Indexing

April 21, 2023

P Announcements

e Assignment (IV) has been released. DDL: May 4, 2023.

e Sample solution to Assignment (lIl) has been posted on Canvas.

P DBMS: Access method

Query parsing & optimization

Operator execution

Purpose: Support DBMS's execution engine to
read/write data from pages more efficiently.

Buffer pool manager

‘ Access method
‘ Disk manager

Figure: DBMS architecture

P Indexing basics

P Example

10101 Srinivasan | Comp. Sci. 65000

12121 | Wu Finance 90000 _7
15151 Mozart Music 40000 —7
22222 Einstein Physics 95000 _7
32343 | El Said History 60000 ﬁ7
33456 | Gold Physics 87000 ﬁ7
45565 Katz Comp. Sci. 75000 —7
58583 | Califieri History 62000 _7
76543 Singh Finance 80000 _7
76766 | Crick Biology 72000 —7
83821 Brandt Comp. Sci. 92000 —7
98345 | Kim Elec. Eng. 80000 77

e Table instructor uses sequential file organization based on search key ID.
— Records are ordered according to the attribute ID.

e Total number of pages of table instructor: 1,000 pages.

e Estimate the number of 1/O’s (#pages to read from disk) for query
SELECT * FROM instructor WHERE ID = '22222';

D Index data structure

Search key: an attribute or a set of attributes used to look up records in a file.

An index file consists of records (called index entries) of the form

| search key [pointer |

e An index files is usually much smaller than the original file.

We will only consider ordered indexes in this lecture.

o Ordered indexes: search keys are organized in sorted order.

o Hash indexes: search keys are distributed uniformly across buckets via a has function.

P Dense indexes

e One index entry for each search key value.

10101 10101 | Srinivasan | Comp. Sci. | 65000 1
12121 12121 |Wu Finance 90000 d
15151 15151 |Mozart Music 40000 4
22222 22222 |Einstein Physics 95000 4
32343 32343 | El Said History 60000 B
33456 33456 | Gold Physics 87000 =
45565 45565 |Katz Comp. Sci. 75000

58583 58583 | Califieri History 62000 =
76543 76543 | Singh Finance 80000 =
76766 76766 | Crick Biology 72000 B
83821 83821 |Brandt Comp. Sci. 92000 =
98345 98345 |Kim Elec. Eng. 80000 1

vavvvvvvvvv

Figure: Dense index on attribute ID of table instructor

P Dense indexes

e One index entry for each search key value.

e One index entry may point to multiple records.

Biology 76766 | Crick Biology 72000 1
Comp. Sci. 10101 | Srinivasan | Comp. Sci. 65000 4
Elec. Eng. 45565 | Katz Comp. Sci. 75000 4
Finance \ 83821 | Brandt | Comp.Sci. | 92000 | |
History \ 98345 | Kim Elec. Eng. | 80000 | |
Music 12121 | Wu Finance 90000
Physics \ 76543 | Singh Finance 80000 4
32343 | El Said History 60000 §
58583 | Califieri History 62000 B
15151 | Mozart Music 40000 B
22222 | Einstein Physics 95000 i
33465 | Gold Physics 87000 | __|

NRRRARRRRAN

Figure: Dense index on attribute dept _name of table instructor

P Spare indexes

e Index entries for only some search key values.

— Typically one index entry for each block.

e Applicable only when records are ordered by the search key. Why?

10101

32343

76766

10101 |Srinivasan | Comp. Sci. | 65000 =
12121 (Wu Finance 90000 i
15151 |Mozart Music 40000 4
22222 |Einstein Physics 95000 4
32343 |El Said History 60000 4
33456 |Gold Physics 87000 =
45565 |Katz Comp. Sci. | 75000

58583 |Califieri History 62000 -
76543 | Singh Finance 80000 j
76766 |Crick Biology 72000 =
83821 |Brandt Comp. Sci. | 92000 -
98345 [Kim Elec. Eng. 80000 a

vavvvvvvvvv

Figure: Sparse index on attribute ID of table instructor

P Clustering indexes

10101 10101 |Srinivasan | Comp. Sci. 65000 =

12121 12121 |Wu Finance 90000 _7
15151 15151 |Mozart Music 40000 —7
22222 22222 | Einstein Physics 95000 —7
32343 32343 | El Said History 60000 _7
33456 33456 |Gold Physics 87000 —7
45565 45565 |Katz Comp. Sci. 75000 _7
58583 58583 | Califieri History 62000 _7
76543 76543 | Singh Finance 80000 _7
76766 76766 |Crick Biology 72000 _7
83821 83821 |Brandt Comp. Sci. 92000 —7
98345 98345 |Kim Elec. Eng. 80000 77

e Recall that index entries are sorted on the search key in an ordered index.
e Clustering index: search key order also defines the sequential order of data records.

e A clustering index is also known as a primary index.

