
GNNLab: A Factored System for Sample-based GNN
Training over GPUs

Jianbang Yang† 1 Dahai Tang† 3,4 Xiaoniu Song1,2 Lei Wang4 Qiang Yin5

Rong Chen‡ 1,2 Wenyuan Yu4 Jingren Zhou4

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2Shanghai AI Laboratory 3Hunan University 4Alibaba Group 5BASICS, Shanghai Jiao Tong University

Abstract

We propose GNNLab, a sample-based GNN training sys-
tem in a single machine multi-GPU setup. GNNLab adopts
a factored design for multiple GPUs, where each GPU is
dedicated to the task of graph sampling or model train-
ing. It accelerates both tasks by eliminating GPU memory
contention. To balance GPU workloads, GNNLab applies a
global queue to bridge GPUs asynchronously and adopts
a simple yet effective method to adaptively allocate GPUs
for different tasks. GNNLab further leverages temporar-
ily switching to avoid idle waiting on GPUs. Furthermore,
GNNLab proposes a new pre-sampling based caching pol-
icy that takes both sampling algorithms and GNN datasets
into account, and shows an efficient and robust caching per-
formance. Evaluations on three representative GNNmodels
and four real-life graphs show that GNNLab outperforms
the state-of-the-art GNN systems DGL and PyG by up to
9.1× (from 2.4×) and 74.3× (from 10.2×), respectively. In
addition, our pre-sampling based caching policy achieves
90%– 99% of the optimal cache hit rate in all experiments.

CCS Concepts: • Software and its engineering→ Space-

based architectures; • Computing methodologies →

Concurrent computing methodologies.

Keywords: graph neural networks, sample-based GNN
training, caching policy

ACM Reference Format:

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin,

Rong Chen, Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: A

Factored System for Sample-based GNN Training over GPUs. In

† Jianbang Yang and Dahai Tang contributed equally to this work.
‡ Rong Chen is the corresponding author (rongchen@sjtu.edu.cn).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

EuroSys ’22, April 5–8, 2022, RENNES, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00

h�ps://doi.org/10.1145/3492321.3519557

Seventeenth European Conference on Computer Systems (EuroSys

’22), April 5–8, 2022, RENNES, France. ACM, New York, NY, USA,

18 pages. h�ps://doi.org/10.1145/3492321.3519557

1 Introduction

Graph neural networks (GNNs) are an emerging family of
neural networks that operate on graph-structured data [57],
and have demonstrated convincing performance on many
applications in recommendation systems [29, 58], molecule
analysis [19], social network mining [33, 55, 63], fraud de-
tection [16], to name a few. GNN models aim to learn
a low-dimensional feature representation (i.e., embedding)
for each vertex in a graph, which can be further fed into
various downstream graph-related tasks like vertex classi-
fication [25, 49], link prediction [46, 63] and graph clus-
tering [59]. Different from traditional deep learning mod-
els, in GNN models, each vertex recursively updates its fea-
ture by aggregating features from its neighbors in the input
graph [21], posing both implementation and performance
challenges for existing tensor-oriented frameworks, such as
TensorFlow [7], PyTorch [42], and MXNet [14]. Many GNN
systems [2, 17, 20, 31, 37, 38, 48, 51, 52, 56, 67] have been
developed in the recent past to address these challenges.
Many real-life graphs are large-scale and associated with

rich vertex attributes (i.e., features), sometimes with highly
skewed power-law degree distributions [8, 13, 22]. Under
such conditions, it is inefficient, even unfeasible, to simulta-

neously consider all neighbors within L hops for each train-
ing vertex when training aGNNmodelwith L layers [35, 67].
A practical solution to this problem is sample-based GNN
training, which adopts various graph sampling algorithms
to sample a fixed size of neighbors within L hops for each
training vertex. Each training vertex and its correspond-
ing sampled neighbors constitute a sample, and all samples
are processed in a mini-batch manner [25, 58, 65]. In this
way, the computation of each mini-batch can be largely re-
duced. The whole training process conducts such iteration

(i.e., epoch) multiple times until the GNN model converges
to expected accuracy [20, 62, 66].
Recently, GPUs have been widely exploited to acceler-

ate GNN training [27, 31]. A typical scenario is a single
machine equipped with multiple GPUs. Since large-scale
graphs (both topological and feature data) exceed limited

417

rongchen@sjtu.edu.cn
https://doi.org/10.1145/3492321.3519557
https://doi.org/10.1145/3492321.3519557
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

GPU memory capacity (e.g., 32GB or less), most of existing
GNN systems store graph topological and feature data in the
host memory of a machine [66, 67]. Given a mini-batch size,
CPUs repeatedly sample input graph and extract features of
sampled vertices to produce samples; meanwhile, generated
samples are continuously copied to GPUs to trigger model
training. As also observed in §3, recent work [20, 35] has re-
ported that under such a setting, conducting graph sampling
and transferring feature data of sampled vertices from host
memory to GPU memory dominate the end-to-end training
process, leading to GPUs being heavily underutilized.
Two optimizations from separated perspectives have

been proposed to alleviate the above two bottlenecks of
training GNNs in a single machine multi-GPU setup. In
many cases, a major reason for such a large size of GNN
datasets is not the graph topological data itself, but the
features of vertices. Based on this observation, some stud-
ies [30, 40] attempted to transfer graph topological data
into the GPU memory and apply GPUs to accelerate graph
sampling. In addition, prior work [35] found that some ver-
tices are more frequently sampled than others, and thus a
static caching strategy is introduced to reduce data move-
ment from the host memory to the GPU memory. Features
of high out-degree vertices are cached in the GPU memory
in advance, assuming that vertices with high out-degrees
are more likely to be frequently sampled.
However, the benefits of these two optimizations cannot

be simultaneously achieved in a conventional time shar-

ing design, i.e., one GPU performs both graph sampling
and model training, since the limited GPU memory capac-
ity cannot cope with both topological data and cached fea-
tures at the same time (see detailed analysis in §3). In addi-
tion, we find that existing degree-based caching policy only
works well on the k-hop random neighborhood sampling
algorithm [25] and graphs with power-law degree distribu-
tions [13], and cannot cover the diversity of sampling algo-
rithms and GNN datasets.
Based on the above analysis, we propose GNNLab, a fac-

tored system for sample-based GNN training in a single ma-
chine multi-GPU setup. GNNLab adopts a space sharing de-
sign for multiple GPUs, i.e., one GPU loads either graph
topological data or cached features in its memory, and only
conducts either graph sampling or model training based on
its stored data. It eliminates GPU memory contention by
leaving more GPU memory for both graph topological data
and cached features. In this way, graph sampling and model
training can be accelerated at the same time. However, this
factored design may suffer from imbalanced loads between
GPUs for graph sampling and model training. To solve this
problem, GNNLab divides the GNN training pipeline into
two kinds of executors, namely Sampler and Trainer, and
bridges two kinds of executors asynchronously. A simple
yet effective method is proposed to adaptively determine
the appropriate GPU numbers for Samplers and Trainers.

