
Mathematical Logic (I)

Yijia Chen

In mathematics, we prove theorems by proofs. In mathematical logic, we study those proofs as
mathematical objects in their own right. The following are some of the key questions we want to
address in this course.

(Q1) What is a mathematical proof?

(Q2) What makes a proof correct?

(Q3) Is there a boundary of provability?

(Q4) Can computers find proofs?

Quick answers:

1. Proofs are built upon first-order logic.

2. There are formal proof systems in which every true mathematical statement has a proof,
and conversely every provable mathematical statement is true. This is known as Gödel
Completeness Theorem.

3. For any reasonable proof system, there are true mathematical statement about natural num-
bers N that have no proof in that system. This is Gödel’s First Incompleteness Theorem.

4. Any computer program cannot decide whether an arbitrary input mathematical statement
has a proof. This is Turing’s undecidability of the halting problem.

A proof sketch of (4)

Let us fix a programming language, e.g., C++. For any C++ program P and its input x we write
down a mathematical statement:

ϕP,x := “P will eventually halt on input x.”

We assume without proof that

ϕP,x has a proof ⇐⇒ P will eventually halt on input x. (1)

Now assume that there is a C++ program T such that for any given mathematical statement
ϕ

(T1) T(ϕ) outputs “yes”, if ϕ has a proof;

(T2) T(ϕ) outputs “no”, if ϕ has no proof.

Now consider the following program (in pseudo-code):

1

H(x) // x (the code of) a C++ program

1. construct the mathematical statement ϕx,x

2. call the program T on input ϕx,x

3. if T(ϕx,x) = yes then run forever

4. else halt.

We analyse the behaviour of the program H on input (the code of) itself. Assume that H(H) halts.

H(H) halts =⇒ ϕH,H has a proof,
(
by (1)

)
=⇒ T(ϕH,H) outputs “yes”,

(
by (T1)

)
=⇒ H does not halt on input H

(
by line 3)

)
.

Otherwise:

H(H) does not halt =⇒ ϕH,H has no proof,
(
by (1)

)
=⇒ T(ϕH,H) outputs “no,”

(
by (T2)

)
=⇒ H halts on input H

(
by line 4)

)
. 2

1 The Syntax of First-order Logic

Example 1.1 (Group Theory).

(G1) For all x,y, z we have (x ◦ y) ◦ z = x ◦ (y ◦ z).

(G2) For all x we have x ◦ e = x.

(G3) For every x there is a y such that x ◦ y = e.

A group is a triple G = (G, ◦G, eG), i.e., a structure G, which satisfies (G1)–(G3). a

Example 1.2 (Equivalence Relations).

(E1) For all x we have (x, x) ∈ R.

(E2) For all x and y if (x,y) ∈ R then (y, x) ∈ R.

(E3) For all x,y, z if (x,y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

An equivalence relation is specified by a structure A = (A,RA) in which RA satisfies (E1)–(E3). a

1.1 Alphabets

Definition 1.3. An alphabet is a nonempty set of symbols. a

Examples 1.4.

A1 :=
{

0, 1, . . . , 9
}

, i.e., the alphabet for numbers,

A2 :=
{
a,b, . . . , z

}
, i.e., the Latin alphabet,

A3 :=
{
+,×

}
,

A4 :=
{
c0, c1, . . .

}
. a

2

Definition 1.5. Let A be an alphabet. Then a word w over A is a finite sequence of symbols in A,
i.e.,

w = w1w2 · · ·wn

where n ∈ N and wi ∈ A for every i ∈ [n] = {1, . . . ,n}. In case n = 0, then w is the empty word,
denoted by ε. The length |w| of w is n. In particular, |ε| = 0.
A∗ denotes the set of all words over A, or equivalently

A∗ =
⋃
n∈N

An =
⋃
n∈N

{
w1 . . .wn

∣∣ w1, . . . ,wn ∈ A
}

.
a

Countable sets

Later on, we will need to count the number of words over a given alphabet.

Definition 1.6. A set M is countable if there exists an injective function α from N onto M, i.e.,
α : N→M is a bijection. Thereby, we can write

M =
{
α(n)

∣∣ n ∈ N
}
=

{
α(0),α(1), . . . ,α(n), . . .

}
.

A set M is at most countable if M is either finite or countable. a

Lemma 1.7. Let M be a non-empty set. Then the following are equivalent.

(a) M is at most countable.

(b) There is a surjective function f : N→M.

(c) There is an injective function f :M→ N. a

Lemma 1.8. Let A be an alphabet which is at most countable. Then A∗ is countable. a

1.2 The alphabet of a first-order language

Definition 1.9. The alphabet of a first-order language consists of the following symbols.

