Mathematical Logic (XI)
Yijia Chen

1. Decidability and Enumerability

1.1. Register Machines.
We fix an alphabet
A:={ag,...,a.}.

Every register machine (or simply, machine) has a fixed number of registers, i.e.,
Ro,...,Rm

for some fixed m € N, where any register R; can contain any word in A*. A program consists of a
finite number of instructions, each starting with a label L € N.

There are 5 types of instructions.

LLETRi:Ri'F(lj,

where [,1,j € Nwith 0 < i< mand 0 <j <. Thatis, add the letter a; at the end of the
word in R;.

LLETRiZRi—Qj,

where L,1,j € Nwith 0 <i<mand 0 <j <. Thatis, if the word in R; ends with e;, then
delete this aj; otherwise leave the word unchanged.

LIFR; = O THEN L’ ELSEL, ORL,OR ---OR L,,

where L,L',Lp,...,L; € N. That is, if R; contains O, then go the instruction labelled L’.
Otherwise, if Ry contains a word ending with the a;, then go to the instruction labelled L;.

L PRINT,

where L € N. That is, output the word in Ry.

L HALT,
with L € N. That is, the program halts.

Definition 1.1. A register program (or simply program) is a finite sequence «y, ..., oy of instruc-
tions with the following properties.

(i) Every «; has label L =i.
(i) Every jump operation refers to a label < k.

(iii) Only the last instruction o is a halt instruction. B

Definition 1.2. A program P starts with w € A* if in the beginning of the execution of P we have
Ro = w and all other R; = O.

If P starts with w and eventually reaches the last halt instruction, then we write

P:w — halt.
Otherwise,
P:w— .
The notation
P:w—w

means that if P starts with w, then it eventually halts, and during the course of computation, has
printed exactly one string w'. =

Definition 1.3. Let W C A*.
(i) A program P decides W if for all w € A*

P:w—0O ifweWw,
P:w —w withw’ #£ O ifwegw.

(ii) W is register-decidable, or R-decidable for short, if there is a register program which decides
w. =

Definition 1.4. Let W C A*.

(i) A program P enumerates W if started with O, P prints out exactly the words in W (in some
order with possible repetitions).

(i) W is register-enumerable, or R-enumerable for short, if there is program which enumerates
W. -

Proposition 1.5. Let W C A*. Then W is R-decidable if and only if both W and A* \ W are
R-enumerable.

Definition 1.6. Let F: A* — B*, where A and B are two alphabets.

(i) A program PP computes F if for all w € A*

P:w — F(w).
(i) F is register-computable, or R-computable for short, if there is program which computes F.

1.2. The halting problem for the register machines. Again let A := {ao,..., a,} be a fixed
alphabet. Our goal is to define for every program P over A a word wp € A*. To that end, we first
introduce an auxiliary alphabet

B:=AU{A,B,C,...,Z}U{0,1,...,9 U{=,+,—, O,

As usual, we understand that the words in B* are ordered lexicographically. Then every program
can be naturally encoded as a word in B*. For instance

0 LETRllef(lO

1 PRINT
2 HALT

is identified with the word
OLETR1 =R1 —ag | 1PRINT | 2HALT.

Note that qg is single letter from the alphabet A C B. Assume that this word is the n-th word in
the lexicographical ordering of B*. Then we set

Wp (= QpQp---Ap.
—_—
n times

Finally let
IT:= {wp | P a program over A}.

The mapping
P+ wp

is often called the Godel numbering, and wp is the Godel number of P.

Lemma 1.7. TT is R-decidable. B

Theorem 1.8. Let A be a fixed alphabet.

(i) The set
M == {wp | P a program over A and P : wp — halt}

is not R-decidable.

(ii) The set
Thate := {wp | P a program over A and P : O — halt}

is not R-decidable. o
Proof: (i) Assume that there is a program Py which decides TT; .. That is, for every program P

Py:wp — 0O if]P)ZW[p—)halt,

Po:wp — w withw’ #£0 if P:wp — oo.

Assume furthermore that Py has the form

10 PRINT

k HALT

We change Py in such a way that if Py prints out O, then the modified program will never halt.
To that end, we replace the last k-th halt instruction by two instructions that “reverse the halting
behavior”, and replace every print instruction by a “jump” instruction that directly goes to the end:

10 IF Rp = O THEN k ELSE k ORk OR ---OR k

i.e, goto the k-th instruction no matter what is in Ry

k IFRo =0OTHENKELSEk+1ORk+1O0R ---ORk+1
k+ 1 HALT
Let IP; be the resulting program. It is then easy to see that for any program P

Py :wp = 0 if P: wp — halt,

P; :wp — halt if P:wp — oo.

As a result,
P TWp, — 00 if Py Twp, — halt,

P; : wp, — halt if Py : wp, — o0,
which is certainly a contradiction.

(ii) Towards a contradiction, assume that Py decides Ty ;. That is, for every program PP

Py :wp — 0O if P: O — halt,

Po:wp —w withw’/ #0 if P:0 — co.
Now for every program PP we assign in an effective way a program P such that
P:wp — halt <= P":0 — halt.
Being effective means that there is a further program T that computes the mapping
Wp — Wp+.

The construction of T is tedious but not difficult.

D

2

With Py and T we design a program which decides T} . On any w € A*, the program first
test whether w = wp for some P. If not, it rejects immediately!. Otherwise, it uses T to computes

wp+. Then the program calls Py on input wp-+. By (2) and (1), it correctly decides whether

P :wp — halt.

