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1. Completeness

Recall that we have shown:

Lemma 1.1. Let ® C LS and J? be the term interpretation of ®. Then for every atomic ¢

IPEe — Ok . N

Theorem 1.2 (Henkin’s Theorem). Let ® C LS be consistent, negation complete, and contain wit-
nesses. Then for every S-formula ¢

e = OFo. -

Corollary 1.3. Let S be countable and ® C L® consistent with finite free(®). Then there is a © such
that

- dCOCLS;
— O is consistent, negation complete, and contains witnesses.

Therefore by Theorem [1.2|for every ¢ € LS
PEe < Oto.

In particular
°E o,

thus @ is satisfiable. =

In the next step we eliminate the condition free(®) being finite.

Corollary 1.4. Let S be countable and ® C L° consistent. Then ® is satisfiable.

1.1. The general case.

Lemma 1.5. Let ® C LS be consistent. Then there is a symbol set S’ with S C S’ and a consistent W
with ® C¥ C 1S’ such that ¥ contains witnesses. =

Lemma 1.6. Let W C LS be consistent. Then there is a consistent © with ¥ C © C LS such that © is
negation complete. =

Then the next corollary follows from Lemmas[1.5|and[1.6]in the same fashion as that of Corol-
lary[T3]

Corollary 1.7. Let ® C LS be consistent. Then @ is satisfiable. -



We need some technical tools for proving Lemma Let S be an arbitrary symbol set. For
every ¢ € LS we introduce a constant c,, ¢ S. In particular, ¢, # cy, for any ¢ # . Then we set

S*:=SU{caxe | Ixo € L3},
W(S) := {Elxq) — (‘003% ’ Ixep € LS}.

It is obvious that c34 is introduced as a witness for Ix¢@ as required by W(S). Nevertheless,
we pay a price for expanding the symbol set S to S*, i.e., there are formulas of the form Ix¢ in
LS"\ LS, eg.,

Fv7Caxrx = V7.

Lemma 1.8. Assume that ® C LS is consistent. Then
OUW(S) C LY
is consistent as well.

Proof: It suffices to show that every finite subset @} of ® UW(S) C LS is satisfiable. Let

Oy = Do U {wal S o1, T n — @ncn},
X1 Xn
where @ C @ is finite, every Ix;¢; € LS, and ¢; = Cax, ¢, forie ml.

Choose a finite Sy C S such that ®, C LS. Note that @, is consistent due to the consistency
of ®. Furthermore free(®y) is ﬁniteﬂ Therefore @ is satisfiable by Corollary i.e., there is an
So-interpretation Jg = (%lg, ) such that

Jo = @9
Note that 2y is an Sp-structure. By choosing some arbitrary interpretation of the symbols in S\ Sg
we obtain an S-structure 2. Then the Coincidence Lemma guarantees that for the S-interpretation
J:=(2Ap)

JE Oo.

Next, we need to further expand 2 to an S*-structure 2(* by giving interpretation of all new
constants csx. Let a € A be an arbitrary but fixed element. Then for every i € [n] we set

a; if thereis an a; € A with J = @i,

= (choose an arbitrary one, if there are more than one such a;),
a otherwise.
For all the other new constants cs,, we simply let c%, := a. Then for the S*-interpretation

J* = (A*, B) we claim

. c c
T E ®ou {3X1<p1 S @1y, P Pn @n“}-
X1 Xn
J* = @y is immediate by J = ®( and the Coincidence Lemma. Let i € [n] and assume J* = 3Ix; @,
or equivalently J = 3x; @i. Then by our choice of a; € A

@
JTE @ei—,
Xi

hence .
T E Ixipy — @ii; €Y

1
by the Coincidence Lemma and by the Substitution Lemma. Note trivially holds if 7* F£ Ix; @;.
This finishes the proof. g

IHere, we can also apply Corollarywithout using the finiteness of free(®(). But then this would introduce a further
layer of construction as in the proof of Corollary



Lemma 1.9. Let
S0€5C---CSC---

be a sequence of symbol sets. Furthermore, for every n € N let @, be a set of S,-formulas such that
Gy C O C--CDOy T
We set

S::LJSn and CD::U(Dn.

neN neN

Then @ is a consistent set of S-formulas if and only if every ®©,, is consistent.