(a) v0, v1, . . . (variables).

(b) ¬,∧,∨,→,↔, (negation, conjunction, disjunction, implication, if and only if).

(c) ∀,∃, (for all, exists).

(d) ≡, (equality).

(e) (,), (parentheses).

(f) (1) For every n > 1 a set of n-ary relation symbols.

(2) For every n > 1 a set of n-ary function symbols.

(3) A set of constants.

Note any set in (f) can be empty. a

We use A to denote the set of symbols in (a)–(e), i.e., the set of logic symbols, while S is the
set of remaining symbols in (f). Then a first-order language has

AS := A ∪ S

as its alphabet and S as its symbol set.
Thus every first-order language has the same set A of logic symbols but might have different

symbol set S.

3

Examples 1.10. 1. For group theory we take SGr := {◦, e} where ◦ is a binary function symbol
and e is a constant.

2. For equivalence relations let SEq := {R} where R is a binary relation symbol. a

In discussions, we often use P,Q,R, . . . to refer to relations symbols, f,g,h, . . . to function
symbols, c0, c1, . . . to constants, and x,y, z, . . . to variables.

1.3 Terms and formulas

Throughout this section, we fix a symbol set S.

Definition 1.11. The set TS of S-terms contains precisely those words in A∗S which can be ob-
tained by applying the following rules finitely many times.

(T1) Every variable is an S-term.

(T2) Every constant in S is an S-term.

(T3) If t1, . . . , tn are S-terms and f is a n-ary function symbol in S, then ft1 . . . tn is an S-term. a

Definition 1.12. The set LS of S-formulas contains precisely those words in A∗S which can be
obtained by applying the following rules finitely many times.

(A1) Let t1 and t2 be two S-terms. Then t1 ≡ t2 is an S-formula.

(A2) Let t1, . . . , tn be S-terms and R an n-ary relation symbol in S. Then Rt1 · · · tn is also an
S-formula.

(A3) If ϕ is an S-formula, then so is ¬ϕ.

(A4) If ϕ and ψ are S-formulas, then so is (ϕ ∗ψ) where ∗ ∈ {∧,∨,→,↔}.

(A5) Let ϕ be an S-formula and x a variable. Then ∀xϕ and ∃xϕ are S-formulas, too.

The formulas in (A1) and (A2) are atomic, as they don’t contain any other S-formulas as
subformulas.

• ¬ϕ is the negation of ϕ.

• (ϕ∧ψ) is the conjunction of ϕ and ψ.

• (ϕ∨ψ) is the disjunction of ϕ and ψ.

• (ϕ→ ψ) is the implication from ϕ to ψ.

• (ϕ↔ ψ) is the equivalence between ϕ and ψ. a

Lemma 1.13. Let S be at most countable. Then both TS and LS are countable.

Definition 1.14. Let t be an S-term. Then var(t) is the set of variables in t. Or inductively,

var(x) := {x},

var(c) := ∅,

var(ft1 . . . tn) :=
⋃

i∈[n]

var(ti). a

4

Definition 1.15. Let ϕ be an S-formula and x a variable. We say that an occurrence of x in ϕ is
free if it is not in the scope of any ∀x or ∃x. Otherwise, the occurrence is bound.

free(ϕ) is the set of variables which have free occurrences in ϕ. Or inductively,

free(t1 ≡ t2) := var(t1) ∪ var(t2),

free(Rt1 · · · tn) :=
⋃

i∈[n]

var(ti),

free(¬ϕ) := free(ϕ),

free(ϕ ∗ψ) := free(ϕ) ∪ free(ψ) with ∗ ∈ {∧,∨,→,↔},

free(∀xϕ) := free(ϕ) \ {x},

free(∃xϕ) := free(ϕ) \ {x}. a

Example 1.16. The formula below shows that a variable might have both free and bound occur-
rences in the same formula.

free((Rxy→ ∀y¬y ≡ z)) = free(Rxy) ∪ free(∀y¬y ≡ z)
= {x,y} ∪

(
free(y ≡ z) \ {y}

)
= {x,y, z}. a

Definition 1.17. An S-formula is an S-sentence if free(ϕ) = ∅. a

Recall that the actual variables we can use are v0, v1,

Definition 1.18. Let n ∈ N. Then

LSn :=
{
ϕ
∣∣ ϕ an S-formula with free(ϕ) ⊆ {v0, . . . , vn−1}

}
.

In particular, LS0 is the set of S-sentences. a

5

