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1. Decidability and Enumerability

1.1. Register Machines.
We fix an alphabet

A := {a0, . . . ,ar}.

Every register machine (or simply, machine) has a fixed number of registers, i.e.,

R0, . . . ,Rm

for some fixed m ∈ N, where any register Ri can contain any word in A∗. A program consists of a
finite number of instructions, each starting with a label L ∈ N.

There are 5 types of instructions.

–
L LET Ri = Ri + aj,

where L, i, j ∈ N with 0 6 i 6 m and 0 6 j 6 r. That is, add the letter aj at the end of the
word in Ri.

–
L LET Ri = Ri − aj,

where L, i, j ∈ N with 0 6 i 6 m and 0 6 j 6 r. That is, if the word in Ri ends with ej, then
delete this aj; otherwise leave the word unchanged.

–
L IF Ri = 2 THEN L ′ ELSE L0 OR L1OR · · ·OR Lr,

where L,L ′,L0, . . . ,Lr ∈ N. That is, if Ri contains 2, then go the instruction labelled L ′.
Otherwise, if Ri contains a word ending with the aj, then go to the instruction labelled Lj.

–
L PRINT,

where L ∈ N. That is, output the word in R0.

–
L HALT,

with L ∈ N. That is, the program halts.

Definition 1.1. A register program (or simply program) is a finite sequence α0, . . . ,αk of instruc-
tions with the following properties.

(i) Every αi has label L = i.

(ii) Every jump operation refers to a label 6 k.

(iii) Only the last instruction αk is a halt instruction. a
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Definition 1.2. A program P starts with w ∈ A∗ if in the beginning of the execution of P we have
R0 = w and all other Ri = 2.

If P starts with w and eventually reaches the last halt instruction, then we write

P : w→ halt.

Otherwise,
P : w→∞.

The notation
P : w→ w ′

means that if P starts with w, then it eventually halts, and during the course of computation, has
printed exactly one string w ′. a

Definition 1.3. Let W ⊆ A∗.

(i) A program P decides W if for all w ∈ A∗

P : w→ 2 if w ∈W,

P : w→ w ′ with w ′ 6= 2 if w /∈W.

(ii) W is register-decidable, or R-decidable for short, if there is a register program which decides
W. a

Definition 1.4. Let W ⊆ A∗.

(i) A program P enumerates W if started with 2, P prints out exactly the words in W (in some
order with possible repetitions).

(ii) W is register-enumerable, or R-enumerable for short, if there is program which enumerates
W. a

Proposition 1.5. Let W ⊆ A∗. Then W is R-decidable if and only if both W and A∗ \ W are
R-enumerable.

Definition 1.6. Let F : A∗ → B∗, where A and B are two alphabets.

(i) A program P computes F if for all w ∈ A∗

P : w→ F(w).

(ii) F is register-computable, or R-computable for short, if there is program which computes F. a

1.2. The halting problem for the register machines. Again let A := {a0, . . . ,ar} be a fixed
alphabet. Our goal is to define for every program P over A a word wP ∈ A∗. To that end, we first
introduce an auxiliary alphabet

B := A ∪ {A,B,C, . . . ,Z} ∪ {0, 1, . . . , 9} ∪ {=,+,−,2, |}.

As usual, we understand that the words in B∗ are ordered lexicographically. Then every program
can be naturally encoded as a word in B∗. For instance

0 LET R1 = R1 − a0
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1 PRINT

2 HALT

is identified with the word

0LETR1 = R1 − a0 | 1PRINT | 2HALT .

Note that a0 is single letter from the alphabet A ⊆ B. Assume that this word is the n-th word in
the lexicographical ordering of B∗. Then we set

wP := a0a0 · · ·a0︸ ︷︷ ︸
n times

.

Finally let
Π :=

{
wP

∣∣ P a program over A
}

.

The mapping
P 7→ wP

is often called the Gödel numbering, and wP is the Gödel number of P.

Lemma 1.7. Π is R-decidable. a

Theorem 1.8. Let A be a fixed alphabet.

(i) The set
Π ′halt :=

{
wP

∣∣ P a program over A and P : wP → halt
}

is not R-decidable.

