Transaction Processing

Spring, 2024

D Transactions: basic definition

A transaction (“TXN") is a collection of database operations that servers as a single,
indivisible logical unit of work.

Example. A transaction that transfers 100 from account Alice to account Bob.

BEGIN;
UPDATE account name | balance
SET balance = balance - 100 Alice 200
WHERE name = 'Alice'; Bob 200
UPDATE account
SET balance = balance + 100 Table: account(name, balance)

WHERE name = 'Bob';
COMMIT;

D Transactions: basic definition

A transaction (“TXN") is a collection of database operations that servers as a single,
indivisible logical unit of work.

Example. A transaction that transfers 100 from account Alice to account Bob.

BEGIN;
UPDATE account e A TXN starts with the "BEGIN
SET balance = balance - 100 [TRANSACTION]" command.
WHERE name = 'Alice'; e Followed by SQL operations that
UPDATE account access/update the database.
SET balance = balance + 100 e It stops with either "COMMIT" or
WHERE name = 'Bob'; "ABORT/ROLLBACK".

COMMIT;

D Transactions: basic definition

A transaction (“TXN") is a collection of database operations that servers as a single,
indivisible logical unit of work.

Example. A transaction that transfers 100 from account Alice to account Bob.

BEGIN;
UPDATE account e A TXN starts with the "BEGIN
SET balance = balance - 100 [TRANSACTION]" command.
WHERE name = 'Alice'; e Followed by SQL operations that
UPDATE account access/update the database.
SET balance = balance + 100 o It stops with either "COMMIT" or
WHERE name = 'Bob'; "ABORT/ROLLBACK".
COMMIT;

e COMMIT:make all the changes permanent and visible to other TXNs.
o ABORT/ROLLBACK:revert all the effects by the current TXN.

P A simplified transaction model

e Database: A fixed set of named data objects, A, B, C.

e Transaction: A sequence of read and write operations, e.g., R(A), W(B).

BEGIN; T1
UPDATE account R
SET balance = balance - 100 A 00
WHERE name = 'Alice'; :>
UPDATE 3. W(A)
SET balance = balance + 100 4.R(@B)
WHERE name = 'Bob'; 5.B:=B+100
COMMIT; 6. W(B)

P Transaction properties: ACID

Atomicity: Each TXN is all-or-nothing, i.e., no partial TXN is allowed.

Consistency: Each TXN should leave the database in a consistent state.

Isolation: Each TXN is executed as if it were executed in isolation.

Durability: Effects of a committed TXN are resilient against failures.

P Atomicity

Each TXN is all-or-nothing, i.e., no partial TXN is allowed.

T

1. R(A)
2. A:=A-100
3. W(A)
4. R(B)
5.B:=B+100
6. W(B)

Q1: What if after W(A) Ty is aborted?
Q2: What if after R(B), there is a power failure?

P Consistency

Each TXN should leave the database in a consistent state.

I
1. R(A)
2. A:=A-100
3. W(A)
4.R(B)
5. B :=B+100
6. W(B)

e If A+ B =200 before the execution of Ty, then A + B = 200 should still holds after T;.

e Consistency is the programmer's burden.

P Isolation

Each TXN is executed as if it were executed in isolation.

T, T,
1. R(A)
2. A= A-100
3. W(A) _ " 1.RrA
2.R(B)
<
4.R(B) ~ < |3. Print(A+B)
5. B := B+100
6. W(B)

e T, sees an inconsistent database, e.g., the printed value is smaller than 200.
e |solation can be easily achieved by running transactions serially. Why not?

e The concurrency control manager allows interleaving executions of TXNs.

P Isolation (cont’d)

Concurrent execution of transactions is essential for good DBMS performance.
e |Improve throughput and resource utilization.

e Reduce average response time.

DBMS achieves concurrency by interleaving the operations of transactions.

The concurrency control manager of DBMS ensures that

e Operations of different transactions can be interleaved, and
e The interleaving execution of TXNs is equivalent to some serial execution.

P Durability

Effects of a committed TXN are resilient against failures.

T1

1. RA)

2. A:=A-100
3. W(A)
4.R(B)

5. B := B+100
6. W(B)

e |f DBMS crashes after T; committed successfully, e.g., the transfer has taken place, then
all changes should be persistent and recoverable.

e DBMS handles durability (and atomicity) by its recovery manager.

