
Transaction Processing
Spring, 2024

Transactions: basic definition

A transaction (“TXN”) is a collection of database operations that servers as a single,
indivisible logical unit of work.

Example. A transaction that transfers 100 from account Alice to account Bob.
BEGIN;

UPDATE account
SET balance = balance - 100
WHERE name = 'Alice';
UPDATE account
SET balance = balance + 100
WHERE name = 'Bob';

COMMIT;

name balance
Alice 200
Bob 200

Table: account(name, balance)

2

Transactions: basic definition

A transaction (“TXN”) is a collection of database operations that servers as a single,
indivisible logical unit of work.

Example. A transaction that transfers 100 from account Alice to account Bob.
BEGIN;

UPDATE account
SET balance = balance - 100
WHERE name = 'Alice';
UPDATE account
SET balance = balance + 100
WHERE name = 'Bob';

COMMIT;

• A TXN starts with the ”BEGIN
[TRANSACTION]” command.

• Followed by SQL operations that
access/update the database.

• It stops with either ”COMMIT” or
”ABORT/ROLLBACK”.

2

Transactions: basic definition

A transaction (“TXN”) is a collection of database operations that servers as a single,
indivisible logical unit of work.

Example. A transaction that transfers 100 from account Alice to account Bob.
BEGIN;

UPDATE account
SET balance = balance - 100
WHERE name = 'Alice';
UPDATE account
SET balance = balance + 100
WHERE name = 'Bob';

COMMIT;

• A TXN starts with the ”BEGIN
[TRANSACTION]” command.

• Followed by SQL operations that
access/update the database.

• It stops with either ”COMMIT” or
”ABORT/ROLLBACK”.

• COMMIT:make all the changes permanent and visible to other TXNs.
• ABORT/ROLLBACK:revert all the effects by the current TXN.

2

A simplified transaction model

• Database: A fixed set of named data objects, A, B, C.
• Transaction: A sequence of read and write operations, e.g., R(A), W(B).

BEGIN;
UPDATE account
SET balance = balance - 100
WHERE name = 'Alice';
UPDATE
SET balance = balance + 100
WHERE name = 'Bob';

COMMIT; 6. W(B)
5. B := B+100
4. R(B)
3. W(A)
2. A := A-100
1. R(A)

T1

3

Transaction properties: ACID

• Atomicity: Each TXN is all-or-nothing, i.e., no partial TXN is allowed.

• Consistency: Each TXN should leave the database in a consistent state.

• Isolation: Each TXN is executed as if it were executed in isolation.

• Durability: Effects of a committed TXN are resilient against failures.

4

Atomicity

Each TXN is all-or-nothing, i.e., no partial TXN is allowed.

6. W(B)
5. B := B+100
4. R(B)
3. W(A)
2. A := A-100
1. R(A)

T1

Q1: What if after W(A) T1 is aborted?
Q2: What if after R(B), there is a power failure?

5

Consistency

Each TXN should leave the database in a consistent state.

6. W(B)
5. B := B+100
4. R(B)
3. W(A)
2. A := A-100
1. R(A)

T1

• If A+ B = 200 before the execution of T1, then A+ B = 200 should still holds after T1.
• Consistency is the programmer’s burden.

6

Isolation

Each TXN is executed as if it were executed in isolation.

3. W(A)
2. A := A-100
1. R(A)

T1

6. W(B)
5. B := B+100
4. R(B)

2. R(B)
1. R(A)

T2

3. Print(A+B)

• T2 sees an inconsistent database, e.g., the printed value is smaller than 200.

• Isolation can be easily achieved by running transactions serially. Why not?

• The concurrency control manager allows interleaving executions of TXNs.

7

Isolation (cont’d)

Concurrent execution of transactions is essential for good DBMS performance.

• Improve throughput and resource utilization.
• Reduce average response time.

DBMS achieves concurrency by interleaving the operations of transactions.

The concurrency control manager of DBMS ensures that

• Operations of different transactions can be interleaved, and
• The interleaving execution of TXNs is equivalent to some serial execution.

8

Durability

Effects of a committed TXN are resilient against failures.

6. W(B)
5. B := B+100
4. R(B)
3. W(A)
2. A := A-100
1. R(A)

T1

• If DBMS crashes after T1 committed successfully, e.g., the transfer has taken place, then
all changes should be persistent and recoverable.

• DBMS handles durability (and atomicity) by its recovery manager.