(ii) The set
Πhalt :=

{
wP

∣∣ P a program over A and P : 2→ halt
}

is not R-decidable. a

Proof: (i) Assume that there is a program P0 which decides Π ′halt. That is, for every program P

P0 : wP → 2 if P : wP → halt,

P0 : wP → w ′ with w ′ 6= 2 if P : wP →∞.

Assume furthermore that P0 has the form

0 . . . . . .

1 . . . . . .

...

10 PRINT

...

k HALT

We change P0 in such a way that if P0 prints out 2, then the modified program will never halt.
To that end, we replace the last k-th halt instruction by two instructions that “reverse the halting
behavior”, and replace every print instruction by a “jump” instruction that directly goes to the end:
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0 . . . . . .

1 . . . . . .

...

10 IF R0 = 2 THEN k ELSE k OR k OR · · ·OR k

i.e, goto the k-th instruction no matter what is in R0

...

k IF R0 = 2 THEN k ELSE k+ 1 OR k+ 1 OR · · ·OR k+ 1

k+ 1 HALT

Let P1 be the resulting program. It is then easy to see that for any program P

P1 : wP →∞ if P : wP → halt,

P1 : wP → halt if P : wP →∞.

As a result,
P1 : wP1 →∞ if P1 : wP1 → halt,

P1 : wP1 → halt if P1 : wP1 →∞,

which is certainly a contradiction.

(ii) Towards a contradiction, assume that P0 decides Πhalt. That is, for every program P

P0 : wP → 2 if P : 2→ halt,

P0 : wP → w ′ with w ′ 6= 2 if P : 2→∞.
(1)

Now for every program P we assign in an effective way a program P+ such that

P : wP → halt ⇐⇒ P+ : 2→ halt. (2)

Being effective means that there is a further program T that computes the mapping

wP → wP+ .

The construction of T is tedious but not difficult.

With P0 and T we design a program which decides Π ′halt. On any w ∈ A∗, the program first
test whether w = wP for some P. If not, it rejects immediately1. Otherwise, it uses T to computes
wP+ . Then the program calls P0 on input wP+ . By (2) and (1), it correctly decides whether

P : wP → halt.

This gives us the desired contradiction to (i).

It remains to show the construction of P+ from any given P that fulfills (2). Assume that

wP = a0a0 . . .a0︸ ︷︷ ︸
n times

.

Let P+ begin with

0 LET R0 = R0 + a0

1i.e., prints out somew ′ 6= 2 and halts.
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1 LET R0 = R0 + a0

...

n-1 LET R0 = R0 + a0

and followed by the instructions of P with all labels increased by n. 2

1.3. The undecidability of first-order logic.

Theorem 1.9. The set {
ϕ ∈ LS∞0

∣∣ |= ϕ
}

(3)

is not R-decidable.

Proof: By Theorem 1.8 (ii) for the alphabet A = {|} the problem Πhalt is not R-decidable. Our goal
is to show that the assumed R-decidability of (3) would contradict this result. To that end, for
every program P we will construct in an effective way a ϕP ∈ LS∞0 such that

P : 2→ halt ⇐⇒ |= ϕP.

Here, the effectivity means that there is a program P1 which computes the mapping

P 7→ ϕP.

Once this is done, given an input w ∈ A∗, we can first check whether w = wP, if so, extract the
program P and compute ϕP using P1. Thus if (3) is decidable, we can apply the corresponding
decision program on input ϕP to decide whether P : 2→ halt. Hence, we could decide Πhalt.

Let P consist of instructions α0, . . . ,αk, in particular every αi has its label i. Furthermore,
assume that the maximum index of the registers which P uses is n. Hence, the registers referred
by all αi’s are among R0, . . . ,Rn.

Key to our construction of ϕP is the notion of configurations of P. An (n+ 2)-tuple

(L,m0, . . . ,mn)

is a configuration of P (on input 2) after s steps if

– starting with input 2 the program P runs at least s steps,

– after s steps, the instruction αL is to be executed next,

– and for every 0 6 i 6 n the register Ri contains the word

| | · · · |︸ ︷︷ ︸
mi times

at that moment. To ease presentation, in the following we will simply say that Ri contains
the number mi.

Observe that then the execution of P on the s + 1-th step is completely determined by the config-
uration (L,m0, . . . ,mn).