D Overview

Query parsing & optimization

Operator execution

Concurrency control
Recovery

Buffer pool manager

Disk manager

‘ Access method ‘

e Concurrency control: ensure isolation in concurrent database access (this lecture).

e Recovery: ensure atomicity and durability via logging (next lecture).

10

P Concurrency Control

P A motivating example

Assume that both accounts A and B have balance 200.
TXN T;: transfer 100 from account A to account B

T.: R(A),A:=A — 100, W(A),R(B), B := B + 100, W(B)

TXN T,: Credits both A and B with 5% interest.

T,: R(A), A :=A % 1.05, W(A),R(B), B := B % 1.05, W(B)

Question: what are the possible outcomes of running T; and T,7?

12

Schedules

T, T, T T, T, T,
RA) R(A) R(A)
A:=A-100 A:=A*1.05 A:=A-100
WA W(A) WA
R(B) R(B) R(A)
B := B+100 B:=B*1.05 A:=A*1.05
Time W(B) W(B) W(A)
R(A) R(A) R(B)
A:=A"1.05 A:=A-100 B:=B+100
W(A) W(A) W(B)
R(B) R(B) R(B)
B:=B*1.05 B:=B+ 100 B:=B*1.05
W(B) W(B) W(B)
- A serial schedule - Another serial schedule - An interleaving schedule
-A=105,B=315 -A=110,B=310 -A=105,B=315

e A schedule specifies the chronological execution order for instructions of concurrent TXNs.

e A serial schedule executes transactions in order, with on interleaving of operations.

D Good schedules vs. bad schedules

T, T, T T,
R(A) R(A)
A:=A-100 A :=A-100
W(A) W(A)
R(A) R(A)
A:=A*1.05 A:=A*1.05
W(A) W(A)
R(B) R(B)
B:=B+100 B:=B*1.05
w(B) W(B)
R(B) R(B)
B:=B*1.05 B:=B+100
W(B) w(B)
- A good interleaving schedule - A bad interleaving schedule
-A=105,B=315 -A=105,B=310

e If both Ty and T, are submitted together, there is no guarantee that T; will be executed
before T, or vice-verse.

e A good schedule requires that the effect must be equivalent to a serial one.

e A bad schedule has no equivalent serial counterpart.

D Serializable schedules

/ Serializable schedules\

- ~ \

[
| |

\ icerial schedules | :
N e //

~ —~

e A schedule is serializable if it is equivalent to some serial schedule.

e Every serializable schedule preserves consistency if every TXN preservers consistency.
— Serializability makes consistency reasoning easy.

e Serializable schedules allows more concurrency than serial schedules.

15

P Simplified view of schedules

T Te T T
RA) R‘A 2
A:=A-100 ®
W(A) ey A
R(A)) wey
A:=A"1.05
RB) ®) B
B:=B+100 ©
wE) W)
R(B)
B:=B*1.05 A simplified view of schedule
W)

e DBMS's abstract view of TXN: a TXN consists of only only read and write operations.

e TXN may perform arbitrary computations on data in local buffers in between reads and
writes. DMBS cannot not "see” the operations other tan read and write instructions.

e We define simplified views of schedules along the same lines.

16

P Conflicting operations

Two operations from different TXNs in a schedule conflict if

e access the same data item,

e and at least one operation is a write.

T T,
R(A)
W(A)
RA)
W(A)
R(B)
W(B)
R(B)
W(B)

17

P Serializability

e A schedule is “correct/good” if it is equivalent to some serial schedule.
e Given these conflicts, we need a way to check the correctness of schedules.

Definition

Tow schedules S and S’ are conflict equivalent if

e S and S’ are schedules of the same set of TXNs.
e Every pair of conflicting operations is ordered in the same way.

A schedule S is conflict serializable if S is conflict equivalent to some serial schedule.

18

P Serializability (cont’d)

Ty T2

R(A)

A :=A-100

W(A)

R(B)

B :=B+100

W(B)
R(A)
A= A"1.05
W(A)
R(B)
B:=B*1.05
W(B)

- A serial schedule S
-A=105,B=315

Ty Ta

R(A)

A :=A-100

W(A)
R(A)
A:=A*1.05
W(A)

R(B)

B:=B+ 100

W(B)
R(B)
B:=B*1.05
W(B)

- An interleaving schedule S’
-A=105,B=

315

19

P Serializability (cont’d)

T T T T
R(A) R(A)
W(A) W(A)
R(B) R(A)
W(B) W(A)
R(A) R(B)
W(A) W(B)
R(B) R(B)
W(B) W(B)
A serial schedule S An interleaving schedule S’

e S and S’ are conflict equivalent.

e S’ is a conflict serializable schedule.