GNNLab further leverages dynamic switching from Sam-
plers to Trainers to avoid idle waiting on GPUs if needed.
To improve the efficiency of GPU-based caching policies

for diverse sampling algorithms and GNN datasets, we pro-
pose a general caching scheme. It consists of two parame-
ters, a hotness metric that estimates the frequency of a vertex
being sampled during the graph sampling stage and a cache
ratio that determines how many vertices can be cached
in GPUs. Existing caching policies can be represented in
this caching scheme naturally. However, the hotness met-
rics adopted by prior work, e.g., vertex out-degree [35], fail
to capture the diversity of sampling algorithms and GNN
datasets. To address this issue, we propose a pre-sampling

based caching policy (PreSC), which is inspired by the ob-
servation that the most frequently sampled vertices overlap
a lot among different epochs. PreSC tries out a few rounds
of sampling phases and uses the average visit count as the
vertex hotness metric. We find that PreSC achieves a high
cache hit rate even with a small cache ratio and is robust to
diverse sampling algorithms and GNN datasets.
We have implemented GNNLab that adopts all optimiza-

tion strategies mentioned above. We evaluated GNNLab on
threeGNNmodels (i.e., GCN [33], GraphSAGE [25], and Pin-
SAGE [58]) over four real-life graphs, and compared it with
the state-of-the-art GNN systems DGL [52] and PyG [17].
Experimental results show that GNNLab outperforms DGL
and PyG by up to 9.1× (from 2.4×) and 74.3× (from 10.2×),
respectively. In addition, PreSC is able to achieve 90%–99%
of the optimal cache hit rate in all tests.

Contributions. We make the following contributions.

(1) An in-depth analysis of the performance issues and chal-
lenges of sample-based GNN systems with the conventional
design over GPUs (§3).

(2) A new factored space sharing design for sample-based
GNN training that eliminates intra-task resource contention
and unleashes inter-task data locality (§4), and solutions to
tackling the imbalanced load issues introduced by the fac-
tored design (§5).

(3) A general GPU-based feature caching scheme, as well
as a caching policy based on pre-sampling that is robust to
diverse sampling algorithms and GNN datasets (§6).

(4) An evaluation with various GNN datasets and models
that shows the advantage and efficacy of GNNLab (§7).

2 GNNs and Sample-based Training

Given a graph G = (V , E), where each vertex is associated
with a vector of data as its feature, a GNN model learns
a low-dimensional embedding for each vertex by stacking
multiple GNN layers. For a GNN layer, vertex v updates
its feature by aggregating features of its neighbors N (v). A
training epoch represents that all training vertices are pro-
cessed. To train a GNNmodel, a natural way is whole-graph

418

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

7

106

11

12

embeddings

2-hop
samples

G
N

N
 M

o
d

e
l

AGGREGATE

UPDATE

+

7

0

Layer 1

Layer 2

Vertex ID
mapping

7

11
10

12

6

0

1
2

3

4

A1

A2

A3

A4

..

..

..

..

G1

G2

G3

G4

H1

H2

H3

H4

K1

K2

K3

K4

L1

L2

L3

L4

..

..

..

..

M1

M2

M3

M4

0 .. 6 7 10 11.. 12

K1

K2

K3

K4

L1

L2

L3

L4

M1

M2

M3

M4

21 3

G1

G2

G3

G4

4

H1

H2

H3

H4

0

12

10

12

6

7

11

10

0

1

2

3

2

3

4

Figure 1.An example of the SETmodel for sample-based training

in a 2-layer GNN on V7.

training, i.e., each vertex considers its all neighborswhen ag-
gregating features. However, whole-graph training is hard
to scale [47]. First, it is increasingly common for GNNs to
encounter a large-scale graph with high-dimensional fea-
tures [20, 35]. Second, many graphs follow a highly skewed
degree distribution [13]. Awell-connected vertex will aggre-
gate features from a large fraction of the graph with just a
few hops (e.g., two), leading to substantial work imbalance.

Sample-based GNN training. Due to the above issues,
many emerging GNN models [11, 25, 28, 61] adopt the
sample-based training approach. This approach splits the
training vertices into multiple mini-batches and conducts
GNN training on mini-batches iteratively by following the
SET model. The model is split into three stages: Sample,
Extract, and Train. First, starting from each vertex in a
mini-batch, the input graph is sampled according to a user-
defined algorithm; the output contains all sampled vertices
(also referred to as samples).1 Next, the features of sampled
vertices are extracted into an individual buffer. Finally, GNN
training is conducted on the samples with their features. Fig-
ure 1 illustrates an example of the SET model (left-right) for
training a 2-layer GNN onV7. The graph sampling algorithm
uniformly selects two neighbors for each vertex. Note that
the sampled vertices may be deduplicated (e.g., V12) and re-
assigned with consecutive IDs (starting from 0).
Prior work has shown that the sample-based approach

can achieve almost the same training accuracy but with
much less computational cost and scales well for large
graphs [12, 36, 47]. Hence, it has been widely adopted by ex-
isting GNN systems [1, 2, 20, 35, 67]. Furthermore, since the
sample-based approach forms the grid-structured data with
fixed size (i.e., sampled vertices and their features), GPUs are
becoming popular in GNN training [17, 20, 35, 37, 38, 56].
Figure 2(a) shows a conventional design for sample-based

1There exist various sampling algorithms, such as k-hop random/weighted

neighborhood sampling [25, 28, 64]. The sampling probability could be uni-

form [25] or non-uniform (e.g., in proportion to the edge weight [43]).

Figure 2. The conventional design for sample-based GNN train-

ing with two optimizations.

GNN training over two GPUs. All graph topological data
and features are kept in the host memory. For each mini-
batch, graph sampling and feature extracting are performed
on CPUs sequentially; then the sampled vertices and their
features are transferred to GPU memory for model training.
Further, GNNs use data parallelism by default to enable mul-
tiple GPUs, as they commonly employ simple models with
only 2 or 3 layers [25, 33, 49]. Each GPU trains mini-batches
independently and exchanges gradients among GPUs to up-
date model parameters synchronously or asynchronously.
However, with the increase of input data size—large-scale

graphs and high-dimensional features, sampling the graph
on CPUs and transferring features to GPU memory become
two main performance bottlenecks. Table 1 reports the run-
time breakdown of representative GNN systems for train-
ing a 3-layer GCN [33] on OGB-Papers [4].2 After enabling
GPU-based training, the Sample and Extract stages domi-
nate the end-to-end GNN training time, accounting for 24%
and 54%, respectively, on DGL [1]. It will get worse when
using multiple GPUs, becoming 38% and 49% for 8 GPUs.
Consequently, this motivates recent research efforts to fur-
ther improve GNN training in these two aspects.

