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ABSTRACT
Latent factor models (LFMs) such as matrix factorization have
achieved the state-of-the-art performance among various collabo-
rative filtering approaches for recommendation. Despite the high
recommendation accuracy of LFMs, a critical issue to be resolved is
their lack of interpretability. Extensive efforts have been devoted to
interpreting the prediction results of LFMs. However, they either
rely on auxiliary informationwhichmay not be available in practice,
or sacrifice recommendation accuracy for interpretability. Influence
functions, stemming from robust statistics, have been developed
to understand the effect of training points on the predictions of
black-box models. Inspired by this, we propose a novel explanation
method named FIA (Fast Influence Analysis) to understand the
prediction of trained LFMs by tracing back to the training data with
influence functions. We present how to employ influence functions
to measure the impact of historical user-item interactions on the
prediction results of LFMs and provide intuitive neighbor-style ex-
planations based on the most influential interactions. Our proposed
FIA exploits the characteristics of two important LFMs, matrix
factorization and neural collaborative filtering, and is capable of
accelerating the overall influence analysis process. We provide a
detailed complexity analysis for FIA over LFMs and conduct ex-
tensive experiments to evaluate its performance using real-world
datasets. The results demonstrate the effectiveness and efficiency
of FIA, and the usefulness of the generated explanations for the
recommendation results.

CCS CONCEPTS
• Information systems → Recommender systems; Collabora-
tive filtering; •Computingmethodologies→ Factorization meth-
ods.
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1 INTRODUCTION
Recommender systems play an increasingly significant role in im-
proving user satisfaction and revenue of content providers. Col-
laborative filtering (CF) methods, aiming at predicting users’ per-
sonalized preferences against items based on historical user-item
interactions, are the primary techniques used in modern recom-
mender systems. Among various CF methods, latent factor models
(LFMs) such asmatrix factorization (MF), have gained popularity via
the Netflix Prize contest [6] and achieved the state-of-the-art per-
formance. Typically, LFMs map users and items into latent vectors
in a low-dimensional space, and compute each user-item preference
score based on a function of two (i.e., user and item) latent vectors,
e.g., performing inner product, or non-linear transformation with
neural structures [17].

In spite of the superior performance, a critical issue with LFMs is
its lack of interpretability. To be more specific, there is no intuitive
meaning for each dimension of the latent vectors, which makes it
extremely difficult to understand why LFMs recommend an item
out of the others. It is worth noticing that in addition to recommen-
dation accuracy, nowadays recommender systems have devoted
great effort to making the recommendation models interpretable,
i.e., explain why the model predicts a user-item preference score as
it does. Providing an intuitive explanation for each prediction result
is inevitably important to increase end-users’ trust and acceptance
to the recommendation results [7, 31]. The explanation can further
enable practitioners to pinpoint the cause of unexpected model
behaviors and develop effective strategies for enhancing model
performance [20].

In the literature, there are two major categories of approaches
that try to explain the prediction results produced by LFMs. The first
category is to leverage external data sources to express the seman-
tics of latent dimensions, and provide feature-based explanations
for the recommendation results [9, 11, 36, 39]. For example, Zhang
et al. [39] proposed Explicit Factor Model (EFM), which extracts
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product features from textual reviews and align each feature with
a latent dimension in MF. In this way, EFM provides users with
explanations like “we recommend this item because it owns a par-
ticular feature that you may care about.” The main limitation of
such approaches is that the required external sources (e.g. textual
reviews) can be expensive to obtain or even not available in practice.
The second category focuses on the CF setting and aims to provide
neighbor-style explanations based on merely historical user-item in-
teractions, such as “we recommend this item because of the following
items that you bought before or the following users who are similar to
you”. Existing methods in the second category generate the above
explanations by enforcing specific constraints onto LFMs [1–3, 18].
For example, Abdollahi and Nasraoui [1] introduced Explainable
Matrix Factorization (EMF), where an “explainability regularizer”
was added to the objective function, encouraging MF to recom-
mend items that are prevalent in the target user’s neighbors. As
for the explanation, EMF associates each recommended item with
the ratings of the users who are similar to the target user. However,
the additional constraints imposed with LFMs may sacrifice recom-
mendation accuracy. This is mainly because the most explainable
recommendation results may not always be the most accurate ones,
which is known as the accuracy-interpretability trade-off [26].

To avoid the above trade-off, a post hoc interpreting method [26]
was recently proposed to explain the prediction results of LFMs after
the models have been trained. In that work, the authors applied
association rules [4] to relate each recommended item (i.e., the
output of a trained model) with some historical interactions (i.e.,
the training data) for a target user, and hence the interpretation and
model training are decoupled. Unfortunately, the above method still
suffers from two limitations. First, the mined associations among
items cannot be used to explain how a trained model produces
the particular predictions. In other words, LFMs are still black-box
models without interpretability. Second and more importantly, not
all the recommended items can be associated with other items based
on the available (probably sparse) historical interactions [26], and
in such scenarios, no explanation will be provided, which greatly
limits the applicability of the proposed method.

In this paper, we aim to incorporate interpretability into LFMs
and provide an intuitive explanation for each prediction produced
by trained LFMs. Our key insight is that the prediction results from
a trained LFM is typically affected by the knowledge learned from
model’s training data (i.e., historical user-item interactions). Instead
of identifying coincident associations between training data and
recommended items, a more direct question we would like to ask is:
how does each training example for LFMs affect the predictions?
To be accurate, we try to quantitatively measure the impact of
each historical interaction on the prediction made by a trained
LFM. As a benefit, given a predicted user-item preference score,
the historical interactions with the highest impact for the same
user/item naturally become the neighbor-style explanation for the
prediction, which is a prevalent and intuitive form of interpretation.

