
SQL: Part (II)
March 10, 2023



Announcements

• Assignment 2 released. Due: March 26.

• Assignment 1 sample solution released on canvas.

2



Quick review (1)

SELECT A1, A2, …, An

FROM R1, R2, …, Rm

WHERE P;

A basic sql query can be expressed by a SELECT-FROM-WHERE statement as shown above.

• A1, A2, …, An: a list of desired attributes in the query.
• R1, R2, …, Rm: a list of tables accessed during the query evaluation.
• P: a filtering predicate involving the attributes from R1, R2, …, Rm.

3



Quick review (2)

• Aggregation with grouping
-- Get the average credit of the students for each department.
SELECT dept_name, AVG(tot_cred)
FROM student
GROUP BY dept_name;

• Use HAVING to further filter group-by aggregation result
-- Get the average credit of the students for each
-- department with at least 50 students
SELECT dept_name, AVG(tot_cred)
FROM student
GROUP BY dept_name;
HAVING count(*) >= 50;

4



Q&A (1) Conversion between SQL data types

PostgreSQL does implicit type conversion when necessary.

Example
CREATE TABLE t (a integer);
INSERT INTO t VALUES ('123');

Explicit type conversion with CAST operator or :: syntax.

Example
SELECT CAST('123.45' AS REAL); -- result: 123.45
SELECT 123.45::INT; -- result: 123

5



Q&A (1) Conversion between SQL data types

Explicit type conversion is a must for correct results in some cases.

Example
SELECT 1/2; -- result: 0
SELECT 1::REAL/2; -- result: 0.5

Use PostgreSQL’s pg_typeof function to get its actual type of an expression.

Example
SELECT pg_typeof(1/2); -- result: integer
SELECT pg_typeof(1::REAL/2); -- result: double precision

6



Q&A (2) PostgreSQL has persistent storage

• Each successful database change will be persisted, even if you encounter a system crash
or a power failure.

• No need to import ddl.sql or data.sql every time you connect to the database.

• PostgreSQL achieves persistent storage by Write-Ahead Logging (WAL).
– We will discuss about it later in the course.

7



Null Values



Null values

• Value unknown/inapplicable
• Used for each date type
• Special rules for dealing with NULL’s

Example
SELECT ID, name
FROM instructor
WHERE salary IS NOT NULL;

9



Special rules for NULL

• Arithmetic operation:
NULL op value/NULL = NULL

• Comparison:
NULL θ value/NULL = UNKNOWN

• Aggregation functions ignore NULL, except COUNT(*).
– COUNT(*) just conuts rows.

• Evaluating aggregation functions (except COUNT) on an empty bag returns NULL.
– The count of an empty bag is 0.

• NULL cannot be used explicitly used an operand.
◦ Wrong: NULL+ 3, x = NULL
◦ Correct: x IS NULL, x IS NOT NULL

10



Three-valued logic of SQL

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5

• x AND y = min(x,y)

• x OR y = max(x,y)

• NOT x = 1− x

• WHERE and HAVING only select rows for output if the condition evaluates to TRUE.

11



Pitfalls of NULL

NULL breaks many equivalences.

-- Not equivalent due to NULL
SELECT AVG(salary) FROM instructor;
SELECT SUM(salary)/COUNT(*) FROM instructor;

-- Not equivalent due to NULL
SELECT * from instructor;
SELECT * FROM instructor WHERE salary > 5000 OR salary <= 5000;
SELECT * FROM instructor WHERE salary = salary;

12



Joins



SQL join expressions

• An join expression applies an join operation to two relations and produces a new relation.

• They are typically used as subqueries in FROM clauses.

14



Theta join

R JOIN S ON join_condition

• The join_condition can be a general predicate over the relations being joined.

Example
-- student(ID, name, dept_name, tot_cred)
-- takes(ID, course_id, sec_id, semester, year, grade)

SELECT * FROM student JOIN takes ON student.ID = takes.ID;
SELECT * FROM student, takes WHERE student.ID = takes.ID;

Question. Is the keyword ON redundant?

15



Natural join

R NATURAL JOIN S

• Join tuples with the same values for all common attributes.
• Retain only one copy of each common column.