GPU-based feature caching. The running time of the Ex-
tract stage is mainly dominated by loading features of sam-
pled vertices from host memory to GPU memory due to the
limited PCIe bandwidth (normally less than 16GB/s) [32,
35]. Thus, prior work (e.g., PaGraph [35]) proposed to se-
lectively cache the features associated with frequently sam-
pled vertices in GPUmemory (see Cache in Figure 2(a)). Fur-
ther, a static caching strategy is adopted to avoid the over-
head of dynamic data tracking and swapping. It pre-sorts
all vertices by their out-degrees and fills up the GPU cache
with the features of the top-ranked vertices. Since DGL does
not support GPU-based feature caching, we implemented
TSOTA, a state-of-the-art GNN system based on the conven-
tional design, which extends DGL [1] with a static GPU-
based cache [35] and a fast GPU-based sampler from scratch.

2Detailed experimental setup can be found in §7.

419

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

Table 1. The runtime breakdown (in seconds) of a training

epoch on GNN systems with key optimizations. GNN: A 3-layer

GCN [33] with random neighborhood sampling. Dataset: OGB-

Papers [4]. Testbed: The server has two 24-core Intel Xeon CPUs

and one NVIDIA Tesla V100 GPU with 16GB memory.

GNN Systems Sample Extract Train Total

DGL [1] 4.91 11.32 4.00 20.78

w/ GPU-base Sampling 1.21 10.87 3.97 16.18

TSOTA 2.93 5.55 4.00 12.50

w/ GPU-base Caching [35] 2.88 1.73 4.00 8.62

w/ GPU-base Sampling 0.70 5.46 4.01 10.21

w/ Both 0.70 3.62 4.00 8.37

As shown in Table 1, by caching 21% features in GPU mem-
ory (11.4GB), TSOTA reduces data transfer by 62.8% during
one training epoch (from 25.3GB to 9.4GB), resulting in a
1.45× performance improvement in end-to-end GNN train-
ing time (12.5 s vs. 8.62 s).

GPU-based graph sampling. Graph sampling also takes a
substantial portion of the end-to-end GNN training time [30,
47]. Thus, leveraging GPUs to accelerate graph sampling
has appeared in both academic and open-sourced projects,
like NextDoor [30] and DGL [6]. As shown in Figure 2(b),
graph topological data is first loaded into GPU memory and
then sampled on the GPU for each mini-batch. Next, the
samples are returned to CPUs for extracting the features of
sampled vertices to GPU memory. Finally, the GPU trains
a GNN model with the sampled vertices and their features.
Generally, the graph topological data is preloaded and kept
in the GPU memory if possible [6]. For example, the end-to-
end speedup by using one GPU for graph sampling reaches
1.28× in DGL and 1.22× in TSOTA, as shown in Table 1.

3 Analysis of Sample-based GNN Training

Although the aforementioned two optimizations can indi-
vidually improve the performance of GNN systems, the ben-
efits of them cannot be achieved in one system of the con-
ventional design, resulting in suboptimal performance. As
shown in Table 1, TSOTA just achieves 1.49× performance
speedup by enabling both of two optimizations.3 Therefore,
we present an in-depth analysis of sample-based GNN train-
ing to reveal fundamental performance issues and pinpoint
main challenges to unleash the full power of optimizations.

Capacity. The conventional design follows time sharing to
perform a sequence of Sample, Extract and Train stages on
one GPU, as shown horizontally in Figure 3. We observe
that different GNN stages operate on different input data
(e.g., graph topological data for sampling and feature data

3Prior work [30, 35] on these two optimizations did not consider each other

at all. In addition, existing GNN systems also support at most one of them,

like DGL [1] and PaGraph [35].

Figure 3. A breakdown of memory usage and data similarity for

different stages of the SET model when training OGB-Papers over

multiple GPUs (G0, G1, . . .) with 16GB of memory each.

for extracting), and only share a small amount of data (e.g.,
samples) within a mini-batch, which means extremely poor
intra-task data locality. Unfortunately, it is common that the
memory of a single GPU (e.g., 16GB) cannot store all in-
put data (graph topological and feature data), especially for
large-scale graphs with high-dimensional features. Thus, al-
though GPU memory is usually able to keep all graph topo-
logical data, it will greatly limit the available memory ca-
pacity for feature cache (see $/Cache in Figure 3). As an ex-
ample, OGB-Papers [4] dataset includes 6.4GB graph topo-
logical data and 53GB feature data. When sampling it on a
GPU with 16GB memory, it will decrease the cache ratio of
features from 21% to 7% (from 11.4GB to 3.7GB, see two ver-
tical lines in Figure 4(a)), due to keeping graph topological
data in GPUmemory (6.4GB). Note that graph sampling and
model training also consume considerable GPU memory at
runtime (e.g., about 1.3GB and 3.6GB for DGL).
Due to limited cache size, the improvement of the extract-

ing time by caching features becomes trivial as it is posi-
tively correlated with the cache ratio of features in GPU
memory, as shown in Figure 4(a). As a result of degraded
cache ratio, the extracting time significantly increases by
2.2× (from 13.1ms to 28.7ms for a mini-batch), even sur-
passing the training time (24.4ms), since the cache hit rate
drops from 76.8% to 38.0%. More importantly, it will get
worse when the topological data and feature dimensions
increase—this aligns well with the trends in GNN work-
loads [3, 20, 25]. Figure 4(b) shows that the cache hit rate
of a 5GB cache drops to 10% when the feature dimension
of OGB-Papers increases to 768 (same as OGB-MAG [3]); it
will take about 190ms to loadmore than 1.5GB features into
GPU memory.

The first challenge is how to eliminate contention on GPU

memory between different stages of the SET model.

420

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30
 0

 10

 20

 30

 40

 50

C
a

c
h

e
 H

it
 R

a
te

 (
%

)

E
x
tr

a
c
ti
n

g
 T

im
e

 (
m

s
)

Cache Ratio (%)

Hit Rate

Extracting Time

3.7GB

GPU-based
Sampling

11.4GB

CPU-based
Sampling +

Training
 Time

 0

 20

 40

 60

 80

 100

 100 300 500 700 900
0.0

0.5

1.0

1.5

2.0

C
a

c
h

e
 H

it
 R

a
te

 (
%

)

T
ra

n
s
fe

r
S

iz
e

 (
G

B
)

Feature Dim

Hit Rate

Data Size

OGB-Papers OGB-MAG

Figure 4. (a) The cache hit rate and the extracting time for OGB-

Papers with the increase of cache ratio. (b) The cache hit rate and

the size of transferred datawith the increase of feature dimensions.