Following our insight, we introduce a novel explanation method
named FIA (Fast Influence Analysis) to understand how a trained
LFM makes its predictions by tracing back to model’s training data.
Similar to [22], we formalize the impact of a historical interaction
on a particular prediction as the following counterfactual problem:
how would the prediction change if this interaction was not provided?

A straightforward way to measure the prediction change is to re-
move the interaction and retrain the LFM, which is prohibitively
expensive. We notice that influence functions, which stemmed from
robust statistics [12], have been used to understand the effect of
training points on the predictions of both convex [13] and non-
convex models [22]. Therefore, in FIA, we propose to leverage
influence functions to quantify the impact of historical interactions
on a predicted preference. A key technical challenge of employing
influence functions in LFMs for measuring prediction changes is the
high computation cost, which is determined by the large number of
model parameters and huge training data volume. Fortunately, we
observe that for each prediction, only a small subset of parameters
in LFMs would be activated to directly affect the results of influence
functions. FIA exploits this characteristic of LFMs to accelerate the
computation of influence functions, thereby effectively reduce the
time cost. We further extend FIA to handle the more general neu-
ral LFM setting, i.e., Neural Collaborative Filtering (NCF) [17] and
develop an approximation method to perform influence analysis
over neural network models efficiently.

To summarize, the major contributions of this paper are the
following:

• To the best of our knowledge, this is the first attempt to
apply influence functions to LFMs towards interpretable
recommendation. We incorporate interpretability into LFMs
by tracing each prediction back to models’ training data, and
further provide intuitive neighbor-style explanations for the
predictions. (Section 3.1)
• We propose a novel fast influence analysis method named
FIA for performing influence analysis over MF efficiently.
FIA significantly reduces the computational cost by exploit-
ing the characteristics of MF methods. (Section 3.2)
• We extend FIA to the neural collaborative filtering setting,
which is a general neural network based LFM. We provide
the time complexity of FIA on the NCF setting and develop
an approximation method to further accelerate influence
analysis over NCF. (Section 3.3)
• We conduct extensive experiments over real-world datasets
and the results demonstrate the effectiveness of the gener-
ated explanations as well as the high efficiency of FIA. Fur-
thermore, the analysis on the results of influence functions
leads to better understanding of LFMs, which is valuable for
researches on LFM-based recommendation. (Section 4)

2 PRELIMINARIES
2.1 Latent Factor Models
Matrix Factorization (MF) has become the de facto LFM-based ap-
proach for recommendation. MF represents each user/item with
a real-valued vector of latent features. Let pu and pi denote the
vectors for user u and item i in a joint K-dimensional latent space,
respectively. In MF, the predicted rating R̂ui of user u against item
i is computed by the inner product of pu and qi , as defined below:

R̂ui = pTu qi (1)

The inner product operation linearly aggregates the pairwise latent
feature multiplications, which limits the expressiveness of MF in
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Figure 1: Interpreting LFMs with FIA (Steps in the figure are
corresponding to Section 3.1).

terms of capturing complex user-item interactions. Neural Collabo-
rative Filtering (NCF) [17] is thus proposed to learn a non-linear
interaction function f (·), which can be considered as a generaliza-
tion of MF:

R̂ui = f (pu , qi ) (2)
In the original paper, f (·) is specialized by a multi-layer perceptron
(MLP) as follows:

R̂ui = ϕX (...ϕ2 (ϕ1 (z0))...) (3)

z0 = pu ⊕ qi (4)

ϕl (zl−1) = δl (Wl zl−1 + bl ), l ∈ [1,X ] (5)
where X is the number of fully-connected hidden layers in the
neural network, ⊕ is the concatenation of vectors,Wl , bl and δl are
the weight matrix, bias vector and non-linear activation function for
the l-th layer, respectively. Several recent attempts [10, 16] replace
MLP with more complex operations (e.g., convolutions), but they
still belong to the general NCF framework. In this paper, we focus
on MF and the original NCF method, but our proposed algorithms
are also applicable to all the instantiated models under the general
NCF framework.

2.2 Influence Functions
Consider a general prediction problem from an input domain X to
an output domain Y . Z = {z1, z2, ..., zn } is the training set, where
zi = (xi ,yi ) ∈ X ×Y . Let L(z,θ ) denote the loss of a training point
z ∈ Z given model parameters θ ∈ Θ. The objective function R (θ )
is defined as 1

n
∑n
i=1 L(zi ,θ ), and the optimal model parameters on

convergence is defined as θ̂ def
= argminθ

1
n
∑n
i=1 L(zi ,θ ).

