
Storage Manager
Spring, 2024



Course overview

Relational databases
• Relational data model ✓
• Relational algebra ✓
• Structured query language ✓
• Relational database design theory ✓

DBMS internals
• Database storage
• Indexing
• Query processing and optimization
• Concurrency control
• Crash recovery

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: Classical DBMS architecture

Other topics (TBD): (i) graph database, (ii) parallel query processing

2



DBMS: Parsing & optimization

SELECT name, title
FROM instructor natural join teaches

natural join course
WHERE dept_name ='Music';

• Parse, check and verify the SQL query.
• Translate a SQL query into a logical plan.
• Optimization: generate an optimal physical plan.

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

3



DBMS: Parsing & optimization (cont’d)

SQL Query Logical Plan Physical plan

• Each node of a logical plan is a relational operator.

• Each node of a physical plan represents an operator algorithm.

4



DBMS: operator execution

Execute a dataflow by operating on tuples and files.
Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

5



DBMS: Access method

Support DBMS’s execution engine to read/write data
from pages more efficiently.

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

6



DBMS: Buffer pool manager

Provide the illusion of DBMS operating directly in RAM.

Frame 1 Frame 2

Frame 3 Frame 4

Buffer pool 

Page 3Page 2Page 2

Read page Write page 

Disk manager

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

7



DBMS: Disk manager

Manage the database in files on disk.

Page 1 Page 2 Page 3 Page 4

Database file

Page 1

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

8



Volatile storage and non-volatile storage

Volatile storage: loses contents when power is switched off
- Example: DRAM, CPU caches
- Random access, byte-addressable

Non-volatile storage: contents persist even when power is switched off
- Example: SSD, HDD, network storage, tap archives
- Sequential access, block-addressable

9



Storage hierarchy

Figure: Storage Hierarchy

Ref. Computer systems: a programmer’s perspective
10



Access time

Access time Hardware Scaled time
0.5 ns L1 Cache 0.5 sec
7 ns L2 Cache 7 sec
100 ns DRAM 100 sec
350 ns NVM 6 min
150 us SSD 1.7 days
10 ms HDD 16.5 weeks
1s Network Storage 11.4 months

Table: Latency comparison numbers

Ref. Latency Numbers Every Programmer Should Know
11

https://gist.github.com/jboner/2841832


Disk-oriented DBMS

• It’s all bout reducing I/O’s.

• Cache blocks from non-volatile storage into memory.

• Sequential I/O are generally cheaper than random I/O.

12



Agenda

• Q1: How does DBMS represent the database in disk files?

• Q2: How does DBMS manage its memory and transfer data to and from the disk?

13



Storage structures



Data storage structures: overview

CS45565 Katz 75000

Physics 8700033456 Gold

CS 6500010101 Srinivasan

Physics 9500022222 Einstein

SalaryDept_nameNameID

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Database File

Physics 9500022222 Einstein

Tuple

Varchar Varchar FloatInt

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Table

Tuple #1Tuple #2

Tuple #3Tuple #4

Slotted database page

• Tables are stored in database files.
• Each database file consists of a collection of pages.
• Each page holds a collection of tuples.

15



Database files

A database file is a collection of pages, each holding a collection of tuples.

• Heap files: Tuples are placed arbitrarily across pages.
• Sorted files: Pages and tuples are are stored in a specific order.
• Index files: B+ trees, hashing tables and others.

16



Database heap file

• A heap file is an unordered collection of pages where tuples are stored in random order.
◦ Operations: Create/Get/Write/Delete pages.
◦ Should support iterating over all pages.

• Require meta-data to track existing pages and identify those with free space.

• Two ways to organize a heap file: linked list and page directory.

17



Heap file via linked list

• Maintain a header page at the start of the file that
stores two pointers:

◦ HEAD of the data page list
◦ HEAD of the free page list

• Each page tracks the number of free slots in itself.

Question. What happens if we insert a record?
Figure: Heap file via linked list

Ref. https://15445.courses.cs.cmu.edu/fall2019
18



Heap file via page directory

• Utilize special pages called directory pages
to track the location of data pages in the
database files.

• The directory also records the number of
free slots per data page.

• DBMS has to ensure that the directory
pages are in sync with the data pages.

Figure: Heap file via page directory

Ref. https://15445.courses.cs.cmu.edu/fall2019
19



Database page

A database page is a fixed-size block of data.
Each page is given a unique page id as its identifier.

A page header that contains
• Number of slots/tuples
• Free space
• Data checksum
• Transaction visibility

Page

Header

Figure: A database page

.
DBMS uses an indirection layer to map page ids to physical locations.

20



Database page structure

Question. How are tuples organized within a database page?

1. Tuple length: fixed vs. variable.

2. Locating records by tuple_id:
– tuple_id = (page_id, location_in_page)

3. Insertion and deletion tuples.

21



Slotted pages

• The most common page layout scheme is
called slotted pages.

• The slot array maps slots to the tuples’
starting position offsets.

• The header keeps track of
◦ The number of used slots
◦ The offset of the starting location of the

last slot used.

