
Storage Manager
April 14, 2023



DBMS architecture

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

2



DBMS: Parsing & optimization

Purpose: Parse, check and verify the SQL
SELECT name, title
FROM instructor natural join teaches

natural join course
WHERE dept_name ='Music';

And translate into an efficient RA query plan.

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

3



DBMS: Operator execution

Purpose:
Execute a dataflow by operation on tuples and files. Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

4



DBMS: Access method

Purpose: Support DBMS’s execution engine to
read/write data from pages more efficiently.

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

5



DBMS: Buffer pool manager

Purpose: Provide the illusion of operation in memory.

Frame 1 Frame 2

Frame 3 Frame 4

Buffer pool 

Page 3Page 2Page 2

Read page Write page 

Disk manager

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

6



DBMS: Disk manager

Purpose: Manage the database in files on disk.

Page 1 Page 2 Page 3 Page 4

Database file

Page 1

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

7



Volatile storage and non-volatile storage

Volatile storage: loses contents when power is switched off
- Example: DRAM, CPU caches
- Random access, byte-addressable

Non-volatile storage: contents persist even when power is switched off
- Example: SSD, HDD, network storage, tap archives
- Sequential access, block-addressable

8



Storage hierarchy

Figure: Storage Hierarchy

Ref. Computer systems: a programmer’s perspective
9



Access time

Access time Hardware Scaled time
0.5 ns L1 Cache 0.5 sec
7 ns L2 Cache 7 sec
100 ns DRAM 100 sec
350 ns NVM 6 min
150 us SSD 1.7 days
10 ms HDD 16.5 weeks
1s Network Storage 11.4 months

Table: Latency comparison numbers

Ref. Latency Numbers Every Programmer Should Know
10

https://gist.github.com/jboner/2841832


Disk-oriented DBMS

• It’s all bout reducing I/O’s.

• Cache blocks from non-volatile storage into memory.

• Sequential I/O generally cheaper than random I/O.

11



Agenda

• Q1: How DBMS represents the database in files on disk?

• Q2: How DBMS manager its memory and move data back-and-forth from disk?

12



Storage structures



Data storage structures: overview

CS45565 Katz 75000

Physics 8700033456 Gold

CS 6500010101 Srinivasan

Physics 9500022222 Einstein

SalaryDept_nameNameID

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Database File

Physics 9500022222 Einstein

Tuple

Varchar Varchar FloatInt

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Table

Tuple #1Tuple #2

Tuple #3Tuple #4

Slotted database page

• Tables are stored as database files.
• Each database file consists of a collection of pages.
• Each page contains a collection of tuples.

14



Database files

A database file is a collection of pages, each containing a collection of tuples.

• Heap files: tuples placed arbitrarily across pages.
• Sorted files: pages and tuples are in stored order
• Index files: B+ trees, hashing tables and others.

15



Database heap file

• A heap file is an unordered collection of pages where tuples are stored in random order.
◦ Create/Get/Write/Delete pages
◦ Must also support iterating over all pages

• Need meta-data to keep track of what pages exist and which ones have free space.

• Two ways to represent a heap file: linked list and page directory.

16



Heap file via linked list

• Maintain a header page at the beginning
of the file that stores two pointers:

◦ HEAD of the data page list
◦ HEAD of the free page list

• Each page keeps track of the number of
free slots in itself.

Figure: Linked list

Ref. https://15445.courses.cs.cmu.edu/fall2019
17



Heap file via page directory

• Maintain special pages called directory
pages that tracks the location of data
pages in the database files.

• The directory also records the number of
free slots per page.

• DBMS has to ensure that the directory
pages are in sync with the data pages.

Figure: Heap file via page directory

Ref. https://15445.courses.cs.cmu.edu/fall2019
18



Database page

A database page is a fixed-sized block of data.
Each page is given a unique identifier.
DBMS uses an indirection layer to map page ids to physical locations.

A page header that contains
• Number of slots/tuples
• Free space
• Checksum
• Transaction visibility

Page

Header

Figure: A database page is a
fixed-sized block of data.

19



Database page issues

1. Record length? Fixed or variable.

2. How to find records by tuple_id?
– tuple_id = (page_id, location_in_page)

3. How to insert/delete tuples?

20



Slotted pages

• The most common page layout scheme is
called slotted pages.

• The slot array maps slots to the tuples’
starting position offsets.

• The header keeps track of
◦ The number of used slots
◦ The offset of the starting location of the

last slot used.

Tuple #1Tuple #2

Tuple #3Tuple #4

Figure: Slotted page

Ref. https://15445.courses.cs.cmu.edu/fall2019
21



Tuple layout: fixed length

CREATE TABLE foo (
uid int NOT NULL,
name char(20),
gpa float);

3.75Jerry (padding ‘\0’)15733

0 4 24 32

• All field length and offsets are constant.
– Computed from schema, sorted in the system catalog.