The goal of using influence functions is to estimate the influence
of training points on a model’s predictions. A simple solution to
achieve this goal is to remove a training point, retrain the model
with the remaining points from scratch, and compute the new
prediction results. However, this process involves high computation
cost. Influence functions provide an efficient way to estimate the
model’s prediction change without retraining. We first study the
change of model parameters θ̂ϵ − θ̂ when a training point z is
upweighted by an infinitesimal step ϵ , where the new parameters
are:

θ̂ϵ
def
= argmin

θ

1
n

n∑
i=1

L(zi ,θ ) + ϵL(z,θ ) (6)

According to [13], we have the following closed-form expression:

dθ̂ϵ
dϵ

����ϵ=0
= −H−1

θ̂
∇θL(z, θ̂ ) (7)

whereHθ̂
def
= 1

n
∑n
i=1 ∇

2
θL(zi , θ̂ ) is theHessianmatrix, and∇θL(z, θ̂ )

is the derivate of the loss at z with respect to θ . Equation (7) is
achieved by a quadratic approximation to R (θ ) around θ̂ , and the
detailed derivation can be found in [22]. Hθ̂ is invertible when R (θ )
is strictly convex in θ . Recent work [22] showed that even for non-
convex objective functions that are widely used in neural networks,
a damping term can be added into the Hessian to alleviate negative
eigenvalues and make this equation approximately work.

Now that we have obtained the change in model parameters
when upweighting z by the step ϵ , we can use the chain rule to
study the change of model’s prediction at a test point xt :

dŷ (xt , θ̂ϵ )
dϵ

����ϵ=0
= ∇θ ŷ (xt , θ̂ϵ )

⊤ dθ̂ϵ
dϵ

����ϵ=0
= −∇θ ŷ (xt , θ̂ )

⊤H−1
θ̂
∇θL(z, θ̂ )

(8)

where ŷ (xt , θ̂ ) is the model’s prediction on the test point xt with
parameters θ̂ . By setting ϵ to − 1

n (i.e., upweighting z by − 1
n is

equivalent to removing z), we can approximate the influence of
removing z from the training set on the prediction at xt as follows:

ŷ (xt , θ̂−z ) ≈ ŷ (xt , θ̂ ) −
1
n
dŷ (xt , θ̂ϵ )

dϵ
����ϵ=0

= ŷ (xt , θ̂ ) +
1
n
∇θ ŷ (xt , θ̂ )

⊤H−1
θ̂
∇θ L(z, θ̂ )

(9)

where θ̂−z is the optimal model parameters after removing z.

Definition 2.1 (Influence). The influence of a training point z on
the model’s prediction at xt is defined as:

IN FL(z,xt )
def
= ŷ (xt , θ̂ ) − ŷ (xt , θ̂−z ) (10)

Combining Equation (9) and (10), we have:

IN FL(z,xt ) = −
1
n
∇θ ŷ (xt , θ̂ )

⊤H−1
θ̂
∇θL(z, θ̂ ) (11)

The right-hand side can be calculated based on the trained model
parameters θ̂ , the training point z, and the test point xt , thus we
can approximately measure the influence of a training point on
model’s prediction according to Equation (11) without retraining.

3 METHODOLOGY
In this section, we first describe how to apply influence functions to
explain the recommendation results of LFMs.We then introduce our
fast influence analysis method FIA for MF that significantly reduces
the computational cost. Finally, we extend FIA to neural settings and
propose an approximation algorithm to further improve analysis
efficiency over NCF.

3.1 Interpreting LFMs with Influence
Functions

Figure 1 depicts the overall process of explaining predictions made
by LFMs with influence functions, which consists of the following
four major steps: the first two steps are for LFM-based recommen-
dation and the remaining two steps are for explanation.



(1) Training LFMs. The first step is to train LFMs under the
conventional CF setting. The training data is historical user-
item interactions, which can be explicit ratings or implicit
interactions (e.g., user’s buying records). Here we use explicit
ratings for illustration, whereas the subsequent explanation
method is independent of the type of training data.

(2) Generating recommendations.With the trained LFM from
step (1), we can predict unobserved ratings in the user-item
rating matrix. After completing the rating matrix, for each
user, we select N items with the highest predicted ratings of
the user as top-N recommendation results. The results will
be supplied to the explanation method as input.

(3) Calculating influence. Given the trained LFM, training
data (i.e., historical ratings) and recommendation results,
we aim to estimate the influence of historical ratings on
the predicted ratings of the recommendation results. The
influence of a historical rating is measured by the difference
in model predictions caused by removing the rating from the
training set. According to Equation (11), we can estimate the
influence with the trained model’s parameters, thus avoiding
expensive retraining.

(4) Generating explanations. The predominant form of inter-
pretation in the context of recommendation is neighbor-style
explanation, which is formally defined as follows.

Definition 3.1 (Neighbor-style Explanation). Given a recom-
mended item for a target user, the k most influential histori-
cal ratings of the user (resp. item) to the model’s predicted
rating form its item-based (resp. user-based) neighbor-style
explanation.

In step (3), we have measured the influence of historical rat-
ings on the predicted rating of each recommendation. We
then sort the historical ratings for the target user/item ac-
cording to their influence to the recommendation, and select
top-k ratings as explanation. As for the ranking function, if
we want to report the most influential historical ratings to
practitioners for model optimization, we can sort ratings in
an ascending order of their absolute influence values. Other-
wise, we may retain ratings with positive influence values
and report the ones with highest scores to the target user.

Example. We provide an example of our explanation method in
Figure 1, where the LFM predicts User 1’s rating on Item B to be 4.6
and recommend B. We estimate the influence of historical ratings
of User 1 and Item B on this prediction, and then sort these ratings
according to their influence. The top-3 ratings of the user (resp.
item) then become an item-based (resp. user-based) neighbor-style
explanation for the recommendation. From the figure, User 1 has
rated 5 on Item A, and this rating has an influence of 0.3. This means
the predicted rating 4.6 would be decreased to 4.3 if the point (User
1, Item A, 5) was not included in the model’s training data.