P Non-clustering index

Brandt 10101 |Srinivasan | Comp. Sci. 65000 —7
Califieri| 12121 |Wu Finance 90000 =
Crick % 15151 |Mozart Music 40000 —::;
Einstein| / 22222 |Einstein Physics 95000 —7
El Said W 32343 |El Said History 60000 _7
Gold N 33456 |Gold Physics 87000 —7
Katz \ 45565 |Katz Comp. Sci. 75000 —7
Kim 58583 | Califieri History 62000 —
Mozart 76543 |Singh Finance 80000 _7
Singh | 76766 | Crick Biology 72000 —7
Srinvasan 83821 |Brandt Comp. Sci. 92000 _7
Wu 98345 |Kim Elec. Eng. 80000 77

e Non-clustering index: search key order differs from the sequential order of data records.
e A non-clustering index is also know as a secondary index.

e Secondary index is always dense. Why?

P B-tree

P Br-tree

Leaf

{20]24] }+[36][39] }+{43][54][66} > 78[82] }-+[04]o8] |
v v EEEEE)

Figure: A sample B*-tree with max_ fanout= 4

A BT-tree in a self-balancing search tree with following properties.

e Perfectly balanced: search, insertions, and deletions in logarithmic time.

e Optimized for disk-based DBMS: one node per block; large fan-out.

12

P B-tree node

Rl K |R

| |

KZ P3 K3

-

Each BT-tree node contains at most n — 1 search keys and n pointers.
— 1 is referred to as the max_fanout parameter.

Search keys are arranged in sorted order: Ky <Ko <--- <K < ...

Every active pointer P; points to a node in the next level.

In practice, n can be hundreds, i.e., large fanout.

13

P B-tree node

\43\54\66}——{78\82\
X

|-os[ea]]
vy

P; points the sub-tree of search keys K with K;_; < K < Kj.

Leaf nodes are chained up by the last pointer P, i.e., next-leaf pointer.

Index entries to data pages are stored in leaf nodes only.

Other active pointers P; in leaf nodes point to the data page corresponding to key K;.

14

D Bt-tree invariant

Min #(Active pointers) Min #(Keys)

Root 2 1
Internal node [n/2] [n/2] —1
Leaf node [n/2] [n/2]

Table: Half-full constraint for B*-trees with max fanout 4

e Balance invariant: all leaves are at the same level.

e Occupancy invariant: all nodes (except root) are at least half-full.

Claim. The height of a B*-tree with N search keys is at most [log 21 N].

15

P Br-tree in practice

N =1, 000, 000.

Page size: 4k bytes, index entry size 40 bytes.

n = 100.

[log tn/21N] =4. That is, at most 4 1/O’s for every lookup.

If we cache the root node in buffer pool, then at most 3 1/O’s are needed.

16

P Query (1)

Look up 54

sl |]

36[43] | |o4]

[\

[18]20]24}-»{3639]

F+{43]54]66 > 78 82

F>94] 98]

e SELECT * FROM R WHERE K=54;

17

P Query (1)

Look up 80 ..
w43 | loal |]
Not found
[18]20|24»{36]30| |»43]54]66>{78]82] | 94]08| |

e SELECT * FROM R WHERE K=54;

e SELECT * FROM R WHERE K=80;

17

P Query (1)

sl |]

Look up 80

36[43] | |o4]

Not found

[18]20|24 -»{36[30] |»43]54]66+{78]82]

b 94]08]

e SELECT * FROM R WHERE K=54;
e SELECT * FROM R WHERE K=80;

e This type of query is known as point query.

17

P Query (2)

7l |

1. Look up 37 first

36/43] | loa| []

[18]20]24}-»{36]30] | >{43[54 66| >{78]82] |>94]98]

2. Follow the next leaf pointer until hit the upper bound

e SELECT * FROM R WHERE k >= 37 AND K <= 90;

e This type of query is known as range query.

