise

EM neural methods (in Section 2.2), and compute the similarity

vector for the pair as the initial node representation. Following

Equation 2, we use u𝑟,𝑟 ′ as the initial representation for node 𝑣 . We

denote by 𝑋𝑟 ∈ R |𝑉𝑟 |×𝑑 all the initial node representations forV𝑟 ,

where 𝑑 is the dimension of the similarity vectors u.
(2) Establishing edges among nodes in G𝑟 . In our one-to-set

EM setting, we allow each record pair to refer to other pairs (involv-

ing relevant records) directly during the matching process. We thus

establish an edge for every two nodes in V𝑟 (including self-loops)

and the graph G𝑟 is a complete graph. Note that there are essentially

two kinds of nodes in the graph, representing matched pairs and

unmatched pairs, respectively. While the complete graph G𝑟 allows

direct information exchange between any two pairs, treating all the

edges equally may propagate noisy information among nodes with

different matching results. Therefore, we propose to augment each

edge with a weight to distinguish different relationships among

pairs. We shall next describe how to assign weights to the edges.

Recall the Motivating Example 1. Both 𝑟𝑏
1
and 𝑟𝑏

2
are relevant

to 𝑟𝑎
1
, and (𝑟𝑎

1
, 𝑟𝑏
1
) is clearly matched. Regarding the high similar-

ity between 𝑟𝑏
1
and 𝑟𝑏

2
, we may infer that (𝑟𝑎

1
, 𝑟𝑏
2
) is matched. In

other words, the similarity between (𝑟𝑎
1
, 𝑟𝑏
1
) and (𝑟𝑎

1
, 𝑟𝑏
2
) has the

potential to pull the representation of the difficult-to-match pair

(𝑟𝑎
1
, 𝑟𝑏
2
) and that of the easy-to-match pair (𝑟𝑎

1
, 𝑟𝑏
2
) closer to each

other in the latent feature space so that the same matching label

can be inferred for both pairs. Likewise, in Motivating Example 2,

𝑟𝑏
3
and 𝑟𝑏

4
are alike and (𝑟𝑎

2
, 𝑟𝑏
3
) is apparently unmatched. The simi-

larity between (𝑟𝑎
2
, 𝑟𝑏
3
) and (𝑟𝑎

2
, 𝑟𝑏
4
) motivates us to propagate the

unmatching signal from (𝑟𝑎
2
, 𝑟𝑏
3
) to (𝑟𝑎

2
, 𝑟𝑏
4
) during its label classi-

fication. Following the above intuitions, we encourage the edges

between pairs sharing the same matching label to have relatively

larger weights than those between pairs with different labels. This

facilitates the information propagation from easy-to-classify nodes

to similar yet difficult-to-classify pairs with the same label in the

next interaction stage.

Consider two nodes 𝑣𝑖 = (𝑟, 𝑟𝑖 ) and 𝑣 𝑗 = (𝑟, 𝑟 𝑗 ) inV𝑟 . Since we

have no knowledge about their matching results, we propose to

compute the edge weight based on the semantic feature vectors

f𝑟𝑖 and f𝑟 𝑗 for 𝑟𝑖 and 𝑟 𝑗 respectively, which are learned by the

pairwise similarity module as described in Section 2.2. We measure

the difference between 𝑟𝑖 , 𝑟 𝑗 by 𝐴𝑏𝑠 (f𝑟𝑖 − f𝑟 𝑗 ), and supply it to a

simple neural network. Formally, let A𝑖 𝑗
𝑟 denote the edge weight

between 𝑣𝑖 , 𝑣 𝑗 in graph G𝑟 . We have:

A𝑖 𝑗
𝑟 = F (𝐴𝑏𝑠 (f𝑟𝑖 − f𝑟 𝑗 )) (4)

where F is a stack of 𝐿 fully-connected layers (𝐿 is set to 1 or 2).

Note that the transformer-based pairwise similarity module [7]

produces the similarity vector for 𝑟𝑖 , 𝑟 𝑗 directly and the individual

feature vector of each record is unavailable. To address this problem,



GNEM: A Generic One-to-Set Neural Entity Matching Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

we concatenate the similarity vectors u𝑟,𝑟𝑖 , u𝑟,𝑟 𝑗 , and supply the

concatenated vector to F . That is,

A𝑖 𝑗
𝑟 = F (u𝑟,𝑟𝑖 ⊕ u𝑟,𝑟 𝑗 ) (5)

Note that 𝑖 could be equal to 𝑗 to assign weights to self-loops.