Proof: We prove that
@ is inconsistent <= @, is inconsistent for some n € N.

The direction from right to left is trivial. So assume that @ is inconsistent. In particular, for some
@ € LS there are proofs of ¢ and —¢ from ®. Since proofs in sequent calculus are all finite, we
can choose a finite S’ C S such that every formula used in the proofs of ¢ and —¢ is an S’-formula.
For the same reason, for a sufficiently large n € N we have

i S"C Sy,

(ii) @, F @ and ©, F —.
Thus @, is inconsistent. O
Remark 1.10. Note at this point we have not shown the following seemingly trivial result. Let S
be an (infinite) set of symbols, a finite ® C L5, and ¢ € LS such that ® - ¢. Furthermore, let

So C S be the set of symbols that occur in @ and ¢. Then there is a proof of sequence calculus for
® + @ such that every formula occurs in the proof is an Sp-formula, i.e., only uses symbols in So.

This is the reason in the proof of Lemma [1.9|we need to emphasize (i). =

Proof of Lemma Let
So:=S and S,;1:=(5+)%,
Yoim @ and W q =Y, UW(S,).
Therefore

S=S,C---
O=Y,C .-

Sn
Wn

Sny1 € ---
Y1 ©-oe

N 1N
N 1N

Then we set
S = U S, and VY:= U V...
neN neN

By Lemma [1.8] and induction on n we conclude that every ¥, is consistent. Thus Lemma [1.9
implies that V¥ is a consistent set of S’-formulas.

By our construction of W(S,,), the set V¥ trivially contains witnesses. a
The proof of Lemma relies on well-known Zorn’s Lemma. Let M be a set and U C

Pow(M) = {T | T € M}. We say that a nonempty subset C C U is a chain in U if for every
T, T, e C either Ty C T, or T, C Ty.



Lemma 1.11 (Zorn’s LemmaE]). Assume that for every chain C in U we have
UC::{alaeTforsomeTe Clel.

Then U has a maximal element T, i.e., thereisno T’ € Uwith T C T'. =

Proof of Lemma In order to apply Zorn’s Lemma we let M := LS and
U={0|vycoec LS and O is consistent }.
Let C be a chain in U. We set

Oc ::UC:{cp|(pe®forsome®eC}.

C # 0 implies ¥ C @Oc¢. To see that Oc¢ is consistent, let {¢1,..., @n} be a finite subset of O, in
particular, there are ®; € C such that ¢; € ©;. As C is a chain, without loss of generality, we
can assume that every ©; C ©,,. Since ©,, € C is consistent by the definition of U, we conclude
{®1,...,@n}is consistent as well.

Thus the condition in Zorn’s Lemma is satisfied. It follows that U has a maximal element ©.
We claim that © is negation complete. Otherwise, for some ¢ € L° we have © I/ ¢ and © I/ —¢.
Therefore ¢ ¢ © and © U {¢} is consistent. As a consequence @ C O U{p} € U. This is a
contradiction to the maximality of ©. |

Now we are ready to prove the completeness theorem.

Theorem 1.12. Let ® C LS and ¢ € LS. Then

O <— OEo.

Proof: The direction from left to right is easy by the soundness of sequent calculus. Conversely,
assume that @ t# ¢, then ® U{—¢} is consistent. By Corollary[1.7] ® U{—¢} is satisfiable. Then,
there is an S-interpretation J with 7 = ® and J = —o (i.e., J l£ ¢). But this means that ® £ ¢. O

2. The Lowenheim-Skolem Theorem and the Compactness Theorem
Using the term-interpretation, it is routine to verify:

Theorem 2.1 (Léwenheim-Skolem). Let ® C LS be at most countable and satisfiable. Then there is
an S-interpretation J = (2, 3) such that

— the universe A of 2 is at most countable,

—and J = . B

The following is a more general version.