Efficiency. The efficacy of a static cache depends on not
only the memory capacity available for feature cache, but
also the policy of how to select features to be cached. To the
best of our knowledge, the only caching policy for sample-
based GNN training on GPUs is based on the out-degrees
of vertices, which selects the features of high out-degree
vertices to fill up the cache [35]. It assumes that the input
graph has a highly skewed out-degree distribution. Mean-
while, the sampling algorithm should select neighbors uni-
formly. Under such a condition, the vertex with a higher
out-degree has a higher probability of being sampled.
However, as shown in Figure 5, a significant gap exists in

the size of transferred data to GPUmemory between the ex-
isting (degree-based) policy [35] and the optimal results4 for
diverse GNN datasets and sampling algorithms, especially
at a small cache ratio of features (e.g., less than 10%). The
reasons are two-fold.
First, the out-degree distributions of many GNN datasets

are not highly skewed, such as citation networks (e.g., OGB-
Papers [4]) and web graphs (e.g., UK-2006 [9]), which vio-
lates the narrow assumption of graph structures in prior
work [35]. Further, the sampling algorithm is only con-
ducted on the training set—usually a small fraction of
vertices—and just aggregates their neighbors within 2 or
3 hops [25, 33, 49]. However, the existing policy takes all
vertices of a graph into consideration. For example, in Fig-
ure 5(a), on a non-power-law graph OGB-Papers whose
training vertices only account for 1.1% of total vertices,
compared with the optimal policy, the degree-based policy
needs to transfer 69× data to GPUs (171.9MB vs. 2.5MB)
when the cache ratio is 7%.

Second, the caching policy should also take access pat-
terns of the sampling algorithm into account. The algorithm
for weighted graph might change the probability of picking
a neighbor significantly5, which prior work [28, 43, 58, 64]
overlooks. As shown in Figure 5(b), even if Twitter [34]
dataset has a skewed out-degree distribution, the amount of

4Given a cache ratio, to obtain the optimal cache performance (transferred

data size/cache hit rate), all sample footprints are recorded. After training,

we calculate the corresponding metric if we cache themost visited vertices.
5For example, k-hop weighted neighborhood sampling (e.g., ASGCN [28]

and Thanos [64]), which is available in many GNN systems (e.g., DGL [52]

and AliGraph [67]), selects neighbors of a target vertex based on the prob-

ability determined by weights of edges that connect to its neighbors.

 0

 60

 120

 180

 240

 300

 0 5 10 15 20 25 30

T
ra

n
s
fe

r
S

iz
e

 (
M

B
)

Cache Ratio (%)

Degree

Optimal

3.7GB

GPU-based
Sampling

11.4GB

CPU-based
Sampling

 0

 100

 200

 300

 400

 0 5 10 15 20 25 30 35

T
ra

n
s
fe

r
S

iz
e

 (
M

B
)

Cache Ratio (%)

Degree

Optimal

6.0GB

GPU-based
Sampling

12.2GB

CPU-based
Sampling

Figure 5. The size of transferred data of degree-based and optimal

caching policieswith the increase of cache ratio for (a) OGB-Papers

with uniform sampling and (b) Twitter with weighted sampling.

transferred data to GPUs is still far from optimal when using
3-hop weighted neighborhood sampling [28]. The weight of
a vertex represents the year registered, and the sampling al-
gorithm prefers to select the newer neighbors.

The second challenge is how to achieve optimal cache effi-

ciency for diverse GNN datasets and sampling algorithms.

Discussion. Recently another architecture that adopts
batch-mode for sample-based GNN training has been pro-
posed in AGL [62]. At the beginning of one epoch, all GPUs
load graph topological data into memory and conduct graph
sampling. After that, all GPUs swap graph topological data
out, and load feature cache for effective feature extraction
and model training. We find this design unsuitable for our
setting, as graph topological data is swapped between the
host and GPUs back and forth at the beginning/end of each
epoch. As we can see in §7.6, it may take a few seconds to
load graph topological data and large feature cache, while
during the same time interval, tens of epochs can be finished.
Hence, we omit such a design in this work.

4 Approach and Overview

Opportunity: inter-task locality. Our work is motivated
by an attractive observation that different training epochs
in the same stage share a large amount or even all of the
data, which means that sample-based GNN training has ex-
tremely good inter-task data locality. As shown in Figure 3,
graph topology and feature cache, occupyingmore than 64%
of the total 16GB GPU memory, are fully shared by the Sam-
ple and Extract stages in different epochs, respectively. This
means that leveraging space sharing in the stage level, as
shown vertically in Figure 3, can significantly reduce the
cost of data transfer, which is the major obstacle to optimiz-
ing sample-based GNN training over GPUs.

Our approach: a factored design. Inspired by the factored
operating system (fos) [54], the key idea behind GNNLab

is to perform each stage of the SET model (e.g., Sample) on
dedicated processors (GPUs and/or CPUs) for different mini-
batches.GNNLab is a new factored system for sample-based
GNN training over GPUs, in which space sharing replaces
time sharing to improve performance significantly. Figure 6
illustrates a brief example of GNNLab that conducts two

421

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

Figure 6. An example of the factored design for sample-based

GNN training over 8 GPUs and two 8-core CPUs.

samplers, six extractors and six trainers on a machine with
8 GPUs and two 8-core CPUs.
The factored design can naturally eliminate resource con-

tention on GPU memory between different GNN stages—
namely the first challenge in §3. More specifically,GNNLab
keeps graph topological data and cached features in the
memory of different GPUs. It brings two advantages by leav-
ing more GPU memory space for both topological and fea-
ture data. First,GNNLab can sample larger graph data using
a single GPU without additional data loading. Meanwhile,
GNNLab can significantly reduce the extracting time by
caching more features in the GPU memory (see Figure 4(a)).

Challenge: load imbalance. The above optimizations aim
to unleash the power of GPUs by shifting workloads from
CPUs to GPUs. CPUs are thereby no longer the main perfor-
mance bottleneck, even facing more GPUs (e.g., 8 GPUs in
our testbed). However, the factored design may suffer from
load imbalance across GPUs due to the coarse-grained stage-
level workload partitioning (space sharing). Indeed, both
Sample and Train stages perform on dedicated GPUs, while
the execution time of two stages might be significantly dif-
ferent, even up to 10×, as the datasets (graph topology and
feature dimensions) and workloads (sampling algorithms
and GNN models) are diverse. Therefore, GNNLab needs to
flexibly assign GPUs to different stages andmake themwork
together efficiently. In some cases, GNNLab should further
dynamically change the stage to avoid idle on GPUs—for
instance, running two stages with a 10× difference in execu-
tion time on a host with two GPUs.

