Relational Database Design Theory (1)

Spring, 2024

D Course overview

Relational databases
e Relational data model v

e Relational algebra v/ Query parsing & optimization

e Structured query language v
e Relational database design theory Operator exeoution

Access method

Concurrency control
Recovery

e Database storage

Buffer pool manager ‘

|
|
|
DBMS internals ‘
|

e Indexing Disk manager

e Query processing and optimization
e Concurrency control Figure: Classical DBMS architecture

e Crash recovery

Other topics (TBD): (i) graph database, (ii) parallel query processing

P A bad design

sid cid cname room grade
123 Al-3613 Database 1-108 A+
223 Al-3613 Database 1-108 B+
123 CS-101 CSIntro. 3-325 A
334 (CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

e Data redundancy: information for the same course is recorded multiple times

e Update/insertion/deletion anomalies

P Anomalies in a bad design

sid cid cname room grade
123 Al-3613 Database 1-108 A+
223 Al-3613 Database 1-108 B+
123 CS-101 CSIntro. 3-325 A
334 (CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

e Insertion anomaly: Cannot add data to db due to the absence of other data.

— What happens if we want to add a new course CS529507

e Deletion anomaly: Lose unintended information as a side effect when deleting tuples.

— What happens if the student with sid 345 quit the course ICE-14047

e Update anomaly: To update info of one tuple, we may have to update others as well.

— What happens if the room of Al-3613 is changed?

P A good design

Decompose R into two smaller tables R; and Ro.

sid cid cname room grade sid cid grade
123 AI-3613 Database 1-108 A+ 123 Al-3613 A+
223 Al-3613 Database 1-108 B+ 223 Al-3613 B+
123 (CS-101 CSIntro. 3-325 A 123 (CS-101 A
334 (CS-101 CS Intro. 3-325 A- 334 (CS-101 A-
345 ICE-1404P Database 2-203 A 345 ICE-1404P A
Table: R(sid, cid, cname, room, grade) Table: Ry(sid, cid, grade)

e The decomposition is lossless since

cid cname room
Al-3613 Database 1-108
R =Ry Ro. CS-101 CS Intro. 3-325

ICE-1404P Database 2-203

That is, all tuples are preserved.

. . Table: Ry(cid, cname, room
e Redundancy and anomalies are eliminated. 2()

P Database design theory

e Decide whether a particular relation schema R is in “good” from.

e In the case that R is not in “good” form, decompose R into a set of relation schemas
{R1,Ro, ..., Ry} such that each Ry is in good form (normal form).

e The resulting decomposition is lossless and helps avoid anomalies.

P Agenda

e Functional dependency theory (this lecture)

e NF's and decomposition algorithms (next lecture)

P Functional Dependency Theory

P Functional dependencies

Let X ={Aq,..., An}land Y={Bq, ..., B} be sets of attributes.

Definition [Functional dependency]
A functional dependency (FD) is of the form
X—=Y
that requires the attributes of X functionally determining the attributes Y.
In particular, a relation R satisfies X — Y if for every two tuples t; and t, of R

Nz tiAd = tAd = AL 1 [B;] = to[By].

e FD’s are unique-value constraints.

e A FD X — Y holds on a relational schema R if every instance of R satisfies X — Y.

o If YCX, then X — Y is trivial.

P Notation convention

e Ai...A, represents {Aq, ...,

Attributes: A, B, C, D, E

Sets of attributes: X, Y, Z

XY represents XUY

10

P FD example

sid cid cname room grade
123 Al-3613 Database 1-108 A+
223 Al-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 (CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

cid — cname

cid — room

cid — {cname, room}
sid, cid — grade

Table: R(sid, cid, cname, room, grade)

11

P Keys and FD's

Definition
Given a relation R, a set X of attributes is a candidate key if

e X functionally determines all other attributes of R, i.e., X is a superkey.

e No proper subset of X functionally determines all other attributes of R.
—That is, X is minimal.

12

P Reasoning about FD's

Definition
e A set F of FD’s logically implies a set G of FD's if every relation instance that
satisfies all the FD's in F also satisfies all the FD's in G.

e F and G are equivalent if (i) F logically implies G and (ii) G logically implies F.

Example
e {A — B} logically implies {AC — BC}.
e {A — B,B — C} logically implies {A — C}.
e {A — B,B — C}is equivalent to {A — B,B — C,A — C}.
e {A;A, — B1B»B3} is equivalent to {A1As> — By, A1As> — B>, A1A> — B3}

13

D Closure of attributes

Definition [Attribute closure]

Let X be a set of attributes and F be a set of FD’s. The closure of X under F, written as
X]f, is the set of all attributes B such that F logically implies X — B.

Example
Let F={A —-B,A—C,CD—ECD—XK,B—E} Then

e {A}f ={A,B,C}, {C,D} ={C,D,E, K}
e {A,D} ={A,B,C,D,E K}.

e We omit the subscript F and write X™ if F is clear from the context.
e To determine whether F logically implies X — Y it suffices to check whether Y C X,

e To see if X is a superkey of R, it suffices to check if X™ contains all the attributes of R.