Example
-- student(ID, name, dept_name, tot_cred)
-- takes(ID, course_id, sec_id, semester, year, grade)
SELECT name, course_id
FROM student NATURAL JOIN takes

-- an equivalent query
SELECT name, course_id
FROM student, takes
WHERE student.ID = takes.ID

16



Natural join more relations

SELECT A_1,A_2,...,A_n
FROM R_1 NATURAL JOIN R_2 NATURAL JOIN ... R_k
WHERE P;

17



The USING keyword

Example
List the name of each student, along with the title of each course he/she takes.
-- A problematic query
SELECT name, title
FROM student NATURAL JOIN takes NATURAL JOIN course;

Problem: Attributes with the same name get equated unexpectedly in natural join.
Solution 1: Use WHERE and product to avoid joining on unrelated attributes.

SELECT name, title
FROM student NATURAL JOIN takes, course
WHERE takes.course_id = course.course_id;

Solution 2: The USING keyword specifies exactly which attributes should be joined.
SELECT name, title
FROM (student NATURAL JOIN takes) JOIN course USING (course_id);

18



Outer join motivation

course_id title dept_name credits
BIO-301 Genetics Biology 4
CS-190 Game Design Comp. Sci. 4
CS-325 Robotics Comp. Sci. 3

Table: Course

course_id prereq_id
BIO-301 BIO-101
CS-190 CS-101
CS-347 CS-101

Table: Prereq

List all the information of each course, along with the id’s of its pre-required courses.
SELECT * from course NATURAL JOIN prereq;

course_id title dept_name credits prereq_id
BIO-301 Genetics Biology 4 BIO-101
CS-190 Game Design Comp. Sci. 4 CS-101

Table: Course ▷◁ Prereq

19



Left outer join

A left outer join between R and S, denoted as R ▷◁ S includes both

• rows in R ▷◁ S, and
• dangling R rows padded with NULL’s.

Example. SELECT * from course NATURAL LEFT OUTER JOIN prereq;

course_id title dept_name credits prereq_id
BIO-301 Genetics Biology 4 BIO-101
CS-190 Game Design Comp. Sci. 4 CS-101
CS-325 Robotics Comp. Sci. 3 NULL

Table: Course ▷◁ Prereq

• ('CS-325', 'Robotics', 'Comp. Sci.', 3) is a dangling tuple in the relation
Course when joining with Prereq, i.e., no tuples from Prereq matche it.

20



More outer join flavors

• A right outer join between R and S, denoted as R ▷◁ S, includes rows in R ▷◁ S plus
dangling S rows padded with NULL’s.

• A full outer join, denoted as R ▷◁ S, includes all rows from R ▷◁ S, plus
◦ dangling R rows padded with NULL’s
◦ dangling S rows padded with NULL’s

Example
-- Right outer join (1)
SELECT * FROM course NATURAL RIGHT OUTER JOIN prereq;

-- Right outer join (2)
SELECT * FROM course RIGHT OUTER JOIN prereq
ON course.course_id = prereq.course_id;

-- Right outer join (3)
SELECT * FROM course RIGHT OUTER JOIN prereq
USING course_id;

21



Outer join examples

A I
3 6
1 3
3 4

Table: R(A, I)

I C E
6 1 3
4 0 4
2 2 2

Table: S(I,C,E)

A I C E
3 6 1 3
3 4 0 4

Table: Natural join R ▷◁ S

A I C E
3 6 1 3
3 4 0 4
1 3 NULL NULL

Table: Left outer join R ▷◁ S

A I C E
3 6 1 3
3 4 0 4

NULL 2 2 2
Table: Right outer join R ▷◁ S

A I C E
3 6 1 3
3 4 0 4
1 3 NULL NULL

NULL 2 2 2
Table: Full outer join R ▷◁ S

22



ON vs. WHERE

-- NULL values are preserved
SELECT * FROM course LEFT OUTER JOIN prereq
ON course.course_id = prereq.course_id;

-- NULL values are left out
SELECT * FROM course LEFT OUTER JOIN prereq ON TRUE
WHERE course.course_id = prereq.course_id;

23



Join recap

Join types
• inner join
• outer join

Join conditions
• on <predicates>
• using <A1, …, An>
• natural

24



Subqueries



Nested subqueries

A subquery is a SELECT-FROM-WHERE expression that nested in another query.

Example
List the id’s of all courses offered in Fall 2017 but not in Spring 2018.

SELECT DISTINCT course_id --------------------------- outer query
FROM section
WHERE semester = 'Fall' AND year = 2017 AND

course_id NOT IN (SELECT course_id ---------- inner query
FROM section
WHERE semester = 'Spring' AND year = 2018);

Remark. Subqueries are enclosed by parentheses.

