Query Optimization

May 12, 2023

D Overview

Query parsing & optimization

SELECT name, title
FROM instructor natural join teaches

Operator execution

natural join course ‘ ‘
WHERE dept_name ='Music'; ‘ Access method ‘

Buffer pool manager

1. Parse, check and verify the SQL
2. Translate into an RA query plan.

3. Query optimization: from an RA logical query plan
to an optimized physical plan. Figure: DBMS architecture

Disk manager

P Agenda

(sort to remove duplicates)

Woame, ute T e, e
‘ [>] (merge join)
SELECT name, title \
FROM instructor natural join teaches sort,,
natural join course ‘
WHERE dept_name ='Music'; Odept_name = Music sort DX| (hash join)
\ 3
instructor teaches W course_id, sitte Oldept_name = Music Weaurs 1a e
‘ - (use index 1)
course instructor teaches course

saLQuery | & [Logical Plan) [Physicalplan | =)

e Rule-based query rewriting: find better logical plans via RA equivalence rules.

e Cost-based query optimization: cost estimation and optimal join order search

P Query optimizer

Recall that SQL is declarative.

o Users specify what tuples they want.
o The query optimizer searches and picks the best query plan.

Cost difference between query plans for a query can be huge.

The first query optimizer was implemented in System R, in the 1970s.

Many concepts and design decisions from the System R optimizer are still used today.

P. Selinger et al. (1979). Access Path Selection in a Relational Database Management System.

P Rule-based Query Rewriting

P RA equivalence rules (1)

e (i) RxS=SxR,. (i1) (RpxaS)xxT =R (S T).

— Natural join is commutative and associative (except for attributes ordering).
e 0g9(R x S)=Rig S. This rule converts a cross product to a theta join.
o T, (T, (R)) =TT, (R), where L; C Lo.

® 09, (09,(R)) = 0p,A0,(R).

P RA equivalence rules (2)

e Push down selection: og, Anp,(R g S) = 0g,(R) g 0p,(S).

Here 01 (resp. 0,) involves only attributes of R (resp. S).

e Push down projection
1. M(oe(R)) =TI (o6 (Mrurs (R)))
— L’ is the set of attributes that referenced by © and not in L.

2. ﬂL(R g S) = HL(”L/(R) g S)
— L’ consists of the set of attributes from R that either in L or referenced by 0.

3. A symmetric version of (2).

Intuition: Have fewer tuples in a plan.

P Rewrite logical plan via equivalence rules

SQL query
-- R(4,B), S(B,C), T(C,D) IIap
SELECT R.A, S.D '
FROM R,S,T 0A<9
WHERE R.B = S.B]

AND S.C = T.C >

AND R.A < 9; / \

Y T(C, D)

RA expression \

Map(oa<o((R>aS) >aT))

P Rewrite logical plan via equivalence

SQL query

-- R(4,B), S(B,C), T(C,D)

SELECT R.A, S.D

FROM R,S,T

WHERE R.B =
AND S.C

B
=T.C
AND R.A <

S.
T.
9:

B

RA expression

Map(oa<o((R>aS) >aT))

rules

II4,p

0A<9

Push down
selection

/ N\

D] T(C,D)

R(A,B) S(B,C)

P Rewrite logical plan via equivalence rules

SQL query

-- R(A,B), S(B,C), T(C,D) I
SELECT R.A, S.D A,D
FROM R,S,T

WHERE R.B = S.B A
AND S.C =T.C
9.

AND R.A < 9;

>
T(C, D)
0A<9
RA expression

Map((ca<o(R) > S) > T)

P Rewrite logical plan via equivalence rules

SQL query
-- R(4,B), S(B,C), T(C,D)

SELECT R.A, S.D . Iap
FROM R > S) T projection

]
WHERE R.B .B
C

AND S.C /

AND R.A

5 [P
T(C, D)
0A<9 (
RA expression

R(A,B) S(B,C)
Map((0a<o(R) > S)>aT)

A
© —H W

P Rewrite logical plan via equivalence

SQL query

-- R(4,B), S(B,C), T(C,D)

SELECT R.A, S.D

FROM R,S,T

WHERE R.B =
AND S.C

B
=T.C
AND R.A <

S.
T.
9:

B

RA expression

MaDp(IMaA,c(oa~o(R) > S) > T)

rules

ITa,p
Push dgwn
projection >
/HA.C
>
OA<9 \ T(C, D)
R(AB) S(B.C)

P Rules-based query optimization

1. Start with a logical plan.

2. Push selection/projection down as much as possible.

o Pros: Reduce the size of intermediate results
o Cons: Can be more expensive in some cases, e.g., joins filter better.