Intuitively, if 𝑟𝑖 , 𝑟 𝑗 share high similarity and these exists 𝑟𝑘 ∈ 𝑉𝑟
that is different from 𝑟𝑖 , we expect the neural network F could

assign higher edge weights to (𝑣𝑖 , 𝑣 𝑗 ) than (𝑣𝑖 , 𝑣𝑘 ) (i.e., 𝑣𝑘 = (𝑟, 𝑟𝑘 )).

3.3 Interaction via Graph Neural Network
Given a graph G𝑟 = (V𝑟 , E) with weighted adjacency matrix A𝑟 ,

we aim to predict the binary matching labels for all the nodes in the

graph. The one-to-set matching setting allows each pair to provide

valuable insight to other pairs, thus benefiting the overall matching

performance. To this end, we introduce the interaction component

in GNEM to facilitate the propagation of information among nodes

in the graph, which is achieved by a graph convolution network.

We first perform the column-wise softmax operation over A𝑟

and obtain the normalized adjacency matrix
˜A𝑟 . We adopt a gated

version of GCN, where the gating mechanism is applied on each

convolution layer to prevent the over-smoothing problem [9]. In

the first layer, we use the initial node representations 𝑋𝑟 as the

input, i.e., 𝐻 (0) = 𝑋𝑟 . At a high level, each gated layer learns to

filter the current node representations and augment each node with

the features from its neighbors. The new node representations are

computed and then supplied to the next layer. Formally, the 𝑙-th

graph convolution layer is defined as:

𝑧 (𝑙) = 𝜎1
(
𝑊

(𝑙)
𝑧,𝑠 𝐻

(𝑙−1) +𝑊 (𝑙)
𝑧,𝑛

˜A𝑟𝐻
(𝑙−1) )

�̃� (𝑙) = 𝜎2
(
𝑊

(𝑙)
𝑜,𝑠 𝐻

(𝑙−1) +𝑊 (𝑙)
𝑜,𝑛

˜A𝑟𝐻
(𝑙−1) )

𝐻 (𝑙) = 𝑧 (𝑙) ⊙ �̃� (𝑙) + (1 − 𝑧 (𝑙) ) ⊙ 𝐻 (𝑙−1)

(6)

where 𝐻 (𝑙)
denotes the node representations produced by the 𝑙-th

layer, 𝜎1 (·) is the sigmoid function, 𝜎2 (·) is the tanh function, and

⊙ means the Hadamard point-wise multiplication operator. The𝑊

terms are weighted matrices to be learned.

In fact, the gated version of GCN imitates the gating mechanism

in Highway Network [24] which regulates the information the

updated messages to be propagated. In our case, 𝑧 (𝑙) acts as the gate
to regulate the information from neighboring pairs at the 𝑙-th layer.

By doing so, each node (representing a pair of records) can retain its

own representation as well as borrow highly valuable information

from its neighbors. After 𝐿′ layers, the final node representations
𝐻 (𝐿′)

is the output of the gated GCN. Let �̃�𝑟 = 𝐻 (𝐿′)
.

Since the graph G𝑟 is a complete graph, a single gated convolu-

tion layer is sufficient for each node to refer to all the relevant pairs

involved in the one-to-set instance. We observe that more gated

convolution layers can further boost the matching accuracy for the

graphs of larger sizes. The effects of the number of layers will be

discussed in the experiments.

3.4 Classification
The input to this component is the learned representations �̃�𝑟 for

all the nodes in the graph G𝑟 , and we aim to infer a binary matching

label for each node. That is, 𝑃𝑟 (𝑦𝑟,𝑟 ′ | �̃�𝑟,𝑟 ′), for 𝑟 ∈ 𝑉𝑟 . Note that

�̃�𝑟,𝑟 ′ has already encoded the information of the record pair (𝑟, 𝑟 ′)

and that from the context pairs. Some pairwise EMmethods [20, 30]

use Highway Network to produce the classification results. To

control the model complexity, we supply �̃�𝑟,𝑟 ′ to a single fully

connected layer followed by a standard softmax classifier. Let 𝑠𝑟,𝑟 ′

denote the vector generated by the fully connected layer given �̃�𝑟,𝑟 ′ .