9

Overview

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y

co
nt

ro
l

Re
co

ve
ry

• Concurrency control: ensure isolation in concurrent database access (this lecture).
• Recovery: ensure atomicity and durability via logging (next lecture).

10

Concurrency Control

A motivating example

• Assume that both accounts A and B have balance 200.
• TXN T1: transfer 100 from account A to account B

T1 : R(A),A := A− 100,W(A),R(B),B := B+ 100,W(B)

• TXN T2: Credits both A and B with 5% interest.

T2 : R(A),A := A ∗ 1.05,W(A),R(B),B := B ∗ 1.05,W(B)

• Question: what are the possible outcomes of running T1 and T2?

12

Schedules

R(B)

W(A)

A := A-100

R(A)

T1

W(B)

B := B+100

T2

W(B)

B := B*1.05

R(B)

W(A)

A := A*1.05

R(A)

R(B)

W(A)

A := A *1.05

R(A)

T2

W(B)

B := B *1.05

T1

W(B)

B := B + 100

R(B)

W(A)

A := A - 100

R(A)
Time

- A serial schedule
- A = 105, B= 315

- Another serial schedule
- A = 110, B= 310

R(A)

T2

W(B)

B := B *1.05

R(B)

W(A)

A := A *1.05

W(A)

A := A-100

R(A)

T1

W(B)

B := B + 100

R(B)

- An interleaving schedule
- A = 105, B= 315

• A schedule specifies the chronological execution order for instructions of concurrent TXNs.

• A serial schedule executes transactions in order, with on interleaving of operations.

13

Good schedules vs. bad schedules

R(A)

T2

W(B)

B := B *1.05

R(B)

W(A)

A := A *1.05

W(A)

A := A-100

R(A)

T1

W(B)

B := B + 100

R(B)

- A good interleaving schedule
- A = 105, B= 315

R(A)

T2

W(B)

B := B *1.05

R(B)

W(A)

A := A *1.05

W(A)

A := A-100

R(A)

T1

W(B)

B := B + 100

R(B)

- A bad interleaving schedule
- A = 105, B= 310

• If both T1 and T2 are submitted together, there is no guarantee that T1 will be executed
before T2 or vice-verse.

• A good schedule requires that the effect must be equivalent to a serial one.
• A bad schedule has no equivalent serial counterpart.

14

Serializable schedules

Serial schedules

Serializable schedules

• A schedule is serializable if it is equivalent to some serial schedule.
• Every serializable schedule preserves consistency if every TXN preservers consistency.

– Serializability makes consistency reasoning easy.
• Serializable schedules allows more concurrency than serial schedules.

15

Simplified view of schedules

R(A)

T2

W(B)

B := B *1.05

R(B)

W(A)

A := A *1.05

W(A)

A := A-100

R(A)

T1

W(B)

B := B + 100

R(B)

T2

W(B)

R(B)

W(B)

R(B)

W(A)

R(A)

W(A)

R(A)

T1

A simplified view of schedule

• DBMS’s abstract view of TXN: a TXN consists of only only read and write operations.

• TXN may perform arbitrary computations on data in local buffers in between reads and
writes. DMBS cannot not ”see” the operations other tan read and write instructions.

• We define simplified views of schedules along the same lines.

16

Conflicting operations

Two operations from different TXNs in a schedule conflict if

• access the same data item,
• and at least one operation is a write.

T2

W(B)
R(B)

W(B)
R(B)

W(A)
R(A)

W(A)
R(A)

T1

17

Serializability

• A schedule is “correct/good” if it is equivalent to some serial schedule.
• Given these conflicts, we need a way to check the correctness of schedules.

Definition
Tow schedules S and S ′ are conflict equivalent if

• S and S ′ are schedules of the same set of TXNs.
• Every pair of conflicting operations is ordered in the same way.

A schedule S is conflict serializable if S is conflict equivalent to some serial schedule.

18

Serializability (cont’d)

R(B)
W(A)
A := A-100
R(A)

T1

W(B)
B := B+100

T2

W(B)
B := B*1.05
R(B)
W(A)
A := A*1.05
R(A)

R(A)

T2

W(B)
B := B *1.05
R(B)

W(A)
A := A *1.05

W(A)
A := A-100
R(A)

T1

W(B)
B := B + 100
R(B)

- A serial schedule S
- A = 105, B= 315

- An interleaving schedule S’
- A = 105, B= 315

19

Serializability (cont’d)

R(B)
W(A)
R(A)

T1

W(B)

T2

W(B)
R(B)
W(A)
R(A)

R(A)

T2

W(B)
R(B)

W(A)

W(A)
R(A)

T1

W(B)
R(B)

A serial schedule S An interleaving schedule S’

• S and S ′ are conflict equivalent.
• S ′ is a conflict serializable schedule.

