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1. Completeness

Recall that we have shown:

Lemma 1.1. Let ® C LS and J? be the term interpretation of ®. Then for every atomic ¢

IPEe — Ok . N

Theorem 1.2 (Henkin’s Theorem). Let ® C LS be consistent, negation complete, and contain wit-
nesses. Then for every S-formula ¢

e = OFo. -

Corollary 1.3. Let S be countable and ® C L® consistent with finite free(®). Then there is a © such
that

- dCOCLS;
— O is consistent, negation complete, and contains witnesses.

Therefore by Theorem 1.2 for every ¢ € LS
PEe < Oto.

In particular
°E o,

thus @ is satisfiable. =

In the next step we eliminate the condition free(®) being finite.

Corollary 1.4. Let S be countable and ® C L° consistent. Then ® is satisfiable.

1.1. The general case.

Lemma 1.5. Let ® C LS be consistent. Then there is a symbol set S’ with S C S’ and a consistent W
with ® C¥ C 1S’ such that ¥ contains witnesses. =

Lemma 1.6. Let W C LS be consistent. Then there is a consistent © with ¥ C © C LS such that © is
negation complete. =
Then the next corollary follows from Lemmas 1.5 and 1.6 in the same fashion as that of Corol-

lary 1.3.
Corollary 1.7. Let ® C LS be consistent. Then @ is satisfiable. -



We need some technical tools for proving Lemma 1.5. Let S be an arbitrary symbol set. For
every @ € L we introduce a new constant ¢, ¢ S. In particular, ¢, # cy, for any @ # . Then
we set

$*:=SU{caxe | Ixp € L4,
W(S) = {Elqu — (p(:a% ’ Ixg € LS}.

It is obvious that c3y is introduced as a witness for Ix¢@ as required by W(S). Nevertheless,
we pay a price for expanding the symbol set S to S*, i.e., there are formulas of the form Ix¢ in
LS"\ LS, eg.,

Fvzcaxrx = V7.

Lemma 1.8. Assume that ® C LS is consistent. Then
OUW(S) C LY
is consistent as well.

Proof: It suffices to show that every finite subset @ of ® UW(S) C LS" is satisfiable. Let

Oy = Do U {Hxnpl S o1, T n — (Pncn}:
X1 Xn
where @ C O is finite, every Ix;¢@; € LS, and ¢; = Cax,p; forie nl.

Choose a finite Sg C S such that ®y C L5°. Note that @ is consistent due to the consistency
of ®. Furthermore free(®,) is finite!. Therefore @ is satisfiable by Corollary 1.3, i.e., there is an
So-interpretation Jo = (2o, ) such that

Jo = @o

Note that 2l is an So-structure. By choosing some arbitrary interpretation of the symbols in S\ Sg
we obtain an S-structure 2. Then the Coincidence Lemma guarantees that for the S-interpretation
J:=(2,B)

JE 0.

Next, we need to further expand 2 to an S*-structure 2(* by giving interpretation of all new
constants c3x,. Let a € A be an arbitrary but fixed element. Then for every i € [n] we set

a; ifthereisana; € AwithJ E @&

Xi ?
cf‘ = (choose an arbitrary one, if there are more than one such a;),
a otherwise.
For all the other new constants cs,, we simply let c3 = a. Then for the S*-interpretation

J* = (A*, B) we claim

T E U {3X1(P1 = P1 =, T P — @nn} .
X1 Xn
J* E @ is immediate by J = ®( and the Coincidence Lemma. Let i € [n] and assume J* E 3x; @1,
or equivalently J = 3x; @i. Then by our choice of a; € A

@
j |: (Piil;
Xi

hence .
7 E iy — @ij; €8]

i

1Here, we can also apply Corollary 1.4 without using the finiteness of free(®¢). But then this would introduce a further
layer of construction as in the proof of Corollary 1.4.



by the Coincidence Lemma and by the Substitution Lemma. Note (1) trivially holds if 7* £ 3x; @;.
This finishes the proof. O

Lemma 1.9. Let
S0C€5C---CS,C---

be a sequence of symbol sets. Furthermore, for every n € N let ®@,, be a set of S,,-formulas such that
(I)qu)lggq)ng
We set
S:= USTL and @ := U D,

neN neN

Then @ is a consistent set of S-formulas if and only if every ®,, is consistent.
Proof: We prove that
®@ is inconsistent <= @, is inconsistent for some n € N.