The matching probability is computed as follows:

𝑃𝑟 (𝑦𝑟,𝑟 ′ | �̃�𝑟,𝑟 ′) = softmax(𝑊𝑠𝑟,𝑟 ′ + 𝑏) (7)

As mentioned before, each record pair (𝑟, 𝑟 ′) will appear in two

graphs G𝑟 ,G𝑟 ′ in which the context pairs can be different. We fuse

the two matching probabilities as follows:

𝑃𝑟 (𝑦 | 𝑟, 𝑟 ′) = Average

(
𝑃𝑟 (𝑦𝑟,𝑟 ′ | �̃�𝑟,𝑟 ′), 𝑃𝑟 (𝑦𝑟 ′,𝑟 | �̃�𝑟 ′,𝑟 )

)
(8)

Further, we compare 𝑃𝑟 (𝑦 | 𝑟, 𝑟 ′) with a threshold 𝜃 . If the fused

probability 𝑃𝑟 (𝑦 = matched | 𝑟, 𝑟 ′) is larger than 𝜃 , we report the

two records asmatched. Otherwise, they are regarded as unmatched.

The value of 𝜃 can be pre-defined or tuned as a hyperparameter

through cross-validation.

3.5 Training and Optimization
We adopt the binary cross-entropy as the loss function. Let T be the

set of training record pairs with binary matching labels. We have:

𝐿𝑙𝑜𝑠𝑠 = −
∑

(𝑟,𝑟 ′) ∈T
[𝑦𝑟,𝑟 ′ log𝑦𝑟,𝑟 ′ + (1 − 𝑦𝑟,𝑟 ′) log(1 − 𝑦𝑟,𝑟 ′)] (9)

where 𝑦𝑟,𝑟 ′ ∈ {0, 1} denotes the ground-truth matching label and

𝑦𝑟,𝑟 ′ is the predicted matching probability in Equation (8). All the

parameters are learned by the Adam optimizer [13].

3.6 Relation to Pairwise EM Neural Methods
While our proposed GNEM is a one-to-set neural framework for

entity matching, it can be viewed as an extension and generalization

of the existing pairwise EM methods. We provide two perspectives

to relate GNEM with the pairwise techniques.

First, GNEM uses the similarity vectors u produced by the pair-

wise similarity module in various pairwise EM methods as the

initial representations for the record pairs to be matched, i.e., {𝑋𝑟 }.
The interaction component allows each pair to borrow valuable in-

sights from relevant pairs. Consider a pair (𝑟, 𝑟 ′). By removing the

interaction via GNN, GNEM is simplified and only able to predict

the matching label for (𝑟, 𝑟 ′) based on u𝑟,𝑟 ′ . Hence, GNEM is an

extension of the existing pairwise EM neural methods.

Second, the interaction between record pairs in a graph G𝑟 is

controlled by the edge weights defined in the adjacency matrix

A𝑟 . Consider the extreme case that the weights of self-loops are

pushed to +∞. The normalized adjacency matrix
˜A𝑟 will become an

identity matrix and we have
˜A𝑟𝐻

(𝑙−1) = 𝐻 (𝑙−1)
. The Equation (6)

can be transformed into the following:

𝑧 (𝑙) = 𝜎1
(
𝑊

(𝑙)
𝑧 𝐻 (𝑙−1) )

�̃� (𝑙) = 𝜎2
(
𝑊

(𝑙)
𝑜 𝐻 (𝑙−1) )

𝐻 (𝑙) = 𝑧 (𝑙) ⊙ �̃� (𝑙) + (1 − 𝑧 (𝑙) ) ⊙ 𝐻 (𝑙−1)

(10)

where𝑊
(𝑙)
𝑧 =𝑊

(𝑙)
𝑧,𝑠 +𝑊

(𝑙)
𝑧,𝑛 and𝑊

(𝑙)
𝑜 =𝑊

(𝑙)
𝑜,𝑠 +𝑊

(𝑙)
𝑜,𝑛 . The gated graph

convolution layer mimics a layer in the Highway Network [24].

Hence, GNEM is a generalization of the pairwise EM techniques.
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Table 2: Statistics of the datasets.

Dataset Type Domain Pairs Matched Pairs Avg. graph size (Training) Avg. graph size (Test)

Abt-Buy Textual Product 9575 1028 5.95 11.76

Amazon-Google Structured Software 11460 1167 4.72 10.33

Walmart-Amazon Structured Electronics 10242 962 2.40 5.32

4 EXPERIMENTS
In this section, we conduct experiments on three public EM datasets.

We compare GNEMwith 8 existing EMneural methods. The goals of

the experiments is to answer the following three research questions:

• RQ1 Can our proposed GNEM boost matching performance

compared with the pairwise EM techniques?