5 GNNLab Architecture

GNNLab is a new factoredGNN system that performs differ-
ent stages of the SET model on different processors (GPUs
and CPUs). Hence GNNLab can support two key optimiza-
tions gracefully—namely sampling graph data and caching
features over GPUs—and gain the benefits of both by elimi-
nating contention on the GPU memory. In this section, we
first describe the programming model in GNNLab and then
introduce key designs to tackle load imbalance across GPUs,
such as hybrid execution and flexible scheduling.

5.1 Programming Model

GNNLab provides a simple data-parallel programming
model for various sampling algorithms and GNN models,

class GCN (...): # graph convolutional network

10 def __init__(n_layers=3, ...):

11 for i in range(n_layers)

12 layers[i] = GraphConv(...) # set NN layers

13 ...

14 def forward(self, samples, in_feats, ...):

15 out_feats = in_feats

16 for i in range(n_layers)

17 out_feats = layers[i](samples.pop(), out_feats)

18 return out_feats

class KHOP (...): # K-hop neighborhood sampling

1 def __init__(graph, n_hops=3, sizes=[...], ...):

2 ...

3 def sample(self, minibatch, ...):

4 nbrs = samples.push(minibatch)

5 for i in range(n_hops)

6 # select neighbors for each vertex

7 nbrs = uniform_select(nbrs, sizes[i])

8 samples.push(nbrs)

9 return samples

Figure 7. Example of GCN and k-hop sampling in GNNLab.

similar to existing GNN systems (e.g., DGL [1]). Figure 7
outlines the implementation of the GCN model [33] and 3-
hop random neighborhood sampling in GNNLab. For sam-
pling algorithms (see class KHOP),GNNLab’s API performs
a user-provided function on each mini-batch and returns
a set of sampled vertices (i.e., samples). The API can cap-
ture many different sampling schemes such as k-hop ran-
dom/weighted neighborhood sampling [25, 28] and random
walks [23, 58]. For GNN models (see class GCN), GNNLab’s
API defines a model by stacking multiple GNN layers.

Figure 8. The execution flow of GNNLab.

5.2 Hybrid Execution

To adapt to diverse workloads, GNNLab flexibly assigns
GPUs to different stages and runs them in parallel. We ob-
serve that the Sample and Extract stages only share a small
amount of data (i.e., samples). Thus GNNLab divides the
training pipeline of the SET model into two kinds of indi-
vidual executors, named Sampler and Trainer respectively,
as shown in Figure 8. GNNLab uses a global queue in the
host memory to link two kinds of executors asynchronously,
which is flexible in supporting different numbers of execu-
tors. The concurrent queue would not be the bottleneck
since the updates are infrequent. Figure 9 outlines the im-
plementation of executors in GNNLab.

422

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

class Sampler(...):

1 def run(self, dev, q, graph, ...):

2 load(dev, graph) # load graph to GPU memory

3 khop3 = KHOP(graph, ...) # define 3-hop sampling

4 ...

5 while (minibatch = get_minibatch())

6 samples = khop3(minibatch)

7 remap(dedup(samples))

8 q.enque(samples) # (async) send task

class Trainer(...):

9 def run(self, dev, q, features, ...):

10 model = GCN(...) # define a 3-layer GCN

11 loss_func = ... # define a loss function

12 ...

13 while (samples = q.deque()) # (async) recv task

14 in_feats = extract(features, samples)

15 loss = loss_func(model(samples, in_feats), ...)

16 loss.backward()

Figure 9. Two kinds of executors in GNNLab.

GNNLab binds each Sampler to a GPU, and it will load
graph topological data into GPU memory. The Sampler it-
eratively generates the samples for each mini-batch follow-
ing a certain graph sampling scheme (e.g., k-hop random
neighborhood sampling). To accelerate the pace of feature
extraction, the sampled vertices will be deduplicated and
reassigned with consecutive IDs (starting from 0). Finally,
the samples will be sent to the Trainer asynchronously via a
global queue. For multiple Samplers, a global scheduler as-
signs tasks (i.e., mini-batches) dynamically across them in
order to achieve load balance without synchronization [45].
For larger graphs that cannot fit in GPU memory, a simple
approach is to divide the whole graph into multiple parti-
tions and iteratively load a partition to the GPU memory
for graph sampling [30]. We leave this as future work.
On the other hand,GNNLab binds each Trainer to a GPU

and several CPU cores. The Trainer sequentially executes
the Extract and Train stages for each mini-batch. After re-
ceiving samples of a mini-batch, the Trainer will simulta-
neously extract their features from host memory and the
feature cache in GPU memory (if any). Note that GNNLab
adopts a static caching scheme, so each sampled vertex can
be marked in the Sample stage whether its feature is cached
in GPUmemory or not (see §6 for more details). The Trainer
then runs a forward pass that computes the output based
on a certain GNN model (e.g., GCN), followed by a back-
ward pass that uses a loss function to compute parame-
ter updates. Moreover, GNNLab employs a simple pipelin-
ing mechanism in the Trainer to overlap the Extract and
Train stages. Note that existing GNN systems (e.g., DGL [1])
already leverage the pipelining mechanism during model
training, which is also enabled within the Train stage of
GNNLab. For multiple Trainers, they do not interact with
each other except for exchanging locally produced gradients
to update GNN model parameters. To support pipelining,
GNNLab updates model gradients with bounded staleness,

similar to prior work [20, 38, 39, 41, 48], which effectively
mitigates the convergence problem.