26



Nested subqueries (cont’d)

A subquery can be nested in a SELECT-FROM-WHERE statement almost anywhere

SELECT A1, A2, …, An

FROM R1, R2, …, Rm

WHERE P;

• FROM: every Ri can be replaced by a subquery.

• WHERE: P can include predicates involving subqueries.

• SELECT: every Ai can includes a subquery that generates a single value.

27



Subqueries in FROM clauses

• Subqueries can be used in FROM clauses since a subquery always return a relation.
SELECT dept_name, avg_salary
FROM (SELECT dept_name, avg(salary) AS avg_salary -- subquery

FROM instructor
GROUP BY dept_name)

WHERE avg_salary > 42000;

• Rename the relation returned by a subquery with keyword AS.
SELECT dept_name, avg_salary
FROM (SELECT dept_name, avg(salary)

FROM instructor
GROUP BY dept_name)
AS dept_avg(dept_name, avg_salary)

WHERE avg_salary > 42000;

28



Common table expression (WITH)

WITH R1(A_1, A_2, ...) As -- a temporary relation R1
(subquery_1),
R2(B_1, B_2, ...) AS -- a temporary relation R2
(subquery_2),
...

SELECT ... FROM ... WHERE ...; -- the actual query

• Defines temporary relations to be used by
– other relations defined in the same WITH clause
– the actual query.

• Only the result of the actual query are returned.
• Make queries more clear and readable.

29



WITH example

-- Find all the departments with total salary greater than
-- the average of the total salary of all departments.

WITH dept_total(dept_name, value) AS
(SELECT dept_name, SUM(salary)
FROM instructor
GROUP BY dept_name),
dept_total_avg(value) AS
(SELECT AVG(value) FROM dept_total)

SELECT dept_name
FROM dept_total, dept_total_avg
WHERE dept_total.value > dept_total_avg.value;

30



Subqueries via EXISTS

• EXISTS (subquery): the subquery result is non-empty.
-- Find all courses offered in both Fall 2017 and Spring 2018 semester
SELECT course_id
FROM section as S
WHERE semester = 'Fall' AND year = 2017 AND

EXISTS (SELECT * FROM section as T
WHERE semester = 'Spring' AND year= 2018

AND course_id = S.course_id);

• Scoping rule: an attribute refers to the most closely nested relation with that attribute.

31



Subqueries via UNIQUE

• UNIQUE (subquery): the subquery result contains no duplicates.
-- Find all courses that offered at most once in 2017.
SELECT T.course_id
FROM course as T
WHERE UNIQUE (SELECT R.course_id

FROM section as R
WHERE T.course_id= R.course_id

AND R.year = 2017);

32



Subqueries via IN

• x IN (subquery): x is in the subquery result.
– x can either an attribute A or a tuple (A1, . . . ,An)

-- List the course_id's of all courses offered in Fall 2017
-- but not in Spring 2018
SELECT DISTINCT course_id
FROM section
WHERE semester = 'Fall' AND year = 2017 AND

course_id NOT IN (SELECT course_id
FROM section
WHERE semester = 'Spring' AND year = 2018);

33



More subqueries in WHERE

• x op ALL (subquery): x op t for all t in the subquery result.
-- Find the name of all instructors whose salary is greater than
-- the salary of all instructors in the Biology department.
SELECT name FROM instructor
WHERE salary > ALL (SELECT salary FROM instructor

WHERE dept_name = 'Biology');

• x op SOME (subquery): x op t for some t in the subquery result.
--
SELECT name FROM instructor
WHERE salary > SOME (SELECT salary FROM instructor

WHERE dept_name = 'Biology');

34



Scalar subquery

• A subquery that returns a single tuple containing a single attribute is a scalar subquery.
• A scalar subquery can be used as a value in WHERE, SELECT and HAVING clauses.

-- List the name and ID of each instructor with the highest salary
SELECT name, ID
FROM instructor
WHERE salary = (SELECT MAX(salary)

FROM instructor);

• Runtime error if subquery returns more than one row.

• NULL if subquery returns no rows.

35



Scalar subquery (cont’d)

-- List the name and the number of instructors of each department
SELECT dept_name,

(SELECT COUNT(*) FROM instructor
WHERE department.dept_name = instructor.dept_name

) AS num_instructors
FROM department;

36


	Null Values
	Joins
	Subqueries