• RQ2 How does the number of the gated graph convolution

layers influence the performance of GNEM?

• RQ3 How does GNEM perform over different sizes of the

constructed record pair graphs?

4.1 Set Up
We implemented GNEM with PyTorch, a popular open-source deep

learning framework, and executed on Nvidia GeForce RTX 2080 Ti

GPU (12GB Memory) with Intel(R) Xeon(R) Silver 4110 CPU and

128GB Memory.

To make a fair comparison with each of the existing pairwise

EM neural methods, we adopted the same embedding module and

optimizer of the compared model to implement GNEM . Specifi-

cally, for SIF, RNN, Attention and Hybrid, we choose fastText [5]
as embedding module, since character-level embeddings are more

robust to infrequent words in datasets. While for BERT, XLNet,

RoBERTa and DistilBERT, we keep using their corresponding em-

bedding modules. All the comparison neural methods adopt Adam
as the optimizer. We tuned the hyper-parameters for all the models

according to their results on the validation set.

Since entity matching is essentially a binary classification prob-

lem, we use F1-score to evaluate the performance of all the methods.

We ran each experiment five times and reported the average results.

4.2 Datasets
Entity Matching datasets can be divided into two types, structured
and textual types. Attributes in a structured dataset are supposed

to be short and atomic, such as name, sex, age, city, etc. Attributes

in a textual dataset are associated with raw text entries. In general,

EM on textual datasets is more difficult because we need to extract

discriminative information from complex raw text.

The authors of DeepMatcher [20] have demonstrated the effec-

tiveness of ML techniques in entity matching using datasets from

1
. Specifically, DeepMatcher achieves 100% F1-score on Fodors-

Zagats and 98.4% F1-score on DBLP-ACM, etc. Hence, we focus

our experiments on more challenging datasets : Abt-Buy, Amazon-
Google, andWalmart-Amazon . The three datasets cover different

types and application domains. All the datasets are published after

blocking so that we can obtain an integrated labeled candidate set

C directly. We divide each candidate set into three parts, training,

1
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

validation and test, following the split ratio of 3:1:1. Training set

is used to optimize model parameters and validation set is used to

tune hyperparameters. The performances of different methods are

evaluated using test set.

Table 2 provides the statistical details of all the datasets. The

first two columns show the types and application domains of the

datasets, respectively. Pairs reports the number of record pairs in

the candidate sets after blocking. Due to the limited numbers of

examples in the validation and test sets, the number of relevant

records involved in each one-to-set instance is relatively small. To

include more possibly beneficial records in the constructed graphs,

we consider the whole candidate set to construct the one-to-set

matching instances in the validation and test sets. The record pairs

used in the training sets are kept as the same over all the methods.

Avg. graph size (Train) and Avg. graph size (Test) in Table 2 provide

the average matching pair graph sizes (i.e., the number of nodes)

in the training and test sets, respectively.

4.3 Baselines
In our experiments, we consider eight state-of-the-art EM neural

methods as baselines.

• SIF [20] The original DeepMatcher paper explored DL so-

lution space and proposed four pairwise EM models. SIF is

one of them. SIF simply applies an aggregate function over

the embeddings of all the tokens in an input sequence to

obtain the semantic features for each record. It then uses the

absolute value of difference between two semantic features

to generate the similarity vector of a pair.

• RNN [20] RNN is another pairwise model proposed by Deep-

Matcher. It takes the order of words in input sequences into

account and uses a bidirectional RNN to summarize informa-

tion contained in records. It also computes the absolute value

of difference between two summarized features to generate

the similarity vector for classification.

• Attention [20] Attention adopts decomposable attention to

encode all the elements in a record pair into two semantic

features. It uses the concatenation of two semantic features

as the similarity vector.

• Hybrid [20] Hybrid is the most effective models in Deep-

Matcher. It merges RNN and Attention model together, in-

corporating both bidirectional RNN and decomposable at-

tention to implement the information aggregating process.

The concatenation of two features and the absolute value of

difference between two features is used as the final similarity

vector.