19

Precedence graph

The precedence graph of a schedule S is a direct graph G = (V,E), where

• Each node in V represents a TXN of S.
• Each edge in E represents a conflicts between two TXNs.

– (Ti, Tj) in E indicates a pair of conflicting operation Oi ∈ Ti and Oj ∈ Tj such that Oi

appears before Oj in S.

R(A)

T2

W(B)

R(B)

W(A)

W(A)

R(A)

T1

W(B)

R(B)

T1

T2

R(A)

T2

W(B)

R(B)

W(A)

W(A)

R(A)

T1

W(B)

R(B)

T1

T2

A serializable schedule A non-serializable schedule

Serializability test. A schedule is conflict serializable iff its precedence graph has no cycle.
20

Recap

• ACID probabilities of TXNs.
• Serializability: a desired property ensuring isolation.
• Reasoning about serializability via precedence graphs.

We next discuss how to generate schedules with the desired serializability properties.

21

Concurrency control approaches

Two-Phase Locking (2PL)
• A pessimistic approach: need to acquire

a lock before every shared data access.

• The serializability order of conflicting
operations is determined at runtime.

Timestamp ordering (T/O)
• An optimistic approach: (i) no locking,

(ii) each TXN is assigned a unique
timestamp before execution.

• Use the timestamps to determine the
serializability order of TXNs.

22

Locking

S X

S 3 7

X 7 7

Table: Lock-compatibility matrix (3: compatible, 7:uncompatible)

A TXN T is allowed to access a data item A if and only if T holds a lock on A.

• Shared lock (S): (i) If T holds a shared lock on data A, then T can read but not write A.
(ii) Multiple TXNs can hold the same shared lock.

• Exclusive lock (X): (i) If T holds an exclusive-mode lock on A, then T can both read and
write A. (ii) At most one TXN can hold an exclusive lock on A.

23

Basic locking is not enough

• T1: R(A);A := A− 50;W(A);R(B);B := B+ 50;W(B);

• T2: R(A);R(B);Print(A+ B);

Unlock(B)

W(B)

R(B); B:= B+50

Unlock(B)

Unlock(A)

print(A+B)

R(B)Lock-X(B)

Lock-S(B)

R(A)

Unlock(A)

Lock-S(A)W(A)

R(A); A:= A-50

Lock-X(A)

T2T1

Release-X(T1,B)

Grant-X(T1,B)

Release-S(T2,B)

Release-S(T2,A)

Denied(T1,B)

Grant-S(T2,B)

Grant-S(T2,A)

Release-X(T1,A)

Denied(T2,A)

Grant-X(T1, A)

TXN managerA=100; B=100

A+B = 150

This schedule generated via basic locking is not serilizable.

24

Two-Phase Locking (2PL)

#(
Lo

ck
s)

Time

Growing Phase Shriking Phase

In a transaction T , all locks requests precede all unlock requests.

• Growing phase: (i) T may obtain locks; (ii) T may not release locks.

• Shrinking phase: (i) T may release locks; (ii) T may not obtain new locks.

We will show that 2PL guarantees conflict serializability.

25

Revised schedule with 2PL

Unlock(B) T1

W(B) T1

R(B); B:= B+50 T1

Unlock(B)

Unlock(A)

print(A+B)

R(B)Lock-X(B)

Lock-S(B)

R(A)

Unlock(A)

Lock-S(A)W(A)

R(A); A:= A-50

Lock-X(A)

T2T1

Unlock(B)

Unlock(A)

print(A+B)

R(B)

Unlock (B)

W(B)

R(B); B:= B+50

Lock-S(B)

R(A)Unlock(A)

Lock-X(B)

Lock-S(A)W(A)

R(A); A:= A-50

Lock-X(A)

T2T1

Not 2PL: T1 released the
lock on A before locking B.

2PL: (T1, T2) is an equivalent
serial schedule.

Lock point

Lock point

26

Why 2PL works

#(
Lo

ck
s)

Time

Growing Phase Shriking Phase

Lock point

2PL warrants conflict serializability: a 2PL schedule is conflict equivalent to the serial
scheduling obtained by ordering the TXNs according to their lock points.