P Precedence graph

The precedence graph of a schedule S is a direct graph G = (V, E), where

e Each node in V represents a TXN of S.

e Each edge in E represents a conflicts between two TXNs.
— (T:, T3) in E indicates a pair of conflicting operation O; € T; and Oj € Tj such that O;
appears before Oj in S.

T! T2 T! T2

R(A) /T\ R(A) N

wia) N WA)
R(A) R(A)
WA W(A)

R(B) R(@B)

W(B) 7N\ wE) D

(T2) (1,)
RE) N R®) N
W(B) W(B) '
A serializable schedule A non-serializable schedule

Serializability test. A schedule is conflict serializable iff its precedence graph has no cycle.

P Recap

e ACID probabilities of TXNs.
e Serializability: a desired property ensuring isolation.

e Reasoning about serializability via precedence graphs.

We next discuss how to generate schedules with the desired serializability properties.

21

P Concurrency control approaches

Two-Phase Locking (2PL)

e A pessimistic approach: need to acquire
a lock before every shared data access.

e The serializability order of conflicting
operations is determined at runtime.

Timestamp ordering (T/O)

e An optimistic approach: (i) no locking,

(i) each TXN is assigned a unique
timestamp before execution.

e Use the timestamps to determine the
serializability order of TXNs.

22

P Locking

S | X
S|V | X
XX | X

Table: Lock-compatibility matrix (v: compatible, X:uncompatible)

A TXN T is allowed to access a data item A if and only if T holds a lock on A.

e Shared lock (S): (i) If T holds a shared lock on data A, then T can read but not write A.
(i) Multiple TXNs can hold the same shared lock.

e Exclusive lock (X): (i) If T holds an exclusive-mode lock on A, then T can both read and
write A. (i) At most one TXN can hold an exclusive lock on A.

23

P Basic locking is not enough

e T1: R(A);A:=A —50;W(A);R(B); B:=B +50; W(B);
e T2: R(A); R(B); Print(A + B);

A=100; B=100 T T, TXN manager
Lock-X(A) Grant-X(T1, A)
R(A); A:= A-50
W(A) Lock-S(A) Denied(T2,A)
Unlock(A) Release-X(T1,A)
R(A) Grant-S(T2,A)
Lock-S(B) Grant-S(T2,B)
Lock-X(B) R(B) Denied(T1,B)
A+B =150 =" print(A+B)
Unlock(A) Release-S(T2,A)
Unlock(B) Release-S(T2,B)
R(B); B:= B+50 Grant-X(T1,B)
W(B)
Unlock(B) Release-X(T1,B)

This schedule generated via basic locking is not serilizable.

P Two-Phase Locking (2PL)

#(Locks)

Growing Phase Shriking Phase

Time

In a transaction T, all locks requests precede all unlock requests.
e Growing phase: (i) T may obtain locks; (ii) T may not release locks.

e Shrinking phase: (i) T may release locks; (i) T may not obtain new locks.

We will show that 2PL guarantees conflict serializability.

25

D Revised schedule with 2PL

Ty T,
Lock-X(A)
R(A); A:= A-50
W(A) Lock-S(A)
(Unlock(®))
RA)
Lock-S(B)
Lockx@)) REB)
print(A+B)
Unlock(A)
Unlock(B)
R(B); B:= B+50 ™
W(B) T1
Unlock(B) T1

Not 2PL: T1 released the
lock on A before locking B.

>
Lock point

Ty T,
Lock-X(A)
R(A); A:= A-50
W(A) Lock-S(A)
Lock-X(B)
Unlock(A) R(A)
Lock-S(B)
R(B); B:= B+50
W(B)
Unlock (B)
R@) .
- Lock point
print(A+B)
Unlock(A)
Unlock(B)

2PL: (T1, T2) is an equivalent

serial schedule.

26

P Why 2PL works

Lock point

#(Locks)

Growing Phase Shriking Phase

Time

2PL warrants conflict serializability: a 2PL schedule is conflict equivalent to the serial
scheduling obtained by ordering the TXNs according to their lock points.