14

P Computing attribute closure

Input: A set of attributes X and a set of FD's F
Output: X

1. Z+X;

repeat
ifex. X’ =Y inFst. X’ CZandY'\Z#0D
then Z < ZUY’;

until (Z no longer changes);

return Z;

S

Figure: Computing attribute closure

e F={A—+B,A—=CCD—ECD—K,B—E}
e What is {A, D}{?
e Is {A, D} a superkey/candidate key?

15

P Algorithm correctness (1)

Correctness. X{ = X, where X{ the algorithm output.
o XA}f C X{. X CX{ and by I.H. every new element introduced in line 4 is also in X{.

o X C XA,? Let B be an attribute not in X/\}i. It suffices to show that F cannot imply

X — B. That is, there is a table R s.t.(i) R satisfies F, and (ii) R does not satisfy X — B.

Let XA{EF ={A1,As, ..., An}and XA;” ={B1,Bs,..., B.m). We define R as

Ai Ay ... Ay |B1 By ... Bm
1 1 o1 1 1 |
1 1 o1 0 0 ... 0

It should be clear that R does not satisfy X — B. It remains to verify that R satisfies F.

Claim. R satisfies F.

16

P Algorithm correctness (I1)

Input: A set of attributes X and a set of FD's F

Output: X{

1. Z+X;

repeat
ifex. X’ =Y inFst. X’ CZandY'\Z#0D
then Z <~ ZUY’;

until (Z no longer changes);

return Z;

OOk wN

Figure: Computing attribute closure

Claim. R satisfies F.
Proof. We prove it by contraction.

Let X’ — Y’ be an FD in F that R does not satisfy. By construction, we must have
X/’ Q{Al,AQ An} and Y/ﬂ{Bl,BQ Bm}#ﬂ

It follows that all the attributes in Y’ should also be included in X/\]ﬁ (lines 3-4).

This contradicts to that fact that Y N{By, ..., B} # 0. O o

P Closure of FD's

Definition

The closure of F, denoted by F*, is the set of all FD’s logically implied by F.

Question. Given a set of FD's F, how to decide whether X =Y € F+7?

e Approach 1: compute X and check whether Y C X*.

e Approach 2: use Armstrong's axioms.

18

P Armstrong’s axioms

e Reflexivity: If Y C X, then X — Y.
e Augmentation: If X =Y, then XZ — YZ.
e Transitivity: If X =Y and Y — Z, then X — Z.

Theorem (Armstrong '74). The Armstrong's axioms are both sound and complete.

e Soundness: Only correct FD's are derived.

e Completeness: Every FD in F* can be derived by using the axioms.

19

P Motivation for canonical cover

e A set of FD's F defines a set of unique-value constraints.

e We want a minimal set F/ of FD’s to reduce constraint checking cost.

e F’ should be equivalent to F to ensure correctness.

A canonical cover F. of Fis a minimal set of FD's equivalent to F.

20

P Extraneous attributes

An attribute of a FD X — Y in FD is extraneous if we can remove it without changing F*.

e An attribute A € X is extraneous and can be removed from the LHS of X — Y if
F logically implies (F\{X — Y}) U{(X\ {A}) — Y}.

e Example. F={AB—- C,A—D,D — C}

e An attribute B € Y is extraneous and can be removed from the RHS of X — Y if
(FAN{X = Y) U{X = (Y\{B})} logically implies F.

e Example. F={A — CD,D — C}

Lemma 1
1. A € X is extraneous in X = Y iff Y C (X \ {A}{.

2. B € Y is extraneous in X — Y iff B € X{,, where F/ = (F\{X — Y}) U{X — (Y \{B})}.

21

P Canonical cover

Definition
A canonical cover F. for Fis a set of FD's equivalent to F such that

e No FD in F. contains an extraneous attribute.
e Each LHS of a FD in F. is unique.

22

P Computing canonical cover

Input: A set F of FD's
Output: A canonical cover F. of F

1. F. + F;

2. repeat

3. for each pair of FD's X — Y; and X — Y> in F. do
4. replace them with X — Y;Y5;

5. if ex. a FD in F. with an extraneous attribute then
6. remove the extraneous attribute and update F¢;
7. until (F¢ no longer changes)
8. return F;

Figure: Computing canonical cover

23

P Canonical cover examples

Let F={A —-BC,B— C,A— B,AB — C}.

° FB:{A—>BC,B—>C,AB—>C}
e F.={A—+B,B—C,AB— C}
e F2={A—B,B—C}

Let F={A — BC,B — AC,C — AB}.

e F.={A—+B,B—C,C— A}
e F.={A—->C,C—>B,B— AL
e F.={A—-C,B—C,C— AB}

24

P Recap

A function dependency X — Y is a unique-value constraint. It means that

whenever two tuples agree on all attributes in X, they must also agree on all attributesinY.

X?: the closure of X under F is the set of all attributes functionally determined by X.

e A canonical cover F. of Fis a minimal set of FD's equivalent to F.

Two simple algorithms to compute X{ and Fe.

= We will use FD as a tool to design normalization algorithms.

25

	Functional Dependency Theory

