
SQL: Part (III)
March 17, 2023



Agenda

• Integrity constraints
• Update with SQL
• View
• Index

2



SQL integrity constraints

• NOT NULL
• Keys
• Referential integrity (foreign key)
• CHECK
• Assertion

3



Not NULL constraint

CREATE TABLE Artists(
ID varchar(8),
Artist varchar(20) NOT NULL,
Year numeric(4,0) NOT NULL,
City varchar(20),
PRIMARY KEY (ID));

• Not NULL constraint prohibits the insertion of a null value for the attribute.

• SQL prohibits NULL values in the primary key of a relation.

4



UNIQUE constraint

• A table can has any number of UNIQUE constraints of the following form.

UNIQUE (A_1, A_2, ... , A_k)
It states that the attributes A_1, A_2, ..., A_k form a superkey.

• At most one PRIMARY KEY declaration of the following form per table.
PRIMARY KEY (A_1, A_2, ..., A_k)

5



Referential integrity

• Referenced attributes must be a PRIMARY KEY.
• Referencing attributes forms a FOREIGN KEY.
• No dangling pointers from the attributes of a foreign key.

Example
CREATE TABLE ArtistAlbum)

Artist_ID varchar(8),
Albumn_ID varchar(8),
PRIMARY KEY (Artist_ID, Albumn_ID),
FOREIGN KEY (Artist_ID) REFERENCES Artists,
FOREIGN KEY (Albumn_ID) REFERENCES Albums

)

• Referencing relation: ArtistAlbum
• Referencing attributes: Artist_ID, Album_ID
• Referenced relations: Artist, Album

6



Enforcing Referential integrity

• Reject: reject any update that violates the referential integrity (default option).
• SET NULL: set all references to NULL.
• CASCADE: ripple changes to all referring rows.

Example
CREATE TABLE advisor (
s_id varchar (5),
i_id varchar (5),
PRIMARY KEY (s_id),
FOREIGN KEY (i_id) REFERENCES instructor (ID) ON DELETE SET NULL,
FOREIGN KEY (s_id) REFERENCES instructor (ID) ON DELETE CASCADE);

Note. A foreign key is nullable.

7



CHECK

A CHECK clause

CHECK (P)

specifies a predicate P that must be satisfied by every tuple in a relation.

Example
CREAAT TABLE instructor(
ID varchar (5),
name varchar (20) NOT NULL,
dept_name varchar (20),
salary numeric (8,2) CHECK(salary > 29000),
PRIMARY KEY(ID),
FOREIGN KEY (dept name) REFERENCES department);

8



Assertion

• An assertion defines a condition that we wish the database always to satisfy.

• To create an assertion in SQL, use
CREATE ASSERTION assertion_name CHECK (assertion_condition);

Example
-- The capacity of each course is at most 60.
CREATE ASSERTION asse_max_capcity
CHECK (60 >= ALL(SELECT count(*) FROM takes

GROUP BY course_id, year, semester));

9



Update with SQL

• Insertion of new tuples into a given relation

• Deletion of tuples from a given relation.

• Updating of values in some tuples in a given relation

10



Insert

• Insert one tuple

INSERT INTO instructor VALUES('10211', 'Turing', 'Comp. Sci.', 95000);
INSERT INTO instructor(ID, name) VALUES('10222', 'Root');

• Insert multiple tuples
INSERT INTO instructor VALUES
('10211', 'Turing', 'Comp. Sci.', 95000),
('10222', 'Root', NULL, NULL);

• Insert tuples based on the result of a query
INSERT INTO instructor
SELECT ID, name, dept_name, 18000
FROM student
WHERE dept_name= 'Music' AND total_cred >144;

11



Delete

• Delete all instructors from the Finance department.
DELETE FROM instructor WHERE dept_name= 'Finance';

• Clean up the instructor table.
DELETE FROM instructor;

• Delete all instructors whose salary is below the avg. salary of instructors.
DELETE FROM instructor
WHERE salary < (SELECT avg(salary) FROM instructor);
– What really happens if a DELETE operation also affects the average salary ?

12



Update

• Give a 5% salary raise to all instructors.
UPDATE instructor SET salary = salary * 1.05;

• Give a 5% salary raise to those instructors who earn less than 70,000.
UPDATE instructor SET salary = salary*1.05
WHERE salary < 70000;

• Give a 5% salary raise to instructors whose salary is less than average
UPDATE instructor
SET salary = salary*1.05
WHERE salary < (SELECT AVG (salary) FROM instructor);

13



Update (cont’d)

• Increase salaries of instructors with salary over 100,000 by 3%, and all others by a 5%.
UPDATE instructor SET salary = salary*1.03 WHERE salary > 100000;
UPDATE instructor SET salary = salary*1.05 WHERE salary <= 100000;
– What happens if we change the update order?