The initial configuration, i.e., the configuration of P after 0 step is

(0, 0, . . . , 0).

Recall that αk is the last instruction of P, i.e., the only halt instruction. Therefore

P : 2→ halt ⇐⇒ for some s,m0, . . . ,mn ∈ N
the tuple (k,m0, . . . ,mn) is the configuration of P after s steps. (4)
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We choose four symbols from S∞: R := Rn+2
0 , <:= R2

0, f := f10, and c := c0, and set

S := {R,<, f, c}.

Then we associate with P an S-structure AP which “describes” the execution (i.e., the behaviour)
of P on input 2. We set AP := N, <AP :=

{
(i, j)

∣∣ i, j ∈ N and i < j
}

, fAP(i) := i+ 1 for every i ∈ N,
cAP := 0, and

RAP :=
{
(L,m0, . . . ,mn)

∣∣ (L,m0, . . . ,mn) is a reachable configuration of P
}

.

Towards the definition of ϕP in (3), we first construct a sentence ψP which expresses the
execution of P on 2. We abbreviate c, fc, ffc, . . . by 0̄, 1̄, 2̄, . . . , respectively. The desired ψP
should satisfy the following two properties:

(P1) AP |= ψP.

(P2) Let A be an S-structure with A |= ψP and (L,m0, . . . ,mn) be a reachable configuration of P.
Then

A |= RL̄m̄0 · · · m̄n.

We set
ψP := ψ0 ∧ R0̄0̄ · · · 0̄ ∧ψα0 ∧ · · ·∧ψαk−1 ,

where each conjunct is defined as follows. The first

ψ0 := “< is an ordering” ∧ ∀x(c < x∨ x ≡ c)∧ ∀x(x < fx)
∧ ∀x∀y

(
x < y→ (fx < y∨ fx ≡ y)

)
,

i.e., < is an ordering, c is the minimum element, fx is the successor of x.

For α ∈ {α0, . . . ,αk−1} we define ϕα by a case analysis.

– α = L LET Ri = Ri+ |. Then let

ψα := ∀y0 · · · ∀yn
(
RL̄y0 · · ·yn → RL+ 1y0 · · ·yi−1fyiyi+1 · · ·yn

)
.

– α = L LET Ri = Ri− |. Then let

ψα := ∀y0 · · · ∀yn
(
RL̄y0 · · ·yn →((yi ≡ 0̄ ∧ RL+ 1y0 · · ·yn)

∨ (¬yi ≡ 0̄ ∧ ∃u(fu ≡ yi
∧ RL+ 1y0 · · ·yi−1uyi+1 · · ·yn)))

)
.

– α = L IF Ri = 2 THEN L ′ ELSE L0. Then let

ψα := ∀y0 · · · ∀yn
(
RL̄y0 · · ·yn → ((yi ≡ 0̄ ∧ RL ′y0 · · ·yn)

∨ (¬yi ≡ 0̄ ∧ RL0y0 · · ·yn))
)
.

– α = L PRINT. Then let

ψα := ∀y0 · · · ∀yn
(
RL̄y0 · · ·yn → RL+ 1y0 · · ·yn

)
.

The verification of (P1) and (P2) is left as an exercise.

Finally let
ϕP := ψP → ∃y0 · · · ∃ynRk̄y0 · · ·yn.
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Now we verify that P : 2→ halt if and only if |= ϕP. First, assume |= ϕP, in particular

AP |= ϕP.

By (P1) we conclude
AP |= ∃y0 · · · ∃ynRk̄y0 · · ·yn.

Then there are some s,m0, . . . ,mn ∈ AP ⊆ N such that (k,m0, . . . ,mn) is the configuration of P
after s steps. Therefore, P reaches the last halt instruction after s steps, hence P : 2→ halt.

Conversely, assume P : 2 → halt. Let A be an S-structure. We need to show that A |= ϕP.
Clearly, if A 6|= ψP, then we are already done. Thus, assume A |= ψP. Let (k,m0, . . . ,mn) be the
configuration of P when it reaches the last halt instruction αk. Now (P2) implies that

A |= RsPk̄m̄0 · · · m̄n.

Therefore
A |= ϕP.

This finishes the proof. 2
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