Lemma 1
For every edge (T;, Tj) in the precedence graph, it holds that t; < tj, where t; and t; are
the lock points of T; and Tj, respectively.

= No cycle in the precedence graph and the schedule is conflict serilizable.

27

P Why 2PL works (cont’d)

Proof. Let Oy and Oj be a pair of conflict operations from T; and Tj that induce the edge
(Ti, Tj) in the precedence graph. We show that T cannot acquire the lock for O; under 2PL
until T; release it. It follows that t; < t;.

Let t{ and t{’ be points that T; obtains and releases the lock for Oy, respectively.
e Tj cannot obtain the lock for Oj before t;. Otherwise T; cannot obtain the lock at t/.
e Tj cannot obtain the lock from time t] to time t{’ since T; holds the lock by 2PL.

e Tj can only obtain the lock after t/’.

By 2PL, t; < t{/ < tj. O

28

P Cascading aborts

If T, aborts here, then T, also needs
to abort since T, read A written by T,

e Cascading abort: A TXN T needs to abort if T read data written by an aborted TXN T’.

e Question. How to avoid cascading abort?

T1 T2
Lock-X(A)
R(A); A:= A-50
W(A) Lock-S(A)
Lock-X(B)
Unlock(A) R(A)
Lock-S(B)
R(B); B:= B+50
W(B)
Unlock (B)
R(B)
print(A+B)
Unlock(A)
Unlock(B)

29

P Strict Two-Phase Locking

T T,
Lock-X(A)
R(A); A= A-50
W(A) Lock-S(A)
Lock-X(B)
R(B); B:=B+50 | Lock-S(B)
If T, aborts here ——> W)
Unlock(A)
Unlock (B)
R(A)
R(B)
print(A+B)
Unlock(A)
Unlock(B)

T, no longer needs to abort

e Strict 2PL: 2PL + "Release exclusive locks only after TXNs committed”.
e TXNs under strict 2PL never read other TXNs' uncommitted data.

e Strict 2PL guarantees serializability and avoids cascading aborts.

”

30

P Concurrency control approaches

Two-Phase Locking (2PL)

e A pessimistic approach: need to acquire
a lock before every shared data access.

e The serializability order of conflicting
operations is determined at runtime.

Timestamp ordering (T/O)

e An optimistic approach: (i) no locking,

(i) each TXN is assigned a unique
timestamp before execution.

e Use the timestamps to determine the
serializability order of TXNs.

31

P Timestamps

Each TXN T receives a unique timestamp TS(T).

Each data item A is associated with two timestamps:
o W—TS(A): the largest TS(T) of any T that wrote A successfully.
o R—TS(A): the largest TS(T) of any T that read A successfully.

The timestamps can be obtained by either the system’s clock or a logical counter.

e W—TS(A) and R—TS(A) are updated whenever a W(A) or a R(A) executes successfully.

32

P A timestamp-ordering (T /O) protocol

Txns with smaller
timestamps

Txns with larger
timestamps

e The timestamp order induces a serial order of scheduled TXNs.
e The protocol ensures that conflicting operations are processed in the timestamp order.

e TS(T) < TS(T’) indicates that in an equivalent serial schedule T must appear before T'.

For each R(A) and W(A) request issued by a TXN T, the scheduler checks operation conflicts.
e Let T proceed if conflicting operations follows the timestamp order.

e Otherwise, abort and restart T with a newer timestamp.

33

P A timestamp-ordering (T /O) protocol

Read rule: T issues R(A) Write rule: T issues W(A)
e If TS(T) < W—TS(A), this violates the e If TS(T) < R—TS(A) or TS(T) < W—TS(A),
timestamp ordering of T w.r.t. a txn that then abort and restart T.

wrote A. Then abort and restart T.

e Otherwise, allow T to write A and update

e Otherwise, execute R(A) of T and update
W-TS(A) to max{W—TS(A), TS(T)}.

R—TS(A) to max{R—TS(A), TS(T)}.

Lemma. The T /O protocol guarantees conflict serializability.

34

P An example schedule with T /O protocol

e Ti: R(A), W(A), R(B), W(B)
e To: R(A), W(A), R(B), W(B)
o TS(Ty) =1, TS(To) =2

T

T

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

w(B)

Table: A possible schedule with T/O

35

	Concurrency Control