5.3 Flexible Scheduling

GNNLab can assign multiple GPUs to different executors on
demand for load balance—all GPUs are fully utilized. How-
ever, it is not obvious to set the appropriate number of differ-
ent executors, i.e., Samplers and Trainers, for a given GNN
workload. Fortunately, we observe that the performance of
executors in GNNLab is quite stable for sample-based GNN
training. For the Sampler, the input (i.e., mini-batches) and
the output (i.e., samples) of sampling algorithms are com-
monly regular and highly similar. For the Trainer, the run-
time is dominated by the Train stage since the extracting
time is trivial due to using GPU-based cache and is easy
to be hidden by the training time with pipelining. The in-
puts of the Train stage become regular after graph sampling,
and the GNN computations on GPUs have negligible perfor-
mance variability [24]. Finally, both kinds of executors are
parallel in the mini-batch level without synchronization.
Given a GNN workload, we assume that the processing

time of Sampler (Ts) and Trainer (Tt) for a mini-batch can be
estimated by training an epoch in advance. Then, the num-
ber of GPUs allocated to Samplers (Ns) is calculated as:

Ns =

⌈

Nд

K + 1

⌉

and K =
Tt

Ts
,

where Nд is the total number of available GPUs and K is
the ratio of the training time (Tt) to the sampling time (Ts).
GNNLab prefers to allocate GPUs to Samplers because tem-
porarily switching fromSamplers to Trainers can be fulfilled
quickly, but not vice versa. More specifically, the Sampler
may have to take a few seconds, which can sample hun-
dreds of mini-batches, to load the whole graph topological
data into GPU memory before execution (see §7.6). On the
contrary, the Trainer can run on the GPU immediately, and
the size of feature cache in GPU memory only affects the
training performance. Therefore, Ns is set to the ceiling of
the fraction of GPUs allocated, and the rest of the GPUs are
allocated to Trainers (Nt = Nд − Ns).

Dynamic executor switching. Our approach can always
choose the optimal GPU allocation scheme under the given
condition. However, in some severe cases, static scheduling
still leaves large room for improvement. For example, under
unpredictable workload settings (e.g., a shared multi-tenant
cluster), there may exist other workloads contending for
GPUs, temporarily slowing down the Samplers and Train-
ers. Furthermore, GNNLabmight encounter highly skewed
workloads (e.g., Trainers are 10× slower than Samplers) and
a machine with limited GPUs (such as two or even one).
Then, no matter which executor the GPU is allocated to, the
GPU will be idle for a long time, even forever.

423

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

To remedy this, we propose dynamic executor switch-
ing. As mentioned previously, GNNLab only needs to con-
sider switching from Samplers to Trainers, and the switch-
ing is temporary. GNNLab switches Samplers to Trainers
after sampling all mini-batches of the current epoch, and
then switches back at the end of the current epoch. Thus,
graph topological data should always be kept in GPU mem-
ory, even though it would limit the size of feature cache
for Trainers. To enable fast switching, GNNLab launches a
standby Trainer on each GPU allocated to the Sampler, so
that the Trainer can immediately replace the Sampler and
fetch tasks (samples) from the global queue.
To determine whether to switch, GNNLabwill check the

number of remaining tasks in the global queue (Mr) and cal-
culate a profit metric:

P =

{ Mr×Tt
Nt

−Tt ′ if Nt > 0

+∞ if Nt = 0
,

where Tt ′ is the processing time of a standby Trainer (with
limited feature cache) for a mini-batch. The profit metric
(P) measures whether a standby Trainer can complete one
task before existing (normal) Trainers finish all remaining
tasks. If the profit is greater than zero (i.e., P>0), GNNLab
will wake the standby Trainer to process training tasks. If
there is no Trainer (i.e., Nt=0), the profit is infinity, and
GNNLab should always switch Samplers to Trainers. Note
that each standby Trainer should calculate the profit metric
separately before each time it attempts to fetch a task from
the global queue.
Although GNNLab adopts a space sharing strategy for

the multi-GPU setting, it can still run on a single GPU
efficiently. This could be seen as a special case of dy-
namic switching, where the solo GPU is used by alternat-
ing between graph sampling (Sampler) and model training
(Trainer), switching once an epoch. Storing all samples of
an epoch in the global queue located at host memory is af-
fordable, e.g., from 200MB to 1.4GB in our experiments.

6 GPU-based Feature Caching

As discussed in §3, the existing degree-based caching policy
only works well under certain assumptions. Thus a caching
policy that is efficient and robust to diverse GNN datasets
and sampling algorithms is highly favored.

6.1 A General Caching Scheme

We start with a general GPU-based caching scheme. The
scheme has two parameters, a hotnessmetrichv and a cache
ratio α , which are defined as follows.

Hotness metric. A hotness metric hv aims to estimate the
frequency that a vertex v is sampled in the graph sampling
stage of all epochs. Intuitively, we prefer to cache vertices
with larger hv values to improve the cache hit rate and re-
duce the data movement cost. Different caching policies use

Table 2. The similarity (in percentage) of access footprint be-

tween two epochs for various datasets and sampling algorithms.

Sampling algorithms PR [5] TW [34] PA [4] UK [9]

3-hop random 73.97 78.89 91.29 77.46

Random walks 78.16 72.68 87.14 64.40

3-hop weighted 77.69 66.64 89.57 72.96

different hotness metrics, e.g., PaGraph [35] utilizes vertex
out-degree as the hotness metric.

Cache ratio. The cache ratio α determines how many ver-
tices can be cached in GPUs. Observe that a larger α usually
implies a higher cache hit rate. However, due to the limited
GPUmemory, it is unfeasible to cache all vertex features.We
also need to reserve enough memory for GNN model train-
ing. In general, the value of α for a given training task can
be determined by two factors, the available GPU memory
amount for feature cache and the vertex feature dimension.
To determine GPU memory capacity for feature cache, we
adopt the method proposed in PaGraph [35], where we sim-
ulate one-time model training for a mini-batch and record
the peak memory usage for model training. Then the rest of
the available GPU memory is allocated for feature cache.
Following this general scheme, GNNLab provides a built-

in procedure load_cache(hotness_map,α) to enable GPU-
based feature cache. Here hotness_map is a data structure
that stores the hotness value of each vertex, and α is the
cache ratio which can either be specified by users manually
or determined as we have discussed above. The procedure
identifies and loads the features of the top-ranked α |V | ver-
tices w.r.t. hv into GPUs. It also builds a hash table to indi-
cate the location in feature cache of a given vertex. We can
easily implement existing caching policies in GNNLabwith
this caching scheme. For example, to implement the degree-
based caching policy adopted by PaGraph [35] in GNNLab,
it suffices to compute the out-degree of each vertex v as hv
and construct the data structure hotness_map.

6.2 Analysis of Caching Policies

Most GNNmodels shuffle the training setT at the beginning
of each epoch and divideT into multiple mini-batches. Thus,
it is hard to predict the vertices sampled in each mini-batch.
Nevertheless, observe that all the sampling operations of
one epoch are started from the sameT . That is, the vertices
sampled in one epoch are the results of a stochastic process
defined by the sampling algorithmA, the input graphG and

training set T . Let ĥv be the sampled frequency of vertex

v in one epoch. The expectation E[ĥv] of ĥv can be served
as an ideal hotness metric for each vertex v in all epochs.
Note that sampling operations of different epochs are inde-

pendent, and thus we can use E[ĥv] of one epoch to reflect
the expected visit frequency in all epochs for vertex v .