• System catalog is just another table that stores the metadata for tables.

• What about NULL?
– Add a bitmap at the beginning of the tuple.

22



Tuple layout: variable length

CREATE TABLE instructor (
ID int NOT NULL,
name varchar(20),
dept_name varchar(20),
salary float);

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Figure: A tuple with variable length Fields

• Move all variable length fields to end to enable fast access.
• Use an offset array in the tuple header.

23



Recap

CS45565 Katz 75000

Physics 8700033456 Gold

CS 6500010101 Srinivasan

Physics 9500022222 Einstein

SalaryDept_nameNameID

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Database File

Physics 9500022222 Einstein

Tuple

Varchar Varchar FloatInt

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Table

Tuple #1Tuple #2

Tuple #3Tuple #4

Slotted database page

Figure: Data storage structures

24



Buffer pool manager



Buffer pool

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

Frame 1 Frame 2

Frame 3 Frame 4

Database file

Buffer pool 

Read page Write page 

Page 3

Request Page 2

Page 1

Figure: Buffer pool

Design goal: provide the illusion of operation in memory

• A buffer pool is a memory region organized as an array of fixed-sized pages.
• Each array entry is called a frame.
• When DBMS request a page, an exact copy is placed into one of these frames.

26



Buffer pool

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

Frame 1 Frame 2

Frame 3 Frame 4

Database file

Buffer pool 

Read page Write page 

Page 3Page 2

Load Page 2 to Buffer pool

Page 2

Page 1

Figure: Buffer pool

Design goal: provide the illusion of operation in memory

• A buffer pool is a memory region organized as an array of fixed-sized pages.
• Each array entry is called a frame.
• When DBMS request a page, an exact copy is placed into one of these frames.

26



Buffer pool meta-data

Frame 1 Frame 2

Frame 3 Frame 4

Buffer pool 

Page 3Page 2

Page 6 Page 5
N4 5 0

Y 03 6

Y 12 3

N 21 2

Pin CountDirty BitPage IDFrame ID

Figure: Buffer pool page table

• The page table keeps track of pages that are currently in memory.
• Also maintains additional meta-data per page.

◦ Dirty flag/bit.
◦ Pin/reference counter.

27



Page replacement polices

A page replacement policy decides which page to evict from the buffer pool when the buffer
pool is full and a new page is requested.

• Least recently used (LRU)

• CLOCK

28



LRU

35

28

14

12

Last used

Y4 5 0

N 03 6

Y 12 3

N 21 2

Pin CountDirty BitPage IDFrame ID

Figure: Page 6 will be replaced by LRU

• Track the time of each frame last unpinned (end of use)
• Replace the frame which was least recently used.
• Pined frame: not available to replace.

29



CLOCK

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is 1
• If yes, reset to 0; otherwise evict the page.

Pinned pages are skipped as in LRU.

Example: Request Page 5.

Page 1
✔

Page 3

Page 2
✔

Page 4

Figure: Skip pinned page

30



CLOCK

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is 1
• If yes, reset to 0; otherwise evict the page.

Pinned pages are skipped as in LRU.

Example: Request Page 5.

Page 1
✔

Page 3

Page 2
✔

Page 4

Figure: Clear ref bit

30



CLOCK

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is 1
• If yes, reset to 0; otherwise evict the page.

Pinned pages are skipped as in LRU.

Example: Request Page 5.

Page 1
✔

Page 3

Page 2Page 4

Figure: Replace Page 3 by Page 5

30



CLOCK

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is 1
• If yes, reset to 0; otherwise evict the page.

Pinned pages are skipped as in LRU.

Example: Request Page 5.

Page 1
✔

Page 5

Page 2Page 4

Figure: Set pin count and ref bit

30



CLOCK

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is 1
• If yes, reset to 0; otherwise evict the page.

Pinned pages are skipped as in LRU.

Example: Request Page 5.

Page 1
✔

Page 5
✔

Page 2Page 4

Figure: Advance clock

30



CLOCK

Approximate LRU without a separate timestamp per page.
• Each page has a reference bit.
• When a page is accessed, set it to 1.

Organized the pages in a circular buffer with a clock hand.
• Upon sweeping, check if a page’s bit is 1
• If yes, reset to 0; otherwise evict the page.

Pinned pages are skipped as in LRU.

Example: Request Page 5.

Page 1
✔

Page 5
✔

Page 2Page 4

Figure: return

30



Recap

• Buffer manager provides a level of indirection.
– Maps disk page IDs to RAM addresses.
– The illusion of addressing and modifying disk pages in memory.

• Ensures that each requested pages is pinned in RAM.
– Unpinned by the caller later.

• Page replacement policy aims to minimize caches misses.
– The access patterns have big impact on I/O cost.

31


	Storage structures
	Buffer pool manager