Theorem 2.2 (Downward Léwenheim-Skolem). Let ® C LS be satisfiable. Then there is an S-
interpretation 3 = (2, ) such that

- Al < [T? = L5,
—andJ E ©. 4
Corollary 2.3. Let S :={+, x, <, 0, 1} with the usual meaning and
Op={pelf| (R +-<01) @}

Then there is a countable S-structure A with 2 = Og. =

2See (Canvas for a proof of Zorn’s Lemma.


https://oc.sjtu.edu.cn/courses/60035/modules/items/1076280

Theorem 2.4 (Compactness). (a) ® = o if and only if there is a finite ®q C ® with ®q = .
(b) @ is satisfiable if and only if every finite ®y C @ is satisfiable. -

In fact, the “compactness” is a notion from topology. We can explain the topological perspective
of Theoremusing finite covers from analysis. For every ¢ € L5 we define

and
Mod(®) := {3 |3 = @} = (] Mod(1)

Pped

We show that Theorem is equivalent to the following finite cover property.

Proposition 2.5. Mod(¢) C J,,cq Mod () if and only if for some finite ®o C ® we have

Mod( @ U Mod () =
Pedy

Proof of Theorem [2.4|using Proposition

® k= @ < Mod(®) C Mod(e)

<= Mod(p) C Mod(®D)
<= Mod(¢) ﬂ Mod (P
Yed
<= Mod(p U Mod (P
Ve
= Mod(—¢) C |_J Mod(—)
Yeow
<= Mod(—¢) C U Mod(—) for some finite @ C ®  (by Proposition [2.5)
Pedy
<= Mod(¢) U Mod () for some finite ®y C ©
Ppedy
< Mod(y) ﬂ Mod (1) for some finite ®q C @
Ppedy
= ﬂ Mod () € Mod(¢) for some finite &y C O
Yedy
<= Mod(®g) € Mod(¢) for some finite &g C @
<= g & ¢ for some finite &g C O. O

Proof of Proposition by Theorem The direction from right to left is trivial. So we assume
that
Mod(¢ U Mod (1
Ped
Claim. {—{ |V € O} = —o.

Proof of the claim. Let J be an interpretation with

JTE{bIPed)



That is, J = — for every P € ®. We can deduce that
Je ﬂ Mod(—) <= TJ € ﬂ Mod (1)
PYeD PYed
7€ |J Mod()
PYeow

«73¢ |J Mod()

Pped

— J ¢ Mod(¢) by Mod(¢) € | J Mod (1)
Yeodv
— JTE—o.
This finishes the proof of the claim. =
Now we apply Theorem [2.4] to the above claim. In particular, there is a finite @y C @ such that
b [b e @} =—o

Then arguing similarly as above, we obtain

Mod(@) € | Mod(1). O

Pedy

Theorem 2.6. Let ® C LS such that for every n € N there exists an S-interpretation J, = (Un, Pn)
with |[An| > nand J,, = ®. Then there is an S-interpretation J = (2, ) with infinite A and J = ®.

Proof: For every n > 2 we define a sentence
P>n = EIV() s an,1 /\ Vi = V5.

o<i<jgn

Clearly for any structure 2( (regardless of the symbol set S)
A= psn <= [Al>2n.
Now consider
YVi=0U{@sn|n>2}.
Of course every finite subset of ¥ is contained in
Y =D U{psn|2<n<ng}

for a sufficiently large ny € N. By assumption, J,,, witnesses that W,,, is satisfiable. Therefore, by
the Compactness Theorem, V itself is satisfiable. The result follows immediately. |

Theorem 2.7 (Upward Léwenheim-Skolem). Let ® C LS and assume that there is an S-interpretation
J = (A, B) such that A is infinite and J = ®. Then, for any set B there is an S-interpretation
J=(2,p)with |A| > |Bland J E ©.

Proof: For any b € B we introduce a new constant c, ¢ S. In particular, ¢y, # cp- for any b,b’ € B
with b # b. Then consider

Y:=0U {“Cb = Cp~

b,b’ € Bwithb #b'}.

Since @ has an infinite interpretation, every finite subset of V is satisfiable. By the Compactness
Theorem, we conclude that @ is satisfiable. Clearly the structure in any interpretation which
satisfies W must have size as large as |B|. O

Corollary 2.8. Let S = {+, x,<,0, 1} and

q)N = {(p S Lg | (NJ +’ ) <’O; 1) IZ (p}'
Then there is a uncountable S-structure A with 2 &= Oy. -
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