424

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

 0

 20

 40

 60

 80

 100

PR TW PA UK PR TW PA UK PR TW PA UK

C
a

c
h

e
 H

it
 R

a
te

 (
%

)

Random Degree PreSC#1 Optimal

3-hop random Random walk 3-hop weighted

Figure 10. The comparison of the cache hit rate for

variousworkloads by using different caching policies.

The cache ratio of features is set to 10%.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

C
a

c
h

e
 H

it
 R

a
te

 (
%

)

Cache Ratio (%)

Optimal

PreSC#1

PreSC#2

Degree

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
a

c
h

e
 H

it
 R

a
te

 (
%

)

Cache Ratio (%)

Optimal

PreSC#1

Degree

Random

 0

 0.5

 1

 1.5

 2

 100 300 500 700 900

T
ra

n
s
fe

r
S

iz
e

 (
G

B
)

Feature Dim

Optimal

PreSC#1

Degree

Random

Figure 11. The comparison among different caching policies for (a) Twitter with

weighted sampling, (b) OGB-Papers with 3-hop neighborhood, and (c) OGB-Papers

with the increase of feature dimensions. PreSC#K conducts K sampling stages.

It is theoretically possible to compute E[ĥv] for each ver-
tex v , but this would incur high preprocessing overheads.
Observe that we are only interested in the vertices with

top-ranked E[ĥv]’s. Thus, it suffices to approximate E[ĥv].
For example, we can try out a few epochs with the Sam-
ple stage alone and use the average visit count hv of each

vertex as an approximation of E[ĥv]. We find that the ver-

tices with top-ranked E[ĥv] and top-rankedhv overlap with
a high probability. To see this, we conducted 100 itera-
tions of graph sampling for all training vertices on three
sampling algorithms and three real-life graphs, and com-
pared the similarity of frequency among the top 10% fre-
quently sampled vertices between each pair of adjacent
epochs. We define the similarity of i-th epoch to j-th epoch
by

∑

v ∈Ti∩Tj min(fi (v), fj (v))/
∑

v ∈Tj fj (v), where Ti and Tj
are the sets of top 10% accessed vertices in epochs i and j ,
and fi (v) and fj (v) are the sampled frequency ofv in epochs
i and j . As shown in Table 2, for the top-ranked vertices, on
average over 75% of the access footprint overlaps between
two iterations. This indicates that it is feasible to pre-sample
a few rounds to estimate vertex hotness.

6.3 A Pre-sampling Based Caching Policy

Based on above theoretical analysis, we propose a pre-

sampling based feature caching policy (PreSC). Given a
graphG , a sampling algorithmA and a training setT , PreSC
conducts K sampling stages, starting from the vertices in T .
HereK is a user-defined parameter. It records the visit count
of the sampled vertices and uses the average count as the
hotness metric hv . We use PreSC#K to denote the variant of
PreSC that conducts K sampling stages.
We find that a small number of sampling stages, i.e., K ≤

2, already produce a decent hotness estimation and suffice
for most training tasks (see Figure 11(a)). Thus it is feasible
to compute the hv ’s of PreSC online, since (i) GPU-based
graph pre-sampling is lightweight, e.g., on average it only
takes 1.4× time of one epoch (see §7.6), and (ii) a typical
GNN training pipeline usually has over 100 epochs. Specif-
ically, we run the first K epochs of an end-to-end training
pipeline for pre-sampling without features cache and deter-
mine which vertices should be cached. Then features of se-
lected vertices are loaded into GPUs, and the rest of epochs

can benefit from reduced data movement to GPUs. This pre-
sampling process can also be dealt with in an offlinemanner.
In general, the benefits of pre-sampling based caching pol-

icy are two-fold: efficiency and robustness.

Efficiency. PreSC is very efficient in terms of cache hit rate.

This is because the ideal hotness estimation metric E[ĥv]
captures the sampled frequency of a vertex in all epochs,
and the hotness metric hv of PreSC provides a good approx-

imation of E[ĥv]. As shown in Figure 10, fixing cache ratio
α = 10%, the cache hit rate of PreSC is almost as good as the
Optimal policy, and is on average 1.5× (up to 2.2×) higher
than that of the Degree policy. Recall that the Optimal pol-
icy defines an upper bound of cache hit rate for an fixed
cache ratio, since it assumes that we can cache the actual
most frequently sampled vertices in all epochs in advance.

Robustness. PreSC is robust to diverse datasets and sam-
pling algorithms. As shown in Figure 10, on four GNN
datasets and three sampling algorithms, PreSC constantly
beats other baselines, including the Random policy and De-
gree policy adopted by PaGraph [35]. This is because, as
oppose to prior work, the hotness metric hv of PreSC is
computed by simultaneously taking the input graph G , the
training set T and the sampling algorithm A into account.
Observe that the performance of Degree policy is unstable.
For example, for the 3-hop random neighborhood and ran-
dom walks, the Degree policy has a similar cache hit rate
as PreSC on the power-law graph TW [34]. However, if we
either use a non-power-law graph, e.g., PA [4], or use the
weighted sampling, the cache hit rate of Degree drops very
quickly, i.e., on average below 51%. Instead, the performance
of PreSC is stable and very close to Optimal in all 12 cases.
These verify the robustness of PreSC.

The high efficiency and robustness of PreSC bring sub-
stantial advantages in processing large-scale graphs and
high-dimensional features. To see this, in Figure 11(b) we
first plot the cache hit rate to the cache ratio α on OGB-
Papers dataset with 3-hop random neighborhood sampling.
The cache hit rate of PreSC increases fast and reaches 96%
when α = 5%. This verifies the effectiveness of PreSC to
process large-scale graphs, i.e., PreSC is able to achieve a
decent cache hit rate even with a very small α . In contrast,

425

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

the cache hit rates of Random and Degree policies are be-
low 5% and 29% when α = 5%, respectively. They increase
much slower than PreSC. Observe that the hotness metric of
PreSC takes the training set T into account, while the Ran-
dom and Degree policies overlook the impact of T . For ex-
ample, the Degree policy uses the static vertex out-degree as
the hotness metric, which essentially assumes that the sam-
pling operations are started from all vertices in the dataset.
This largely reduces the cache utilization since some high-
degree vertices may never be sampled from a givenT . Fixing
5GB cache size, Figure 11(c) further shows the size of data
moved to the GPUmemory in one mini-batch as the feature
dimension increases. We can see that as the dimension in-
creases from 100 to 900, the transferred data size of PreSC
increases much slower than Random and Degree policies.
The transferred data size of PreSC is less than 500MB when
the dimension is 900. Instead, Degree and Random need to
move nearly 2GB data, which is 4× of that of PreSC.