Lemma 1
For every edge (Ti, Tj) in the precedence graph, it holds that ti < tj, where ti and tj are
the lock points of Ti and Tj, respectively.

=⇒ No cycle in the precedence graph and the schedule is conflict serilizable.
27

Why 2PL works (cont’d)

Proof. Let Oi and Oj be a pair of conflict operations from Ti and Tj that induce the edge
(Ti, Tj) in the precedence graph. We show that Tj cannot acquire the lock for Oj under 2PL
until Ti release it. It follows that ti < tj.
Let t ′i and t ′′i be points that Ti obtains and releases the lock for Oi, respectively.

• Tj cannot obtain the lock for Oj before t ′i. Otherwise Ti cannot obtain the lock at t ′i.
• Tj cannot obtain the lock from time t ′i to time t ′′i since Ti holds the lock by 2PL.
• Tj can only obtain the lock after t ′′i .

By 2PL, ti < t ′′i < tj.

28

Cascading aborts

Unlock(B)

Unlock(A)

print(A+B)

R(B)

Unlock (B)

W(B)

R(B); B:= B+50

Lock-S(B)

R(A)Unlock(A)

Lock-X(B)

Lock-S(A)W(A)

R(A); A:= A-50

Lock-X(A)

T2T1

If T1 aborts here, then T2 also needs
to abort since T2 read A written by T1

• Cascading abort: A TXN T needs to abort if T read data written by an aborted TXN T ′.
• Question. How to avoid cascading abort?

29

Strict Two-Phase Locking

If T1 aborts here

Unlock(A)

print(A+B)

R(B)

R(A)

Unlock (B)

Unlock(A)

W(B)

Lock-S(B)R(B); B:= B+50

Lock-X(B)

Lock-S(A)W(A)

R(A); A:= A-50

Lock-X(A)

T2T1

Unlock(B)

T2 no longer needs to abort

• Strict 2PL: 2PL + “Release exclusive locks only after TXNs committed”.

• TXNs under strict 2PL never read other TXNs’ uncommitted data.

• Strict 2PL guarantees serializability and avoids cascading aborts.
30

Concurrency control approaches

Two-Phase Locking (2PL)
• A pessimistic approach: need to acquire

a lock before every shared data access.

• The serializability order of conflicting
operations is determined at runtime.

Timestamp ordering (T/O)
• An optimistic approach: (i) no locking,

(ii) each TXN is assigned a unique
timestamp before execution.

• Use the timestamps to determine the
serializability order of TXNs.

31

Timestamps

• Each TXN T receives a unique timestamp TS(T).

• Each data item A is associated with two timestamps:
◦ W−TS(A): the largest TS(T) of any T that wrote A successfully.
◦ R−TS(A): the largest TS(T) of any T that read A successfully.

• The timestamps can be obtained by either the system’s clock or a logical counter.

• W−TS(A) and R−TS(A) are updated whenever a W(A) or a R(A) executes successfully.

32

A timestamp-ordering (T/O) protocol

Txns with smaller
timestamps

Txns with larger
timestamps

• The timestamp order induces a serial order of scheduled TXNs.

• The protocol ensures that conflicting operations are processed in the timestamp order.

• TS(T) < TS(T ′) indicates that in an equivalent serial schedule T must appear before T ′.

For each R(A) and W(A) request issued by a TXN T , the scheduler checks operation conflicts.

• Let T proceed if conflicting operations follows the timestamp order.

• Otherwise, abort and restart T with a newer timestamp.

33

A timestamp-ordering (T/O) protocol

Read rule: T issues R(A)

• If TS(T) < W−TS(A), this violates the
timestamp ordering of T w.r.t. a txn that
wrote A. Then abort and restart T .

• Otherwise, execute R(A) of T and update
R−TS(A) to max{R−TS(A), TS(T)}.

Write rule: T issues W(A)

• If TS(T) < R−TS(A) or TS(T) < W−TS(A),
then abort and restart T .

• Otherwise, allow T to write A and update
W−TS(A) to max{W−TS(A), TS(T)}.

Lemma. The T/O protocol guarantees conflict serializability.

34

An example schedule with T/O protocol

• T1: R(A), W(A), R(B), W(B)
• T2: R(A), W(A), R(B), W(B)
• TS(T1) = 1, TS(T2) = 2

T1 T2
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

Table: A possible schedule with T/O

35

	Concurrency Control