• We can rewrite the above query with a CASE statement.
UPDATE instructor
SET salary = CASE

WHEN salary <= 100000 THEN salary * 1.05
ELSE salary*1.03

END;

14



Update (cont’d)

• Increase salaries of instructors with salary over 100,000 by 3%, and all others by a 5%.
UPDATE instructor SET salary = salary*1.03 WHERE salary > 100000;
UPDATE instructor SET salary = salary*1.05 WHERE salary <= 100000;
– What happens if we change the update order?

• We can rewrite the above query with a CASE statement.
UPDATE instructor
SET salary = CASE

WHEN salary <= 100000 THEN salary * 1.05
ELSE salary*1.03

END;

14



CASE statement
CASE

WHEN condition1 THEN result1
WHEN condition2 THEN result2
...
WHEN conditionN THEN resultN
ELSE resultx

END

Example
SELECT ID, name,
CASE

WHEN grade >= 90 THEN 'A'
WHEN grade > = 80 AND grade < 90 THEN 'B'
ELSE 'C'

END AS letter_grade
FROM exam_grade;

15



View

A view is like a “virtual” table. To crate a view, use

CREATE VIEW view_name as query_expr;

Example
CREATE VIEW faculty AS
SELECT ID, name, dept_name -- the subquery that defines the view
FROM instructor;

• DBMS only stores the view definition query instead of the view contents.

• Views can be used in queries just like regular tables.

• A view is visible to all queries once created. This differs from the WITH statements.

• Use DROP VIEW view_name to drop a view.

16



View

A view is like a “virtual” table. To crate a view, use

CREATE VIEW view_name as query_expr;

Example
CREATE VIEW faculty AS
SELECT ID, name, dept_name -- the subquery that defines the view
FROM instructor;

• DBMS only stores the view definition query instead of the view contents.

• Views can be used in queries just like regular tables.

• A view is visible to all queries once created. This differs from the WITH statements.

• Use DROP VIEW view_name to drop a view.

16



View

A view is like a “virtual” table. To crate a view, use

CREATE VIEW view_name as query_expr;

Example
CREATE VIEW faculty AS
SELECT ID, name, dept_name -- the subquery that defines the view
FROM instructor;

• DBMS only stores the view definition query instead of the view contents.

• Views can be used in queries just like regular tables.

• A view is visible to all queries once created. This differs from the WITH statements.

• Use DROP VIEW view_name to drop a view.

16



Using views in queries

• Crate a view for computing the average salary for each department.
CREATE VIEW dept_avg_salary(dept_name, avg_salary) AS
SELECT dept_name, AVG(salary)
FROM instructor -- instructor is a based table
GROUP BY dept_name;

• Use the defined view to find the maximum average salary among all departments.
SELECT MAX(avg_salary) FROM dept_avg_salary;

-- replace the reference to the view by its definition
SELECT MAX(avg_salary)
FROM (SELECT dept_name, AVG(salary) AS avg_salary

FROM instructor
GROUP BY dept_name);

17



Using views in queries

• Crate a view for computing the average salary for each department.
CREATE VIEW dept_avg_salary(dept_name, avg_salary) AS
SELECT dept_name, AVG(salary)
FROM instructor -- instructor is a based table
GROUP BY dept_name;

• Use the defined view to find the maximum average salary among all departments.
SELECT MAX(avg_salary) FROM dept_avg_salary;
-- replace the reference to the view by its definition
SELECT MAX(avg_salary)
FROM (SELECT dept_name, AVG(salary) AS avg_salary

FROM instructor
GROUP BY dept_name);

17



Materialize views

Physically store the actual table defined by a view if it is used frequently enough.

• Physical copy created when the view is defined.
• Such views are called materialized view.

Maintenance of materialized views
• As the base tables are updated, the corresponding materialized requires maintenance.

• It is possible to update a materialized view incrementally.

18



Materialize views

Physically store the actual table defined by a view if it is used frequently enough.

• Physical copy created when the view is defined.
• Such views are called materialized view.

Maintenance of materialized views
• As the base tables are updated, the corresponding materialized requires maintenance.

• It is possible to update a materialized view incrementally.

18



Indexes

An index is an auxiliary data structure that helps to find tuples more efficiently.

• B+-tree index
• Hash table

Example
SELECT * FROM student WHERE name = 'Levy';

• No index on student.name: linearly scan the entire table student.
• With index: go directly to the tuples with name = 'Levy'.

More indexes later in this course.

19



Indexes (cont’d)

• Create indexes
CREATE INDEX index_name ON table_name(attribute_1, ..., attribute_n);

• Drop indexes
DROP INDEX index_name;

• Indexes take space and need to be maintained when date is updated.

• Typically, the DBMS will automatically create indexes for PRIMARY KEY and UNIQUE
constraint declarations.

20