3.2 Fast Influence Analysis for MF
Wenowpresent how to estimate the influence of historical ratings in
the training set R on a rating predicted by MFmodel. Let ŷ (ut , it , θ̂ )
be the model’s predicted rating for a target user ut on an item it
given parameters θ̂ . Formally, we need to compute {IN FL(z,ut , it ) |

z ∈ Rt }, where z is a training point in the form of (u, i,y), and
Rt ⊆ R is the set of historical ratings of ut and it , to support both
item-based and user-based neighbor-style explanations. According
to Equation (11), we have

IN FL(z,ut , it ) = −
1
n
∇θ ŷ (ut , it , θ̂ )

⊤H−1
θ̂
∇θL(z, θ̂ ) (12)

The main challenge to compute the right-hand side of the above
equation is caused byH−1

θ̂
, whereHθ̂

def
= 1

n
∑n
i=1 ∇

2
θL(zi , θ̂ ), zi ∈ R .

Given the training set R with n training points and an MF model
with p parameters (i.e., the latent factors of all users and items),
computing Hθ̂ needs O(np2) operations, and reverting Hθ̂ needs
O(p3) operations. Thus the time complexity of computing influence
for a single prediction isO(np2+p3), which is expensive for modern
recommender systems with millions of parameters.
Basic influence analysis approach. Instead of explicitly com-
puting H−1

θ̂
, a more efficient way is to employ second-order opti-

mization techniques [22]. Noticing that H−1
θ̂

is symmetric, we first
rewrite Equation (12) as follows:

IN FL(z,ut , it ) = −
1
n
∇θL(z, θ̂ )

⊤H−1
θ̂
∇θ ŷ (ut , it , θ̂ ) (13)

We then divide the right-hand side into two parts:H−1
θ̂
∇θ ŷ (ut , it , θ̂ ),

∇θL(z, θ̂ ), and calculate the influence with the three steps below:
S1. ComputingH−1

θ̂
∇θ ŷ (ut , it , θ̂ ). This is a Hessian-vector product,

which can be transformed to an optimization problem:

H−1
θ̂
∇θ ŷ (ut , it , θ̂ )=argmin

t
{
1
2
t⊤Hθ̂ t −∇θ ŷ (ut , it , θ̂ )

⊤t } (14)

The above optimization problem can be solved using conjugate
gradients methods, and the complexity of each iteration is deter-
mined by the evaluation of Hθ̂ t , which needs O(np) operations
without computing Hθ̂ explicitly [27]. Since the optimization
empirically converges within a few iterations [25], the time
complexity of this step is O(np).

S2. Computing ∇θL(z, θ̂ ). For a single training point z, computing
∇θL(z, θ̂ ) requires O(p) operations. As we aim to estimate the
influence of all the training points in Rt , the complexity of this
step is O(p |Rt |).

S3. Computing IN FL(z,ut , it ). We can compute the influence by
combining the results from the previous two steps using Equa-
tion (13). For each training point z ∈ Rt , this step is an inner
product with O(p) operations. Hence, the total time complexity
of this step is O(p |Rt |).

Let n′ = |Rt |. Since n ≫ n′ in practice, the overall complexity of
computing the influence of historical ratings on a predicted rating
(i.e., {IN FL(z,ut , it ) | z ∈ Rt }) is O(np).
Fast influence analysis (FIA). The basic influence analysis ap-
proach with the complexity of O(np) is significantly more efficient
than explicitly calculating H−1

θ̂
. However, it still incurs high com-

putation cost, since both n and p can be very large in practice. For
example, when being employed to the Movielens 1M dataset [14],
the basic approach can take up to an hour to estimate the influ-
ence of historical ratings on a single prediction, which is still too
expensive to be applied in real recommender systems.



To accelerate the influence analysis process, we propose a Fast
Influence Analysis algorithm (FIA) for MF. We observe that for a
given test point (ut , it ), the predicted rating ŷ (ut , it ) by MF is only
determined by a small fraction of model parameters, i.e., the latent
factors of ut and it , which is denoted by θt = {put , qit }. Based
on this observation, we can modify the formulation of influence
functions for MF as follows:
(1) We first study the change of latent factors θ̂t,ϵ − θ̂t when a

training point z is upweighted by an infinitesimal step ϵ , giving
us the new parameters:

θ̂t,ϵ
def
= argmin

θt

1
n′

n′∑
j=1

L(zj ,θt ) + ϵL(z,θt ) (15)

where zj ∈ Rt , n′ = |Rt |. This is because θt is only optimized
by training points in Rt . The above equation can be considered
as a subproblem from the original one in Equation (6). According
to Equation (7), we have:

dθ̂t,ϵ
dϵ

����ϵ=0
= −H−1

θ̂t
∇θt L(z, θ̂ ) (16)

where Hθ̂t
def
= 1

n′
∑n′
j=1 ∇

2
θt
L(zj , θ̂ ), zj ∈ Rt .