Tuple #1Tuple #2

Tuple #3Tuple #4

Figure: Slotted page

Ref. https://15445.courses.cs.cmu.edu/fall2019
22



Tuple layout: fixed length

CREATE TABLE foo (
uid int NOT NULL,
name char(20),
gpa float);

3.75Jerry (padding ‘\0’)15733

0 4 24 32

• All field lengths and offsets are constant.
– These are computed from schema and stored in the system catalog.

• The system catalog is just another table that stores the metadata for other tables.

• Handling NULL values:
– Incorporate a bitmap at the beginning of the tuple for efficient tracking.

23



Tuple layout: variable length

CREATE TABLE instructor (
ID int NOT NULL,
name varchar(20),
dept_name varchar(20),
salary float);

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Figure: A tuple with variable length Fields

• Move all variable length fields to end to facilitate fast access.
• Utilize an offset array within the tuple header for efficient navigation.

24



Recap

CS45565 Katz 75000

Physics 8700033456 Gold

CS 6500010101 Srinivasan

Physics 9500022222 Einstein

SalaryDept_nameNameID

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Database File

Physics 9500022222 Einstein

Tuple

Varchar Varchar FloatInt

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Table

Tuple #1Tuple #2

Tuple #3Tuple #4

Slotted database page

Figure: Data storage structures

25



Buffer pool management



Buffer pool

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

Frame 1 Frame 2

Frame 3 Frame 4

Database file

Buffer pool 

Read page Write page 

Page 3

Request Page 2

Page 1

Figure: Buffer pool

Design goal: provide the illusion that the DBMS operates directly in memory.

• A buffer pool is a memory region organized as an array of fixed-sized pages.
• Each array entry is called a frame.
• When the DBMS request a page, an exact copy is retrieved and placed into a frame.

27



Buffer pool

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

Frame 1 Frame 2

Frame 3 Frame 4

Database file

Buffer pool 

Read page Write page 

Page 3Page 2

Load Page 2 to Buffer pool

Page 2

Page 1

Figure: Buffer pool

Design goal: provide the illusion that the DBMS operates directly in memory.

• A buffer pool is a memory region organized as an array of fixed-sized pages.
• Each array entry is called a frame.
• When the DBMS request a page, an exact copy is retrieved and placed into a frame.

27



Buffer pool meta-data

Frame 1 Frame 2

Frame 3 Frame 4

Buffer pool 

Page 3Page 2

Page 6 Page 5
N4 5 0

Y 03 6

Y 12 3

N 21 2

Pin CountDirty BitPage IDFrame ID

Figure: Buffer pool page table

• The page table tracks pages currently in memory.
• It also maintains additional meta-data per page.

◦ Dirty flag/bit.
◦ Pin/reference counter.

28



Page replacement policies

A page replacement policy determines which page to evict when the buffer pool is full, and a
new page is needed.

• Least recently used (LRU)

• CLOCK

A page replacement policy aims to minimize caches misses.

29



LRU policy

35

28

14

12

Last used

Y4 5 0

N 03 6

Y 12 3

N 21 2

Pin CountDirty BitPage IDFrame ID

Figure: Page 6 will be replaced by LRU

• Track the last unpinned time (end of use) for each frame.
• Replace the least recently used frame.
• Pined frame: not eligible for replacement.
• Good for repeated access to popular pages (temporal locality).

30



CLOCK policy

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is set to 1.
• If set, reset to 0; if not, evict the page.

As in LRU, pinned pages are skipped.

Example: Request Page 5.

Page 1
✔

Page 3

Page 2
✔

Page 4

Figure: Skip pinned page

31



CLOCK policy

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is set to 1.
• If set, reset to 0; if not, evict the page.

As in LRU, pinned pages are skipped.

Example: Request Page 5.

Page 1
✔

Page 3

Page 2
✔

Page 4

Figure: Clear ref bit

31



CLOCK policy

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is set to 1.
• If set, reset to 0; if not, evict the page.

As in LRU, pinned pages are skipped.

Example: Request Page 5.

Page 1
✔

Page 3

Page 2Page 4

Figure: Replace Page 3 by Page 5

31



CLOCK policy

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is set to 1.
• If set, reset to 0; if not, evict the page.

As in LRU, pinned pages are skipped.

Example: Request Page 5.

Page 1
✔

Page 5

Page 2Page 4

Figure: Set pin count and ref bit

31



CLOCK policy

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is set to 1.
• If set, reset to 0; if not, evict the page.

As in LRU, pinned pages are skipped.

Example: Request Page 5.

Page 1
✔

Page 5
✔

Page 2Page 4

Figure: Advance clock

31



CLOCK policy

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is set to 1.
• If set, reset to 0; if not, evict the page.

As in LRU, pinned pages are skipped.

Example: Request Page 5.

Page 1
✔

Page 5
✔

Page 2Page 4

Figure: return

31



Recap

• Buffer manager provides a level of indirection.
– Maps disk page id’s to RAM addresses.
– The illusion of addressing and modifying disk pages in memory.

• Page replacement policy aims to minimize caches misses.
– The access patterns have big impact on I/O cost.

32


	Storage structures
	Buffer pool management