3. Join small relations first, and avoid cross products.

o Pros: Reduce the size of intermediate results.
o Cons: Size depends the join selectivity too.

4. Convert the transformed logical plan to a physical one
— by choosing appropriate physical operators.

P Cost-based Query Optimization

D Cost estimation

e Plan cost = Zoperatoreplan (Operator cost)
e Operator cost o« Operator input size

e We have discussed how to estimate the cost of operators.

— E.g., sequential/index scan, sort, joins.

e We still need to determine the size of operator input.

— For base tables, equal to the size on disk.

— For other operators, equal to “selectivity x size of children.”

11

P Statistics and catalog

e DBMS stores internal statistics about tables, attributes, and indexes in its internal catalog.

Notation Statistics

IR number of tuples

P(R) number of pages

V(A,R) number of distinct values of A
max(A, R)/min(A, R) | max/min value of A

H(A,R) Tree index height of A

Table: Selinger statistics for table R

e Catalogs are updated periodically.
e Modern DBMS use much more sophisticated stats.

P Seclection with equality predicates

GA:V(R)
e loa—v(R)[=IR[/V(A,R).
o |R|: the number of tuples in R.
o V(A,R): the number of distinct values of A in R.
e Assumption: values of A are uniformly distributed in R.

e The selectivity factor of a predicate 0 is the probability that a tuple in R satisfies 6.

e The selectivity factor of the predicate A =vis 1/V(A,R).

13

P Conjunctive predicates

GA:VAB:u(R)
® [0a—vaB=u(R)| =[RI/V(A,R) * V(B,R)
e The selectivity factor of A=v/AB =uis 1/V(A,R) x V(B,R).

e Additional assumption:
1. A =vand B =u are independent;

2. No over-selection, i.e., both A and B are not keys.

14

P Negative and disjunctive predicates

O—Ayév(R)

e Selectivity factor for A #vis 1 —1/V(A,R).
e Selectivity factor =0 is (1 - selectivity factor of 6).

OA=vVB=u (R)

e Selectivity factor: 1/V(A,R)+1/V(B,R)—1/V(A,R) * V(B,R)
e Intuition: inclusion-exclusion principle.

15

P Range predicates

GA<V(R)

Suppose that min(A, R) and max(A, R) are available in catalog.

e If v<min(R, A), the selectivity factor is 0

v—min(A,R)
max(A—R)—min(A,R)

Otherwise, the selectivity factor is

® 0a>v(R) can be estimated symmetrically.

16

P Join size estimation

R(A,B) > S(B, C)
e Estimate the size of the product of R x S as |R| x [S].
e Take R|*|S|/max(V(B, R), V(B,S)) as the join size estimation.

e Assumption: containment of value sets.
o If V(B,R) < V(B,S), then TTg(R) C TT5(S).

o Not true in general. But holds in the common case of foreign key joins.

o If V(B,R) < V(B,S), then each tuple in R joins with S/V(B, S) tuples of S.

o Selectivity factor of R.B =S.B is 1/max(V(B, R), V(B, S)).

e Example. [R| = 1000, |S| = 2000, TT(B, R) = 20, TT(B, S) = 50.
Then [R s S| = 1000 * 5000/max(20, 50) = 40000.

17

P Estimation error

e Lots of assumptions and very rough estimation.
e Skewness is one of the main reasons that may lead to bad estimations.

e The assumption of mutual independence of the predicates may not hold!

Example

Consider a table employee(id, level, salary).

o Let level € (0, 10]. Then selectivity of level > 6 is estimated as 13=2 = 40%.

e Real selectivity is significantly lower than 40%, e.g., 20%.

e Assume that selectivity of salary > 400000 is 30%. Then what is the selectivity of
level > 6 A salary > 400000 7

18

P Histograms

e Build histograms in the catalog to provide better
estimation for common predicates over one or
more columns.

e Equi-width: equal key ranges, store both key
ranges and values.

e Equi-depth: histograms break up range such that
each range has (approximately) the same number
of tuples.