• BERT [7, 11] BERT is a famous pre-trained transformer-

based language model which achieves marvelous perfor-

mance in various NLP tasks. A Recent work [7] fine-tuned

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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Table 3: Performance comparison results.

SIF RNN Attention Hybrid BERT XLNet DistilBERT RoBERTa

Abt-Buy
origin 35.1 39.4 56.8 62.8 85.9 86.8 83.3 90.9

GNEM (w/o interaction) 29.7 41.3 55.5 65.8 85.4 87.8 81.2 91.3

GNEM 44.2 45.5 61.5 71.9 87.7 88.7 83.6 93.0

Amazon-Google
origin 60.6 59.9 61.1 69.3 71.3 71.6 69.4 70.4

GNEM (w/o interaction) 48.5 58.5 62.3 67.6 72.5 75.4 72.0 72.5

GNEM 59.6 65.3 64.1 69.4 74.7 77.6 73.0 76.0

Walmart-Amazon
origin 65.1 67.6 50.0 66.9 83.9 78.2 82.3 84.9

GNEM (w/o interaction) 65.9 69.9 54.2 63.7 82.6 82.4 79.8 85.9

GNEM 66.7 69.3 58.7 68.7 86.7 81.6 85.0 86.5

pre-trained BERT on entity matching task and prove it is

effective to solve this problem.

• XLNet [7, 29] XLNet is another pre-trained transformer-

based language model which addresses the limitations of

BERT. XLNet is a permutation language model based on the

architecture of a classical autoregressive language model.

XLNet also incorporates the idea of Transformer-XL to learn

dependencies beyond a fixed window length without disrupt-

ing temporal coherence. Hence, XLNet outperforms BERT

and achieves the state-of-the-art results on many NLP tasks.

Jacob Devlin et al. [7] analyzed the effectiveness of XLNet

on entity matching.

• RoBERTa [7, 18] The authors of RoBERTa proposed several
strategies to train BERT, and they released a new pre-trained

BERT with properly tuned hyper-parameters and more train-

ing data.

• DistilBERT [7, 23] DistilBERT is a smaller yet effective

language model. The core idea of DistilBERT is to train a

simpler model which distills knowledge from BERT. Jacob

Devlin et al. [7] have shown its superior performance on the

entity matching task.

4.4 Comparison with Baselines (RQ1)
We report the F1-score results of all the comparison methods on

Abt-Buy, Amazon-Google andWalmart-Amazon in Table 3. origin
shows the performances of the original pairwise EM neural mod-

els. The results of SIF, RNN, Attention and Hybrid are collected

from [20] directly, while the results of BERT, XLNet, RoBERTa and
DistilBERT are obtained by running the open-source code of [7]

over the three datasets. GNEM shows the results of our framework

when applying the corresponding pairwise similarity module to

compute initial node representations. We use a single-layer graph

neural network for all the implementations of GNEM in Table 3.

Further, to validate the effectiveness of the interaction module in

GNEM, we report the results of GNEM (w/o interaction), which
abandons the interaction between nodes by removing all edges in

graph except the self-loops. The GNEM (w/o interaction) follows

the same design of the complete GNEM in terms of the parameters

and structure, but force each node to focus on itself. The results of

GNEM (w/o interaction) differ from the original pairwise models

since they have different classification modules and batch samples

(i.e., GNEM (w/o interaction) requires all relevant record pairs to be

gathered within a batch). The performance gap between the origin

and GNEM (w/o interaction) of SIF is because SIF only possesses few

parameters in the similarity module, and its classification module

affects the final performance to a larger extent.

Overall, from the results in Table 3, we can see that our frame-

work consistently outperforms the existing pairwise EM methods

in most cases over the three datasets. Specifically, GNEM achieves

up to 8.4% improvement in F1-Score. GNEM can also surpass GNEM

(w/o interaction), which indicates our framework benefits from the

interaction between different nodes in the matching pair graph.

We observe that the textual dataset (Abt-Buy) benefits the most

from our one-to-set EM setting, with an average 4.39 (8.9%) im-

provement in F1-score compared with the original pairwise models

and 4.76 (11.0%) improvement compared with GNEM (w/o inter-

action). This is because Abt-Buy is in face of the severe attribute

missing problem and it is hard for pairwise EM methods to learn

informative and discriminative features from long sentences in dif-

ficult pairs where a large number of textual attributes are missing.

In contrast, GNEM leverages the information of relevant records to

boost the matching accuracy.