(2) We then apply the chain rule to study the change of model’s
prediction at the test point (ut , it ), which only relies on θt :

dŷ (ut , it , θ̂t,ϵ )
dϵ

����ϵ=0
= ∇θt ŷ (ut , it , θ̂t,ϵ )

⊤ dθ̂t,ϵ
dϵ

����ϵ=0
= −∇θt ŷ (ut , it , θ̂ )

⊤H−1
θ̂t
∇θt L(z, θ̂ )

(17)

By setting ϵ to − 1
n′ (i.e., upweighting z by − 1

n′ is equivalent
to removing the point), we can approximate the influence of
removing z from the training set on the prediction at (ut , it ):

IN FL(z,ut , it ) = −
1
n′
∇θt ŷ (ut , it , θ̂ )

⊤H−1
θ̂t
∇θt L(z, θ̂ ) (18)

Time complexity analysis. The computation of Equation (18) is
similar to the basic influence analysis. We first rewrite it as:

IN FL(z,ut , it ) = −
1
n′
∇θt L(z, θ̂ )

⊤H−1
θ̂t
∇θt ŷ (ut , it , θ̂ ) (19)

We then analyze the time complexity of the three steps below.

S1’. ComputingH−1
θ̂t
∇θt ŷ (ut , it , θ̂ ). According to Equation (14), the

time cost of this step relies on the evaluation of Hθ̂t
t . Since the

modified HessianmatrixHθ̂t
only focuses onn′ training points,

and the size of parameters |θ̂t | is 2K (K is the dimension of
latent factors), the total time complexity of this step is reduced
from O(np) to O(n′K ).

S2’. Computing ∇θt L(z, θ̂ ). For a single training point z, computing
∇θt L(z, θ̂ ) needs O(K ) operations. We need to traverse all the
training points inRt , thus the complexity of this step isO(n′K ).

S3’. Computing IN FL(z,ut , it ). We perform an inner product over
H−1
θ̂t
∇θt ŷ (ut , it , θ̂ ) and ∇θt L(z, θ̂ ) to obtain the final influence.

In FIA, the dimension of the above vectors is reduced from p
to K , hence the computation needs O(K ) operations for each
training point z ∈ Rt . The complexity of this step is O(n′K ).

To sum up, the overall complexity of FIA for MF is O(n′K ), which is
greatly reduced compared with theO(np) cost of the basic approach,
since n′ ≪ n and K ≪ p. It is also worth mentioning that both
n′ and K are typically small and independent of the size of the
training set, while n and p are proportional to the size of training
data for recommendation models. This indicates that FIA enables
us to perform efficient influence analysis for MF over large datasets.

3.3 Fast Influence Analysis for NCF
Extending FIA to NCF settings. The NCF methods are based on
the latent factors (i.e., embeddings) of users and items, which aim to
learn a complex interaction function (e.g., MLP) over embeddings
from training data, unlike performing inner product in MF. To adapt
FIA to the NCF setting, we divide the parameters involved in NCF
into two parts: θe and θn , where θe is the embeddings of users and
items, and θn is the parameters of the interaction function (e.g.,
weight matrices in MLP). Given a test point (ut , it ), the predicted
rating ŷ (ut , it ) from NCF is determined by both θe and θn , but the
two parts of parameters are affected by training points in different
ways. That is, θe is directly optimized by the training points in
Rt , which is similar to θt in MF; θn is learned using the complete
set of R. By applying the Taylor expansion over ŷ (ut , it ,θe ,θn ) at
(θ̂e , θ̂n ) on convergence, we have:

ŷ (ut , it ,θe ,θn ) = ŷ (ut , it , θ̂e , θ̂n ) + ∇θe ŷ∆θe + ∇θn ŷ∆θn

+ o( | |∆θ | |)
(20)

After dropping the o( | |∆θ | |) term, we can estimate the influence of
a training point by dividing it into two parts:

IN FL(z,ut , it ) ≈ IN FL(z,ut , it |∆θe ) + IN FL(z,ut , it |∆θn ) (21)

Here we use IN FL(z,ut , it |∆θe ) and IN FL(z,ut , it |∆θn ) to denote
the influence of z on the test point through the change of parameters
in θe and θn , respectively. The computation of IN FL(z,ut , it |∆θe )
is similar to Equation (18), the details of which is thus omitted:

IN FL(z,ut , it |∆θe ) = −
1
n′
∇θe ŷ (ut , it , θ̂ )

⊤H−1
θ̂e
∇θe L(z, θ̂ ) (22)

where Hθ̂e
def
= 1

n′
∑n′
j=1 ∇

2
θe
L(zj , θ̂ ), zj ∈ Rt . Note that the embed-

ding parameters are only optimized by the training points in Rt .
As for the parameters θn involved in the interaction function,

we have:

IN FL(z,ut , it |∆θn ) = −
1
n
∇θn ŷ (ut , it , θ̂ )

⊤H−1
θ̂n
∇θnL(z, θ̂ ) (23)

where Hθ̂n
def
= 1

n
∑n
i=1 ∇

2
θn
L(zi , θ̂ ), zi ∈ R, since the parameters in

the interaction function are optimized by all the training points in
R. Combining Equation (21)−(23), we can compute IN FL(z,ut , it )
for NCF methods.
Time complexity analysis. The time cost of evaluating Equation
(22) and (23) using FIA is similar to that of Equation (18) for MF.
The complexity of performing Equation (22) is O(n′K ) since the
calculation is only based on the embedding parameters and the
training points in Rt . For Equation (23), the computation cost is
O(n |θn |), because the learning of θn relies on all the training points.
Hence, the total time complexity of FIA for NCF is O(n′K + n |θn |).
FIA for NCF with approximation.We observe that in practice,
IN FL(z,ut , it |∆θe ) ≫ IN FL(z,ut , it |∆θn ), due to the fact that the