The direction from right to left is trivial. So assume that @ is inconsistent. In particular, for some
@ € LS there are proofs of ¢ and —¢ from ®. Since proofs in sequent calculus are all finite, we
can choose a finite S’ C S such that every formula used in the proofs of ¢ and —¢ is an S’-formula.
For the same reason, for a sufficiently large n € N we have

@ S" C Sy,

(i) &, F @ and ©, F —@.
Thus ®@,, is inconsistent. ]
Remark 1.10. Note at this point we have not shown the following seemingly trivial result. Let S
be an (infinite) set of symbols, a finite ® C L5, and ¢ € LS such that ® - ¢. Furthermore, let

So C S be the set of symbols that occur in @ and ¢. Then there is a proof of sequence calculus for
® + @ such that every formula occurs in the proof is an Sp-formula, i.e., only uses symbols in So.

This is the reason in the proof of Lemma 1.9 we need to emphasize (i). =
Proof of Lemma 1.5: Let
So:=S and Sni1:=(Sn)%,
Yo:=® and Y, ;q:=Y¥,, UW(S,).
Therefore

S=5,C---
dP=Y,C---

Spi1 C--
Yo S

N 1N

Sn
Yn

N 1N

Then we set
$':=Jsn and ¥:= ] Vn.
neN neN

By Lemma 1.8 and induction on n we conclude that every ¥,, is consistent. Thus Lemma 1.9
implies that WV is a consistent set of S’-formulas.

By our construction of W(S,,), the set V¥ trivially contains witnesses. a
The proof of Lemma 1.6 relies on well-known Zorn’s Lemma. Let M be a set and U C

Pow(M) = {T | T € M}. We say that a nonempty subset C C U is a chain in U if for every
T, T, e C either Ty C T, or T, C Ty.



Lemma 1.11 (Zorn’s Lemma). Assume that for every chain C in U we have
UC::{alaeTforsomeTe Clel.
Then U has a maximal element T, i.e., thereisno T' € Uwith T C T'. =

Proof of Lemma 1.6 In order to apply Zorn’s Lemma we let M := L and
U={0|vycoec L3 and © is consistent }.
Let C be a chain in U. We set
Oc ::UC: {¢| ¢ €O forsome® € C}.

C # () implies ¥ C ©Oc. To see that O¢ is consistent, let {@1,..., @} be a finite subset of B¢, in
particular, there are ®; € C such that ¢; € ©®;. As C is a chain, without loss of generality, we
can assume that every ©; C ©,,. Since ®,, € C is consistent by the definition of U, we conclude
{@1,..., @n}is consistent as well.

Thus the condition in Zorn’s Lemma is satisfied. It follows that U has a maximal element ©.
We claim that © is negation complete. Otherwise, for some ¢ € LS we have © I/ ¢ and © I/ —.
Therefore ¢ ¢ © and © U {¢} is consistent. As a consequence @ C O U{ep} € U. This is a
contradiction to the maximality of ©. O

Now we are ready to prove the completeness theorem.

Theorem 1.12. Let ® C LS and ¢ € LS. Then

Do <<= OEo.
Proof: The direction from left to right is easy by the soundness of sequent calculus. Conversely,
assume that @ t/ ¢, then ®U—{—¢} is consistent. Corollary 1.7 implies that ®U—{—¢} is satisfiable.

In particular, there is an S-interpretation J with 3 = ® and J = —¢ (i.e., J }~ ¢). But this means
that @ t o. a

2. The Lowenheim-Skolem Theorem and the Compactness Theorem

Using the term-interpretation, it is routine to verify:

Theorem 2.1 (Léwenheim-Skolem). Let ® C LS be at most countable and satisfiable. Then there is
an S-interpretation J = (2, ) such that

— the universe A of  is at most countable,
—and J E ©. -

The following is a more general version.

Theorem 2.2 (Downward Léwenheim-Skolem). Let ® C LS be satisfiable. Then there is an S-
interpretation 3 = (2, ) such that

- Al < [T? = L5,

—andJ = ©. -
Corollary 2.3. Let S .= {+, x, <, 0, 1} with the usual meaning and

Op:={peclf| (R +,<01) ¢}

Then there is a countable S-structure A with 2 = Og. =

By the Completeness Theorem:
Theorem 2.4 (Compactness). (a) ® = o if and only if there is a finite ®g C ® with ®g = .

(b) @ is satisfiable if and only if every finite ®y C @ is satisfiable. -