4.5 Effects of Gated Graph Convolution Layer
(RQ2)

To investigate the effects of the number of gated graph convolution

layers in GNEM, we set the layer number to be 1, 2 and 3 respec-

tively and the results are provided in Figure 3. We can observe from

the performance curves that a single layer is usually sufficient for

record pairs to interact with their neighbors since the constructed

graphs are complete. Increasing the number of GCN layers will

bring in the over-smoothing problem, which may even cause per-

formance degradation. On the Abt-Buy dataset, more layers achieve

marginal performance improvement than single-layer. This is be-

cause the average graph size on Abt-Buy is relatively large and its

records involve text blobs with possible complex semantics to be

captured. Overall, we recommend to use a single-layer gated GCN
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Figure 3: Effects of the number of gated graph convolution layers.

in GNEM for the trade-off between performance and parameter

efficiency.

4.6 Effects of Graph Size (RQ3)
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Figure 4: Effects of different graph sizes (Abt-Buy).

To further understand our framework, we randomly split the

node set of G𝑟 into several parts to decrease the average graph size

during the test stage. We choose three different seeds to partition

all the graphs in different ways and report the respective results in

Figure 4. A smaller graph size means there are few relevant records

to be concerned during each matching decision in the graph. When

the graph size becomes one, GNEM is essentially transformed into

GNEM (w/o interaction). Figure 4 shows the results on Abt-Buy

as we observe similar trends on the other two datasets. We can

see that the matching performance decreases as the average graph

size becomes smaller, which follows our intuition. In general, the

matching performance benefits from referring to more relevant

records.

5 RELATEDWORK
Entity Matching. Entity matching has attracted great attention

from researchers in recent years. A number of different approaches

have been proposed to solve the EM problem. Generally, the exist-

ing EM approaches can be divided into four categories. Token-based
methods [4, 8] are popular in early EM researches. They compare

word frequencies appearing in different records to determine the

similarity between records. But these methods are not able to cap-

ture semantic-level information encoded in the records. Rule-based
methods [1, 16, 17, 27] develop domain-specific rules and apply

them on each record pair. Although rule-based methods are inter-

pretable in most cases, they usually have poor generalization ability

and require heavy involvement of domain experts. Crowdsourcing-
based methods [25, 26, 28] transform record pairs in a candidate

set into different queries to be posted on crowdsourcing platforms.

The queries will be allocated to a large number of workers and the

matching labels are derived based on the collected answers from the

workers. Although crowdsourcing-based methods have proposed

different strategies to improved the efficiency, the overall labeling

process is still time-consuming and suffers from the scalability is-

sue. Learning-based methods [7, 12, 15, 20, 30, 32] design different

model structures incorporating elaborate machine learning tech-

niques to encode semantic features for each record and treat the

EM problem as a binary classification task. Existing methods such

as DeepER [12], DeepMatcher[20], and MCA [30] adopted neural

networks and have achieved outstanding performance on entity

matching. Our proposed GNEM is a one-to-set EM framework,

which can be interpreted as the extension and generalization of the

existing pairwise learning-based methods.

Graph Neural Network. Inspired by the great success of CNN

in computer vision domains, a large number of models [2, 3, 6, 10, 14,

19] were proposed to conduct analogous convolution operation on

graph-structured data. Graph Convolutional Network (GCN) [14]

defines graph convolution based on nodes’ spatial relations, which

propagates node information along edges in graph, and each node

is updated with its neighbours’ representations. In this paper, we

adopt a gated-version of GCN to allow each pair to remember its

own pairwise features and address the over-smoothing issue. But

we emphasize that GNEM is flexible to incorporate other GNNs in

the interaction component.

6 CONCLUSION
In this paper, we developed a generic one-to-set neural framework

named GNEM for entity matching. GNEM compares one record
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against a set of relevant records to derive binary matching labels

simultaneously. For each one-to-set matching instance, GNEM con-

structs a graph for all the involved record pairs, where each node

represents a matching pair and every two nodes are connected via

an edge whose weight is determined by the similarity between

pairs. GNEM then applies a gated version of graph neural network

to propagate valuable information among pairs, and finally per-

forms node classifications to predict matching labels for all the

pairs. GNEM can be viewed as an extension and generalization of

the existing pairwise EM techniques. We conducted experiments

to demonstrate the effectiveness of GNEM in the matching perfor-

mance, compared with the state-of-the-art EM neural methods.
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