— A equi-depth range example: (4, 8, 14, 19).

frequency

[
S

'
o

w
S

[}
=

S

1

1-5

6-10

11-15 16-20 21-25

value

19

P Cost-based plan search

e We have shown how to estimate the cost of one query plan.
e We next discuss how to pick the “best” one, i.e. the one with the lowest cost.
o Enumerate all possible physical plans.
o Pick the plan with the lowest cost.
e |n practice, the goal is often not getting the optimal plan, but instead avoiding the really
bad ones.
e We will focus on the search of optimal join orders.

20

D Join order

YA .

/Dq\ R5 y g

/l><1\ R4) / \ / \
R1/M\R2 i / \

(a) Left-deep tree (b) Non-left-deep tree

e Recall that joins are commutative and associative.
e The search plan of join orders can be huge.

e In general, there (2n —2)!/(n — 1)! join orders for Ry < -+ - x1 Ry,
o With n =6, the number is 30240.
o With n = 10, the number is greater than 176 billion.

21

P Reduce search space with left-deep joins

(a) Left-deep tree (b) Non-left-deep tree

e In left-deep joins, only the left child can be a join operator.

e |eft-deep joins allow to generate fully pipelined plans.
o Intermediate results not written to temporary files.

o Not all left-deep joins are fully pipelined, e.g., sort-merge join.

e There are n! different leaf-deep join trees for Ry > - -+ Ry,.
— 6! = 720. Significantly fewer, but still lots.

22

P Selinger algorithm

First implemented in System R, frequently adapted and used.

Use Selinger statistics for cost estimation.

Only consider left-deep joins for plan enumeration.

Generate optimal plans in a bottom-up fashion.

P. Selinger et al. (1979). Access Path Selection in a Relational Database Management System.

Patricia Selinger

23

P Dynamic programming

We find the optimal left-deep join order of Ry, ..., R in a bottom-up fashion.

e Pass 1: Find the best single-table plan for Ry, ..., Ry,.

e Pass 2: Find the best two-table plans for each pair of tables.
This is done by combing best single table plans.

e Pass k: Find the best k-table plans for S C {Ry, ..., Rn} with [S| = k.

Opt_Cost(S) = minges{Opt_cost(S\ {R}) + Join cost(S\{R},R)}

(i) Consider left-deep joins only. (ii) Pick the cheapest algorithm to join (S \ {R}) and R.

Optimal substructure property. Any subplan of an optimal join plan must also be optimal.

24

P Dynamic programming (cont’d)

Subset Best Plan | Cost

{R} IndexScan | 100
{S} SeqScan 80
{T} IndexScan | 50

{R, S} HashJoin 160
{R, T} MergeJoin | 160
{S, T} HashJoin 140
{R,S, T} | HashJoin 700

Table: DP table for RS T

Cost analysis: . 2™: (i) 2™ subsets in total; (ii) for each subset S, we need to iterate
through each element of each subset to find the optimal plan, which is at most n.

P The need for interesting order

Example: R(A,B) <1 S(A,C) < T(A, D)
e Best plan for Rixt S: hash join (beats sort-merge join).

e Best overall plan for Rxt S 1 T can be

o First Sort-merge join R and S
o Then sort-merge join Rt S with T.

This can happen assuming that T is sorted on attribute A.
e Subplan of the optimal plan is not optimal.

e An intermediate result has an interesting order if it is sorted by anything that can be
exploited by later processing.

o The result of the sort-merge join of R and S is sorted on A.
o This is an interesting order since a subsequent merge join of Rxi S and T can utilize it.

26

P Dealing with interesting orders

Subset | Best Plan | Interesting order | Cost

{R, S} HashJoin | 0 160
{R, S} MergeJoin | {A} 200

Table: DP table for R(A, B) x1 S(A, C) < T(A, D) with interesting order

e When picking the best plan

o Comparing their cost is not enough
o Comparing interesting orders is also needed

e Computes multiple optimal plans for each subset, one for each interesting order.
e Increases the complexity by factor k + 1, where k is the number of interesting orders.

P Recap

e Rule-base query rewriting
— Relational algebra equivalence rules

e Cost-based optimization
— Need statistics to estimate sizes of intermediate results.

— Dynamic programming for join orderings.

In practice, query optimization can be much more challenging.

Moerbotte and Neumann. Dynamic Programming Strikes Back. SIGMOD '08

28

	Rule-based Query Rewriting
	Cost-based Query Optimization