Table 1: Statistics of the datasets

Dataset Interaction# User# Item# Sparsity
Yelp 731,671 25,815 25,677 99.89%

Movielens 1,000,209 6,040 3,706 95.53%

coefficient 1
n′ ≫

1
n , especially for large datasets. For example, in

the Movielens 1M dataset, n′ is only a few hundred, while n can be
up to one million. This inspires us to compute IN FL(z,ut , it ) ap-
proximately by dropping the second term in Equation (21), thereby
we get:

IN FL(z,ut , it ) ≈ −
1
n′
∇θe ŷ (ut , it , θ̂ )

⊤H−1
θ̂e
∇θe L(z, θ̂ ) (24)

The intuition behind the above approximation is that the impact of
removing a training point z on θe is more significant than that on
θn , because θn is trained on the whole training set instead of the
smaller subset Rt . With the approximation, the time complexity of
FIA for NCF methods can be further reduced to O(n′K ), which is
as efficient as FIA for MF.

4 EXPERIMENTS
In this section, we conduct experiments to answer the following
research questions:
• RQ1: How is the effectiveness of FIA for interpreting LFMs?
• RQ2: How is the efficiency of FIA compared with the basic
influence analysis approach?
• RQ3: What does the generated explanation of FIA in real-
world datasets look like?

4.1 Experimental Settings
4.1.1 Datasets. We used two publicly accessible datasets:
• Yelp: This is the Yelp Challenge dataset1, which includes user
ratings on different types of business places (e.g., restaurants,
shopping malls, etc).
• Movielens: This is the widely used Movielens 1M dataset2,
which contains user ratings on movies.

For both datasets, we follow the common practice [28] to filter out
users and items with less than 10 interactions. The statistics of the
filtered datasets are summarized in Table 1.

4.1.2 Evaluation Protocols. Recall that FIA estimates the influence
of historical ratings z on a trained LFM’s prediction ŷ (ut , it ), i.e.,
IN FL(z,ut , it ) as defined in Equation (10), and use the estimated
influence to generate explanations. We thus evaluate the effective-
ness of FIA in terms of the computed influence. A straightforward
yet expensive way to measure the influence IN FL(z,ut , it ) is to
remove the historical rating z and retrain the LFM. In our exper-
iments, we compare the estimated influence using FIA with the
observed influence derived by leave-one-out retraining to verify
the effectiveness of FIA.

Specifically, we first randomly select 100 test points {(uti , iti ) |i ∈
[1, 100]} from the test set. For each test point (uti , iti ), we apply
FIA to compute {IN FL(zi ,uti , iti ) |zi ∈ Rti }, where Rti denotes the
historical ratings from uti and iti . Here we only select zi with the
1https://www.yelp.com/dataset/challenge
2https://grouplens.org/datasets/movielens/1m/

largest absolute influence value and compare it with the observed
influence IN FL(zi ,uti , iti )obs after retraining. This is to prevent
the small influence from being overwhelmed by the randomness in
retraining, since LFMs are not strictly convex models. We perform
retraining multiple times and use the average observed influence
as IN FL(zi ,uti , iti )obs to obtain steadier results. We employ Pear-
son correlation coefficient (Pearson’s R for brevity) to measure
the linear correlation between the estimated influence and the ob-
served one. A large Pearson’s R indicates the effectiveness of FIA.
In addition to the quantitative evaluation of effectiveness, we also
evaluate the efficiency of FIA and assess the explanation generated
by FIA through case study. We summarize the evaluation protocols
used in the experiments as follows:
• Quantitative evaluation of effectiveness. We evaluate the ef-
fectiveness of FIA by measuring the correlation between the com-
puted influence of FIA and the observed influence with leave-one-
out retraining.
• Quantitative evaluation of efficiency. We evaluate the effi-
ciency of FIA using running time by comparing with the basic
influence analysis approach introduced in Section 3.2.
• Qualitative evaluation of explanation. We qualitatively eval-
uate the generated explanations of FIA through case study using
real data.
Non-goals. We want to emphasize that the proposed FIA is an
explanation method, which aims to provide neighbor-style expla-
nations for the recommendation results of trained LFMs. There
are two ways to assess neighbor-style explanations [38]. The first
is through online evaluation, which is unfortunately inaccessible
to researchers. The second way is to evaluate the proportion of
recommended items that can be explained as used in [1, 3, 26].
This proportion is also referred to as Model Fidelity [26], and a
higher Model Fidelity indicates better performance of the explana-
tion method. However, it is unnecessary to empirically compare
FIA with existing methods over Model Fidelity, because FIA is able
to generate explanation for any prediction of LFM, thus undoubt-
edly outperforming all the existing methods.

4.1.3 Parameter Settings. We implemented FIA using Tensorflow3.
For each user in the dataset, we randomly held-out one rating to
form the test set, and used the remaining data for model train-
ing. We adopted Adam [21] as the optimizer, which is a variant
of stochastic gradient descent that dynamically tunes the learning
rate during training. We set the initial learning rate to 0.001, the
batch size to 3000, and the L2 regularization term to 0.001. During
the computation of influence functions, we add a damping term
of 10−6 to avoid negative eigenvalues in Hessian [22]. All the ex-
periments were conducted on a server with 2 Intel Xeon 1.7GHz
CPUs and 2 NVIDIA Tesla K80 GPUs. The source code is available
at https://github.com/WeiyuCheng/FIA-KDD-19.