18

P Insertion (1)

Insert 80 .-

36[43] | [o4] |

[N\

18[20[24}-»(36[30] |+43[54]66[>{78[82] |{0a[08] |

Figure: Insert key 82 (n = 4)

e Locate the leaf node for the key to be inserted.

e Insert the key directly when the target node has enough space.

19

P Insertion (1)

Insert 80 .-

ss[43] | JE

F>43[54 66> 78[80[82] >/ 04]98] |

Figure: Insert key 82 (n = 4)

e Locate the leaf node for the key to be inserted.

e Insert the key directly when the target node has enough space.

19

P Insertion (2)

Insert 13 .-

1. Node is overfull. 36‘43‘ ‘ }94‘ ‘ ‘

3‘18[20[24}—%‘36‘39‘ F>43]54]66 1> 78[82] |>{94]08] |

Figure: Insert key 13 (n = 4)

e Split the target node if the insertion make it overfull.

20

Insertion (2)

Insert 13 .-

2. Split node and copy
the key 20 up.

o 1]

[20]24] |{36[30] |>[43]54]66[>78/82| |- 94]08] |

Figure: Insert key 13 (n = 4)

e Split the target node if the insertion make it overfull.

e Need to copy the middle key up and adjust the pointers accordingly.

20

P Insertion (3)

Insert 73

1. Split node after insertion.

: :
[20]24] }+{36]a9] H43[54[66H[78]82| >loa]os] |

Figure: Insert key 73 (n = 4)

e Node splitting can be propagated up recursively.

21

P Insertion (3)

Insert 73

2. Copy the key 66 up.

3. Node is full again

[20]24] }+[36]a0] |+{43][54] |>[es]73

{78]82]

—>{94]08]

l

Figure: Insert key 73 (n = 4)

e Node splitting can be propagated up recursively.

21

P Insertion (3)

Insert 73

4. Split non-leaf node.

20[36] | [4s]es] | o4 [|

[20]24]

e e8] _J-»faaei] _}-+lealra }-+lrafee] }-Jeilse]]

Figure: Insert key 73 (n = 4)

e Node splitting can be propagated up recursively.

e When splitting a non-leaf node, we push up the middle key instead of copying it up.

21

P Insertion (3)

Insert 73

5. Push the key 43 up.

[20]24]

[»s6]39] }»{43]54] |+{es[73] |—+|78]82] }+{oa]os] |

Figure: Insert key 73 (n = 4)

e Node splitting can be propagated up recursively.
e When splitting a non-leaf node, we push up the middle key instead of copying it up.

e |n the worst case, we have to split the root and create a new root linking to the split nodes.
— In that case, the tree height increases by one.

21

P Insertion recap

1. Find the correct leaf L for the given key to be inserted.

2. Add a new entry into L in sorted order.
o If L has enough space, the operation is done.
o If L becomes overfull, then

(a) Split L into two nodes L and L.
(b) Redistribute entries evenly and copy up the middle key.
(c) Adjust the pointers accordingly, including
(i) next-leaf pointers, and (i) a pointer from parent of L to L’.

3. To split a non-leaf node, redistribute entries evenly and push up the middle key.

4. Process the nodes recursively until all nodes are half-full.

22

P Deletion (1)

4378]_ |

Delete 80
olse] o [
[13[18] |»{20]24] |»36/30] |>43[54] [»[66]73] |»{78]80[82}> 04 08]09]

Figure: Delete key 80 (n = 4)

23

P Deletion (1)

4078

Delete 80
2ofa8] o)
[13]18] |»{20[24] |»36[30] |>43]54| |»[66[73] |[»>{78[82] |»{94]08]09]

Figure: Delete key 80 (n = 4)

23

P Deletion (2)

Delete 82 !

1. The leaf node
becomes under-full
after deleting 82

66 o] |]

[13[18] |»l20[24| |»s6[30] |»43[54] I>es|73] |{78]H] |+ 94|08]09]

Figure: Delete key 82 (n = 4)

e |f the target node becomes underfull after deletion, then try to borrow one from siblings.

24

P Deletion (2)

Delete 82

2. Borrow the key 94
from the right sibling.

o] |]

[13[18] |»20[24] |»36[30] |»43[54] I>es[73] |+{78]o4] |+[e8]oo]]

Figure: Delete key 82 (n = 4)

e |f the target node becomes underfull after deletion, then try to borrow one from siblings.

