Mathematical Logic (XII)
Yijia Chen

1. Theories and Decidability
Definition 1.1. Aset T C L§ of L-sentences is a theory if
— T is satisfiable,
— and T is closed under consequences, i.e., for every @ € L3, if T = @, then ¢ € T. -
Example 1.2. Let 2( be an S-structure. Then
Th(2) = {¢ € | ] AE @}

is a theory. -
Definition 1.3. Let 91:= (N, +,-,0,1). Then Th() is called (elementary) arithmetic. B

Definition 1.4. Let T C L5. We define

TF={pely | TE ¢} .
Lemma 1.5. All the following are equivalent.
- TF is a theory.
— T is satisfiable.

- TE £1L35. .

Definition 1.6. The Peano Arithmetic ®p, consists of the following S..-sentences, where S, =
{+) ) 0: 1}

Vx—x+1=0, YxVylx+1=y+1—-x=1y),

Yxx+0=x, YxVyx+(y+1) = (x+y)+1,

Yxx-0=0, Yy x-(y+1)=x-y+x,
and for all n € N, all variables x1,...,xn, y, and all ¢ € L= with

free(p) C {x1,...,%n,Yy}

0 y+1
Vxl-ann(((py/\Vy((p—pr)) —>Vy(p). .

the sentence

Remark 1.7. It is easy to see that 01 = Opa, i.e., d)‘; C Th(91). We will show that d); C Th(M). 4

Definition 1.8. Let T C L§ be a theory.



(i) T is R-axiomatizable if there exists an R-decidable ® C Lg with T = OF.
(ii) T is finitely axiomatizable if there exists a finite ® C I_(S, with T = ®F,

Clearly any finitely axiomatizable T is R-axiomatizable. =

Theorem 1.9. Every R-axiomatizable theory is R-enumerable.

Proof: Let T = ®F where ® C L§ is R-decidable. We can effectively generate all derivable
sequent proofs and check for each proof whether all the used assumptions belong to ® (by the
R-decidability of @). O

Remark 1.10. There are R-axiomatizable theories that are not R-decidable, e.g., for S = S, and

D=0

oF ={p e’ | o} .
Definition 1.11. A theory T C L§ is complete if for any ¢ € L3, either ¢ € Tor —¢ € T. =
Remark 1.12. Let 2 be an S-structure. Then the theory Th(2() is complete. =

Theorem 1.13. (i) Every R-axiomatizable complete theory is R-decidable.

(ii) Every R-enumerable complete theory is R-decidable. o

2. The Undecidability of Arithmetic
Theorem 2.1. Th(N) is not R-decidable.

Again, for the alphabet A = {|} we consider the halting problem
TThate := {wp | P a program over A and P: O — halt}.

For any program P over A we will construct effectively an S,.-sentence ¢p (i.e., @p can be com-
puted by a register machine) such that

NEpp <= P:0— halt.

Assume that P consists of instructions oy, ..., k. Let n be the maximum index i such that R; is
used by P. Recall that a configuration of P is an (n + 2)-tuple

(L: mO: MR ] mTL):
where L < k and my, ..., m, € N, meaning that « is the instruction to be executed next and
every register R; contains my, i.e., the word ||---].

~—

m; times
Lemma 2.2. For every program IP over A we can compute an S,-formula
XP(X05 -+ +»Xn>2Z, Y05+ -+ 5 Yn)
such that for all {, ..., 0, L, mg,...,my € N
N E xello, ..., 0, L,mg, ..., Myl

if and only if P, beginning with the configuration (0, {o, ..., {n ), after finitely many steps, reaches the
configuration (L, mgp, ..., my). =



Using the formula xp in Lemma 2.2, we define

©p = Yo IYnXe(0,...,0,% Yo, -, Yn),

here k := 1+---+ 1. Then By L 2.2, lude M if and only if P, beginni
where R en By Lemma we conclude 91 = op if and only i eginning

k times
with the initial configuration (0,0, ...,0), after finitely many steps, reaches the configuration
(k, mg, ..., Myn), i.e., P: O — halt. This finishes our proof of Theorem 2.1. O

By Theorem 2.1, Theorem 1.13, and Remark 1.12:

Corollary 2.3. Th() is neither R-axiomatizable nor R-enumerable. Thus

@5 C Th(N). .

Proof of Lemma 2.2. Recall that xp expresses in 91 that there is an s € N and a sequence of
configurations Co, ..., Cs such that

- CO = (O:XO"")Xn)’
- Cs - (Z,UO,---,yn),

. P . ) . .
— for all i < s we have C; — Ci,1, i.e., from the configuration C; the program P will reach
Ci41 in one step.