4.2 Evaluation of Effectiveness (RQ1)
We conduct experiments for FIA-MF and FIA-NCF on two datasets,
where FIA-NCF is the version with approximation. The results are
shown in Figure 2. First, we can see that the influence computed
by FIA is highly correlated with the observed values obtained by

3https://www.tensorflow.org

https://github.com/WeiyuCheng/FIA-KDD-19
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Figure 2: Comparison between the observed influence and those computed by FIA methods for MF and NCF.

Table 2: Running time of FIA and IA for MF

Yelp Movielens
Factors FIA-MF IA FIA-MF IA

8 0.78s 460s 0.96s 291s
16 0.75s 500s 1.21s 292s
32 0.80s 743s 1.59s 456s
64 0.77s 927s 1.26s 371s
128 0.95s 1705s 1.24s 167s
256 0.93s 2242s 1.22s 274s

Table 3: Running time of FIA and IA for NCF

Yelp Movielens
Factors FIA-NCF IA FIA-NCF IA

8 1.17s 653s 0.89s 405s
16 1.01s 705s 1.47s 500s
32 0.97s 1010s 4.01s 601s
64 0.77s 1350s 4.35s 587s
128 1.09s 1633s 4.75s 655s
256 1.38s 2419s 2.41s 712s

retraining, which verifies the effectiveness of FIA methods. Specifi-
cally, for FIA-MF, the Pearson’s R between the estimated and ob-
served influence are 0.99 and 0.98 on Yelp and Movielens, respec-
tively. For FIA-NCF, the Pearson’s R between the estimated and
observed influence are 0.92 and 0.84 on Yelp and Movielens, re-
spectively. The strong correlations prove that FIA can effectively
approximate the influence of training points without expensive
retraining. It is also worth noticing that FIA provides better results
for MF than NCF on both datasets. This is because in FIA-NCF, we
ignore the effects of a small part of model parameters to improve
the computational efficiency. This trade-off sacrifices a tiny frac-
tion of accuracy, but we want to emphasize that the approximation
method FIA-NCF can still provide convincing influence analysis
according to the results.

4.3 Evaluation of Time Cost (RQ2)
We now empirically study the computational efficiency of FIA. We
measure the time cost of FIA-MF and FIA-NCF with IA on the two
datasets, where IA denotes the basic influence analysis approach
described in Section 3.2. For each dataset, we randomly select a set
of test points {(ut , it )}, and record the average running time for

Movie Movie Type Your Rating Influence

A Close Shave Animation&
Comedy

3 -0.036

The Best of Aardman
Animation

Animation &
Children's 3 -0.034

The Princess Bride Comedy & Romance 3 -0.030
The Last Days of Disco Drama & Comedy 5 0.028

My Fair Lady Musical &
Romance 3 -0.027

Dumbo Animation & Children's 5 0.022

Figure 3: An example of item-based explanation.

computing the influence of training points on the test points, i.e.,
{IN FL(z,ut , it ) |z ∈ Rt }. The running time with different latent
factor dimension settings for MF and NCF is provided in Table 2
and Table 3, respectively.

From the results, we can see that our FIA methods are consis-
tently much more efficient than IA on both datasets. Specifically,
FIA runs 135 to 2411 times faster than IA in MF, and achieves a
speedup of 138x to 1752x than IA in NCF. Note that the time cost
of FIA is always at a small scale, i.e., less than 5 seconds, regardless
of the dimension of latent factors and the employed datasets. This
shows the potential of FIA to be applied to real recommendation
scenarios. Besides, we can observe that the time cost of both meth-
ods generally increases with the dimension of latent factors, but
with some exceptions. This is caused by the iterative method that
we used to solve Equation (14). That is, the number of iterations
until convergence depends on specific model parameters, which
results in certain variance in the running time.

4.4 Case Study (RQ3)
We now perform a case study to gain intuitions on the effectiveness
of FIA in providing explanations for the predictions of LFMs. We
use the Movielens dataset for illustration, in which the items are
movies that readers are usually familiar with. We first train an MF
model on the dataset until convergence. We then randomly select
a test user with 53 historical ratings and predict the user’s rating
for the movie The Lion King (1994) using the trained MF model. In
our experiment, the MF method predicts the rating to be 4.04. We
then employ FIA to estimate the influence of the user’s historical
ratings on this prediction, and sort the ratings according to their
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absolute influence values to generate an item-based explanation
for the prediction.

The generated explanation is shown in Figure 3, where we pre-
serve the top-6 influential ratings. We also provide the movie type
and the computed influence for clearer illustration. According to
the results, we can explain to the user: “we predict your rating for
The Lion King (1994) to be 4.04, mostly because of your previous
ratings on the following 6 items”. Since the type of movie The Lion
King (1994) belongs to Animation & Comedy, the explanation in
this example is quite intuitive and convincing, i.e., most of movies
in the generated list are similar to The Lion King (1994) in terms of
the movie type. It is also interesting to see that the user’s past rat-
ings of 3 would have negative influence on the prediction, whereas
the past ratings of 5 provide positive influence. This is reasonable
because the model’s predicted rating on the target movie would be
increased (resp. decreased) by the user’s appreciation (resp. dislike)
for the movies of similar types.