24

P Deletion (2)

Delete 82

2. Borrow the key 94
from the right sibling.

o] |]

[13[18] |»20[24] |»36[30] |»43[54] I>es[73] |+{78]o4] |+[e8]oo]]

Figure: Delete key 82 (n = 4)

e |f the target node becomes underfull after deletion, then try to borrow one from siblings.

e Remember to fix the key in the affected parent node.
— By replacing the affected key with the middle key of the two updated children.

24

Deletion (2)

Delete 82

3. Replace the key 94

with 98 to fix the parent. . m-.

13[18] [+20]24] [>36[30] [>4a]sa| [>i66[73] >{78[0a] |+{es[o9] |

Figure: Delete key 82 (n = 4)

e |f the target node becomes underfull after deletion, then try to borrow one from siblings.

e Remember to fix the key in the affected parent node.
— By replacing the affected key with the middle key of the two updated children.

24

P Deletion (3)

Delete 20 ..

1. Cannot borrow a
key from siblings.

20[36] | CI

136]39] »43]54] [»e6[73] |

Figure: Delete key 20 (n = 4)

e |f borrow is not possible, then merge the affected node with one sibling.

25

P Deletion (3)

Delete 20 ..

2. Merge with a sibling

20[36] | CI

1[18] 2] | [~[3efs] [»as[sa] +ee[7a] |

Figure: Delete key 20 (n = 4)

e |f borrow is not possible, then merge the affected node with one sibling.

e \When merging leaf nodes, remove the key associated with the merged nodes from parent.

25

P Deletion (3)

Delete 20 ..
3. Remove 36 from

the parent node. 20 ‘x‘ {66 ‘
Sal1s] | (24]36 30} 43lsa] |

Figure: Delete key 20 (n = 4)

e |f borrow is not possible, then merge the affected node with one sibling.

e \When merging leaf nodes, remove the key associated with the merged nodes from parent.

25

P Deletion (3)

Delete 20

4. The parent node is
still half-full. Done.

[24]36[39———{43[54| F»l66/73] |

Figure: Delete key 20 (n = 4)

e |f borrow is not possible, then merge the affected node with one sibling.

e \When merging leaf nodes, remove the key associated with the merged nodes from parent.

25

P Deletion (4)

Delete 54 ..

1. Merge underful leaf
nodes after deletion.

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.

26

P Deletion (4)

Delete 54

2. Delete 66 from parent.

F——{24[36[30——»

[13]18]

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.

26

P Deletion (4)

Delete 54

3. Merge two non-leaf
nodes. Pull 43 down.

[13]18] ——»/24[36[30}——

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.

e When merging two non-leaf nodes, we need to pull a key down from parent.

26

P Deletion (4)

Delete 54

4.The root Is empty now.

Figure: Delete key 54 (n =4)
e Deletion can be propagated up all the way to root.

e When merging two non-leaf nodes, we need to pull a key down from parent.

e When root becomes empty, remove it and make its child as the new root.

26

P Deletion (4)

Delete 54

4. Remove the old root. The
merged node is now root.

{2436 |30 ——{43[66] 73]

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.
e When merging two non-leaf nodes, we need to pull a key down from parent.

e When root becomes empty, remove it and make its child as the new root.

26

P Deletion Recap

1. Find the correct leaf L.

2. Remove the entry from L for the given key.

o If L is still half-full, the operation is done.
o If L becomes under-full, then

(a) First try to redistribute by borrowing one from siblings.
(b) If redistribution fails, then merge L and a sibling.

3. When merging two leaf nodes, remove from the parent the key associated
with the two leaf nodes to be merged.

4. When merging two non-leaf nodes, pull down the associated key instead.

5. Process the nodes recursively until all nodes are half-full.

27

P Performance analysis

Query
Insertion
Deletion

|/O Cost
|Og /2] N
l0g fn /21N
Iog [n/2] N

28

D Bt-tree vs. B-tree

e BT-trees store data entries in leaf nodes only.
— Look up any key require the same number of 1/O’s.

e B-trees also store data entries in non-leaf nodes.
— These recorded can be accessed with fewer 1/O’s.

Problems with B-tree in disk-based DBMS:
1. Storing more data in non-leaf nodes decreases fanout and increases the tree height.

2. Records in leaves requires more |/QO’s to access and the majority records are in leaves.

3. Range query is more complicated in B-trees.

29

	Indexing basics
	B+-tree