We slightly rewrite the above formulation as that there is an s € N and a sequence of natural
numbers

A, + - -5 On41 Ant2; - - -5 An42)+(n41) - - - As.(n42)5 - - - 5> As. (n42)+ (n+1) (D
—_———
Co C Cs

such that
— Qp :0, A1 = X0y eoe5 Antr1 = Xn,
= Qs.(n+2) =%, Q5. (n+2)+1 = Y0, -+ -» As.(n+2)+(n+1) = Yn,
— for all i < s we have

P
(ai-(n+2)> cees ai-(n+2)+(n+1)) — (‘1(1+1)~(n+2), ) a(i+1)-(n+2)+(n+1))-

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in 91.
So we need the following beautiful (elementary) number-theoretic tool.

Lemma 2.4 (Godel’s B-function). There is a function 3 : N®> — N with the following properties.

(i) For every r € N and every sequence (qo, - .., a,) in N there exist t,p € N such that for alli <
B(t,p, 1) = ai.

(ii) B is definable in LS=. That is, there is an Sa-formula ¢@p(x,y,z, W) such that for all t, q,1,a €
N

NE= eplt,q,i,a] <= Bt q,1) =a.



Equipped with the above {3 function and the formula ¢, we define the desired xp as follows.

3t3p35<‘96(t;p; 05 O) N (pﬁ(tapz 13 XO) ASERVAN (pﬁ(t7p;n+ 13 Xn)

ANop(t,p,s - n+2,2) App(t,p,s-n+2+1,yo)
N Nept,p,s-n+2+n+1,yn)
/\Vi(i < s VUV - -V Vu'va - - Vad!

n
(ep(t,p,i-n+2,W)A@g(t,p,i-n+2+1,up)
A---A(pﬁ(t,p,i-m+m,un)

ANeplt,p, i+1) - n+2,u)ANep(t,p, (i+1) - n+2+1,u))

A ANeplt,p,(i+1) n+2+n+1,ul)

U, Uy -y ) (uw,ug, . ..,uﬁ)”))).

Here,

i
“(UyUgy v e ey Un) — (W0, .., ul)”

stands for a formula describing one-step computation of P from configuration (u, ug,...,u,) to
configuration (u’,u},...,u;,). Such a formula can be defined as a conjunction

Yo A A_g.

Recall that the program P consists of instructions «g, . .., xx Where the last o« is the halt instruc-
tion. Thus, say «; is
j LET Ry = Ry+ |,

then we let
Pj=u=j— (u’zu+1/\u65u0/\u{ =w+1Auw=u A---Au) Eun).
The remaining details are left to the reader. a

Proof of Lemma 2.4: Let (aq, ..., a,) be a sequence over N. Choose a prime
p > max{ag, ..., a;, T+ 1},
and set
t=1-p°4+ap-p'+2-p*+a; - p>+---+({1+1) p? +a p?H!
+o k(1 + 1) pF +ap - pPth 2)
In other words, the p-adic representation of t is precisely

ar(r+1)---ai(i+1)---a;2apl.

Claim. Let i < r and a € N. Then a = q; if and only if there are by, b1, by € N such that:
(B1) t=bo+bi1((i+1)+a-p+bs-p?),

(B2) a<p,

(B3) bg < by,

(B4) b; = p?™ for some m € N.



Proof of the claim. Assume a = a;. We set
bo:=1-p"+ao-p*+2-p*+ar-p>+--+i-pP 2+ aiq - pP?
by :=p*
byi=(i+2)+ a1 -p+--+a - plH

By (2) it is routine to verify that all (B1)-(B4) hold.

Conversely,

2i—-2 2i—1 )

t=(1p°+ao-p'+2-p*+ar-p’+ - +i-p* 2+ai1p
F(i+1)-p?+a.pitl
+((+2) + a1 -p+ - Fap - p?lrUT) L pP
=bo+ (i+1)-p*™ +a -p?™ 4 by p2mF2,

It is well known that the p-adic representation of any number is unique. Together with by < p?™,
we conclude a = a;. -

Since p is chosen to be a prime, it is easy to verify that (B4) is equivalent to

(B4') b; is a square, and for any d > 1if d | by, thenp | d.

Finally for every t,q,i € N we define B(t,q,1i) to be smallest a € N such that there are
bg, b1, bs € N such that

—t=bo+bi((i+1)+a-q+bs-q?),

- a<gq,

- bo < by,

— by is a square, and for any d > 1 if d | b, then q | d.

If no such a exists, then we let 3(t, g,1) := 0.

By the above argument, (i) holds by choosing q to be a sufficiently large prime. To show (ii)
we define

¢p(xY,z,wW) :z(tp(x,y,z,w) AW (b(x,y,z,w') = (W =wVw< w’l))>
Vv (-wl)(x,y,z,w) Aw = O).
Here U (x,y, z, w) expresses the properties (B1), (B2), (B3), and (B4'):
Y(x,y,z,w) = Huoﬂulﬂuz(x =uwtuw-(z+D+w-y+uz-y-y)
Aw <yAug <
Avu =v-vAWDY =v-v 5 (v=1VRv=y -v’))).

O

1w < w' stands for the formula Iv(—v =0 Aw +v =w').