This gives us the desired contradiction to (i).

It remains to show the construction of P™ from any given PP that fulfills (2). Assume that

wp = QpQp...Qp.
—_——

n times
Let P* begin with

0 LETRO:R0+(10

li.e., prints out some w’ # O and halts.

1 LET Ry =Ry + ag

n-1 LET Ry = Ry + ap

and followed by the instructions of P with all labels increased by n. O

1.3. The undecidability of first-order logic.

Theorem 1.9. The set
{oely” | Eo} 3)
is not R-decidable.

Proof: By Theorem 1.8 (ii) for the alphabet A = {|} the problem Ty, is not R-decidable. Our goal
is to show that the assumed R-decidability of (3) would contradict this result. To that end, for
every program [P we will construct in an effective way a @p € Lg ~ such that

P:0 — halt <— E op.
Here, the effectivity means that there is a program P; which computes the mapping
P— @p.

Once this is done, given an input w € A*, we can first check whether w = wyp, if so, extract the
program P and compute @p using P;. Thus if (3) is decidable, we can apply the corresponding
decision program on input @p to decide whether P : O — halt. Hence, we could decide TTj.

Let P consist of instructions «q, ..., &, in particular every o; has its label i. Furthermore,
assume that the maximum index of the registers which P uses is n. Hence, the registers referred
by all «;’s are among Ry, ..., R,.

Key to our construction of ¢p is the notion of configurations of P. An (n + 2)-tuple

(L, mo,...,mp)
is a configuration of P (on input O) after s steps if
— starting with input O the program P runs at least s steps,
— after s steps, the instruction «; is to be executed next,

— and for every 0 < i < n the register R; contains the word

~——

m; times

at that moment. To ease presentation, in the following we will simply say that R; contains
the number m;.

Observe that then the execution of PP on the s + 1-th step is completely determined by the config-
uration (L, mg,...,my).
The initial configuration, i.e., the configuration of P after O step is

(0,0,...,0).
Recall that o is the last instruction of PP, i.e., the only halt instruction. Therefore

P: 0 — halt < for some s, mg,..., My € N
the tuple (k, mg,..., m,) is the configuration of P after s steps. 4

We choose four symbols from $S®: R := R} "2, <:= R2, f := f}, and ¢ := co, and set
S:={R,<,f,ch
Then we associate with P an S-structure 2(p which “describes” the execution (i.e., the behaviour)

of P on input 0. We set Ap := N, <%*:= {(1,j) | ,j e Nand i <j}, f¥* (i) :=i+ 1 forevery i € N,
c¥r .= 0, and

R := {(L,mo,...,mn) | (L, mo,..., my) is a reachable configuration of P}.

Towards the definition of p in (3), we first construct a sentence pp which expresses the
execution of P on O. We abbreviate c, fc, ffc, ...by 0, 1, 2, ..., respectively. The desired {p
should satisfy the following two properties:

(P1) 2Ap = Pp.
(P2) Let 2 be an S-structure with 2 = Yp and (L, myo, ..., my) be a reachable configuration of PP.
Then .
A = RLmg - - - My,
We set

l-')lP’ ::ll)o/\R(_)é"'(_)/\l')oco/\"'/\l-l)ixk—l’

where each conjunct is defined as follows. The first

Yo := “< is an ordering” A Vx(c < x V x = ¢) A Vx(x < fx)
AVxVy(x <y = (fx <y V fx=y)),

i.e., < is an ordering, c is the minimum element, fx is the successor of x.

For « € {«yo, ..., xx_1} we define @, by a case analysis.

— o = L LET R; = Ri+ |. Then let

Yo :=YYo - ¥yn (RLyo -~ Yn = RL+ Tyo - - Yi-1fyYilis1 - Yn).

o = L LET R; = R;— |. Then let
Py = Vyo~-~Vyn(Rl__y0~-~yn —((yi=0ARL+1yo---yn)
V(—yi = 0A Ju(fu=y;
ARL+1yo - Yi1Wlis1 - Yn)))).

o =LIF Ry = 0O THEN L’ ELSE L,. Then let

Vo :=Yyo - Vyn (RLyo - yn = ((yi =0 ARL'yo - - - yn)
V (—y; = 0ARLYo - -+ yn)))-

o = L PRINT. Then let

Vo :=Yyo - Vyn (RLyo -+ yn — RL+1yo - -yYn).

The verification of (P1) and (P2) is left as an exercise.

Finally let B
(PIP’ = ‘LI)]P, — Elyo PN Elyanyo .. .yn.

Now we verify that P : O — halt if and only if = @p. First, assume = @p, in particular

Ap = @p.

By (P1) we conclude .
Ap = Fyo - IYnRkyYo - - - Yn.

Then there are some s, myg,..., M, € Ap C N such that (k, mg,..., m,) is the configuration of PP
after s steps. Therefore, P reaches the last halt instruction after s steps, hence P : O — halt.
Conversely, assume P : O — halt. Let 2 be an S-structure. We need to show that 2 = @p.
Clearly, if 2 £ 1p, then we are already done. Thus, assume 20 = {Pp. Let (k, mg,..., m,) be the
configuration of P when it reaches the last halt instruction o,.. Now (P2) implies that

A = Rspkimyg - - - M.

Therefore
2= op.

This finishes the proof. O