Besides, the estimated influence is also helpful for us to better
understand LFMs. Here we draw the distribution of the influence of
training points on the aforementioned test points, as shown in Fig-
ure 4. We focus on the analysis of training points z ∈ Rt . Figure 4a
provides a smooth histogram showing the distribution of influence
values, which tells that the influence of training points is usually
centered around zero. Figure 4b is a scatter plot showing the sorted
absolute values of influence. We observe that only a small fraction
of training points contribute significantly to MF’s prediction on
the test point, which provides some insights on understanding the
security risks of LFMs, since several abnormal training points are
able to affect the model’s prediction markedly.

5 RELATEDWORK
Existing works on enhancing recommender systems with inter-
pretability can be classified into different categories based on the
type of recommendation models, including latent factor models [1,
3, 23, 26, 39], memory-based models [29, 32], graph-based mod-
els [5, 15, 35], deep learning models [8, 24, 33, 34], and tree-based
models [37]. In this section, we review the related works on inter-
preting recommendation results from LFMs, which can be generally
divided into two groups: interpreting with only historical user-item
interactions and interpreting with external data sources.

5.1 Interpreting with Historical Interactions
The predominant approach to interpreting the predictions of LFMs
with historical interactions is to enforce constraints on LFMs [1,

18, 20, 23]. Non-negative Matrix Factorization (NNMF) [23] was
proposed to force all the latent factors in MF to be non-negative.
In this way, a particular predicted rating can be interpreted as
the user’s total matching score with the item over latent dimen-
sions. However, NNMF fails to generate explicit explanations for
MF. Several methods were proposed to support neighbor-style ex-
planations for the predictions of LFMs. Abdollahi and Nasraoui [1]
introduced Explainable Matrix Factorization (EMF), where they
augmented the objective function with an explainability regularizer
and encouraged MF to recommend items that are prevalent in the
target user’s neighbors. Later on, the idea was incorporated into the
probabilistic method [3] and Restricted Boltzmann Machines [2]
for interpretable recommendation under the collaborative filter-
ing setting. More recently, Heckel et al. [18] proposed to identify
overlapping co-clusters of users and items with similar patterns,
and confine the latent factors to represent users’ and items’ par-
ticipation in the clusters. The co-cluster are then used to generate
neighbor-style explanations for the recommended items.

One limitation of the above approaches is that the constrained
recommendation models typically sacrifice accuracy to improve
interpretability, which is known as the accuracy-interpretability
trade-off. Moreover, these approaches need model-dependent modi-
fications to the objective function, which lacks flexibility and brings
extra switching cost in practice [30]. A recent work [26] focused on
performing post-hoc interpretation for LFMs, which decoupled the
interpretation process from model training. The explanations for
the predictions of LFMs are obtained by learning association rules
over the output of a matrix factorization model. As discussed before,
while this post-hoc method avoids the accuracy-interpretability
trade-off, it still suffers from two drawbacks. First, the generated
explanations by mining association rules cannot explain the predic-
tions in terms of the LFMs. In essence, association rule mining aims
to find frequent correlations between historical interactions and
recommended items, whereas the LFMs are still treated as black-box
models. Second, the method has limited applicability as it is not
guaranteed to provide explanations for any recommendation result.

Our proposed FIA method is a kind of post-hoc interpretability
approach, which is flexible and can be seamlessly incorportated
into LFMs. Different from [26], we leverage influence functions [13]
to explain all the recommendation results from the perspective of
model parameters. Influence functions stemmed from robust sta-
tistics [12] and were recently adopted to understand black-box
predictions [22]. To the best of our knowledge, our FIA method
is the first attempt to employ influence functions for interpreting
the predictions of LFMs, under both MF and NCF settings. Further-
more, various optimizations have been developed to accelerate the
influence analysis process to make FIA practical.

5.2 Interpreting with External Data Sources
Several methods have been proposed to interpret the predictions
of LFMs by assigning semantics to the dimensions of latent vectors
based on external data sources. These methods typically provide
feature-based explanations. Zhang et al. [39] proposed Explicit Fac-
tor Models (EFM), which extracts product features from textual
reviews and aligns each explicit feature with a latent dimension.
EFM has been further extended to sequential settings by modeling



dynamic user preferences on item features [40] or performing ten-
sor factorization over multiple categories of items [9]. Similarly,
user reviews are also integrated with ratings to build aspect-level
LFMs. In [11, 19], aspect-aware topic modeling was performed on
the reviews to extract item features from multiple aspects, and the
ratings were computed by considering user preference against all
the aspects. By doing this, the recommendation results can be in-
terpreted as the degree of user preference on different aspects of
items.

The key difference between the above works and our method is
that they rely on external data sources to provide insights for inter-
preting the predictions of LFMs. However, auxiliary information
associated with historical interactions can be expensive to obtain
or may not be available in practice. Our method leverages merely
the historical user-item interactions to enhance LFMs with inter-
pretability, which is more desirable in real recommender systems.

6 CONCLUSION
In this paper, we propose an explanation method FIA by performing
influence analysis over LFMs towards interpretable recommenda-
tion. We show that influence functions are effective in understand-
ing the prediction results of LFMs by tracing back to historical
interactions, and generating intuitive neighbor-style explanations.
Our proposed FIA is able to perform influence analysis for MF with
high computational efficiency. We then extend FIA to the NCF set-
ting and develop an approximation method to further accelerate
influence analysis process. Extensive experiments conducted over
real-world datasets demonstrate the effectiveness and efficiency of
FIA , as well as the usefulness of the generated explanations for the
recommendation results from LFMs.
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