7 Evaluation

We implemented GNNLab starting from scratch, with
about 15,200 lines of C++ and CUDA codes. The build-in
graph sampling algorithms includek-hop random/weighted
neighborhood sampling and random walks. Besides, it uti-
lizes DGL as the GNN execution runtime (the Train stage).

7.1 Experimental Setup

Environments. The experiments were conducted on a
GPU server that consists of two Intel Xeon Platinum 8163
CPUs (total 2× 24 cores), 512GB RAM, and eight NVIDIA
Tesla V100 (16GB memory, SXM2) GPUs. The software en-
vironment of the server was configured with Python v3.8,
PyTorch v1.7, CUDA v10.1, DGL v0.7.1, and PyG v2.0.1.

GNNs. We used three representative models: GCN [33],
GraphSAGE [25], and PinSAGE [58]. GCN (resp. Graph-
SAGE) adopts 3-hop (resp. 2-hop) random neighborhood
sampling [66]. Starting from a training vertex, the num-
ber of sampled neighbors for different layers of GCN (resp.
GraphSAGE) is 15, 10, and 5 (resp. 10 and 25). PinSAGE has
3 layers, and each layer uses randomwalks to select 5 neigh-
bors from 4 paths of length 3. We determined the above set-
tings (e.g., the size of sampled neighbors and the sampling al-
gorithm) by comprehensively following the details reported
in the original papers [25, 33, 58] together with official ex-
amples and guidelines from DGL. Considering that all three
selected GNN models do not apply weighted sampling, we
evaluated the 3-hop weighted neighborhood sampling algo-
rithm [28] in §7.4 to further investigate how it affects the
performance of GNNLabwhen using different caching poli-
cies. In addition, similar to prior work [31, 66], the dimen-
sion of the hidden layers of all models is set to 256, and the
batch size is set to 8, 000.

Table 3. Datasets and GNN systems used in evaluation. #TS de-

notes the size of training set. VolG (resp. VolF) is the data volume

of graph topological (resp. feature) data in host memory. N/A rep-

resents the GPU is only used by a single stage (i.e., Train).

Dataset #Vertex #Edge Dim. #TS VolG VolF

PR [5] 2.4M 124M 100 197K 481MB 934MB

TW [34] 41.7M 1.5B 256 417K 5.6GB 40GB

PA [4] 111M 1.6B 128 1.2M 6.4GB 53GB

UK [9] 77.7M 3.0B 256 1.0M 11.3GB 74GB

System Design Sample Extract Train

PyG N/A CPU No cache GPU

DGL Time S. GPU No cache GPU

TSOTA Time S. GPU w/ Opt. Cache w/ Degree GPU

GNNLab Space S. GPU w/ Opt. Cache w/ PreSC GPU

Datasets. We used four datasets as listed in Table 3 for eval-
uation, including a social graph Twitter [34] (TW), a web
graph UK-2006 [9] (UK), and two GNN datasets from Open
Graph Benchmark (OGB) [26]—a co-purchasing network
OGB-Products (PR) and a citation network OGB-Papers
(PA). Similar to prior work [20], we generated random fea-
tures and labels for TW and UK since they originally had no
features and labels. Both PR and PA from OGB provide an
official training set. For TW and UK, which do not provide
a training set, we followed a common practice [35] that ran-
domly selects a small portion of vertices as the training set.
Note that the training set is selected offline once and shared
across each run. The overhead to select the training set is
trivial, e.g., less than 150ms for the largest graph (UK).

Baselines. We comparedGNNLabwith PyG [17], DGL [52]
and TSOTA.

6 As shown in Table 3, PyG conducts graph
sampling on CPUs, while DGL enables GPU-based sam-
pling to accelerate graph sampling. TSOTA is built upon
the same codebase of GNNLab, and supports both GPU-
based graph sampling and feature caching. Different from
GNNLab, TSOTA follows a time sharing design, i.e., each
GPU conducts both graph sampling andmodel training, and
adopts the degree-based caching policy [35]. DGL also uses
time sharing, but has no caching mechanism. Since DGL
only supports synchronous gradient updates, for fair com-
parisons,GNNLab and other baselines employ synchronous
gradient updates unless otherwise specified. All results were
computed by calculating the averages over 10 epochs.

7.2 Overall Performance

We first comparedGNNLabwith its competitors. Table 4 re-
ports the end-to-end training time of one training epoch for
each GNN system. The number of GPUs allocated to Sam-
plers (nS) is determined by the method in §5.3. Note that for

6Since PaGraph [35] is built withDGL v0.4.1which only supports sampling

by CPUs, TSOTA clearly outperforms PaGraph and also uses degree-based

caching policy. Therefore, we do not consider PaGraph in our experiments.

426

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

Table 4. The runtime (in seconds) of one epoch on different GNN

systems. (nS) represents n GPUs allocated to Samplers inGNNLab.

“×” indicates that the target GNN model is not supported.

GNN Model Dataset PyG DGL TSOTA GNNLab

GCN

PR 11.91 1.33 0.22 0.33 (2S)

TW 12.15 3.86 1.80 0.47 (2S)

PA 14.82 4.56 2.46 0.84 (2S)

UK 15.04 OOM OOM 1.47 (2S)

GraphSAGE

PR 8.17 0.79 0.07 0.11 (4S)

TW 8.18 1.81 0.35 0.20 (2S)

PA 9.68 2.47 0.85 0.30 (2S)

UK 9.86 OOM 2.01 0.61 (1S)

PinSAGE

PR × 0.94 0.30 0.40 (1S)

TW × 2.50 0.98 0.58 (1S)

PA × 2.97 1.65 1.05 (1S)

UK × OOM OOM 1.81 (1S)

an 8-GPU machine, our flexible scheduling scheme already
provides optimal GPU allocations for Samplers. Therefore,
dynamic switching does not happen in this evaluation. We
mainly find the following.

(1) Overall, GNNLab outperforms DGL and PyG by up to
9.1× (from 2.4×) and 74.3× (from 10.2×), respectively. For
systems using GPUs for graph sampling, only GNNLab can
process UK dataset in all cases, while other systems run out
of memory (OOM) due to GPUmemory contention. Note that
PyG performs the worst in all experiments due to the high
cost of graph sampling on CPUs and transferring features
to GPUs (see §2). Due to space limitations, we do not re-
port its experimental results in the rest of our evaluation.
In general, the performance gain of GNNLab over its com-
petitors mainly comes from three aspects: (A1) a new space
sharing design that unleashes the power of GPU-based sam-
pling and caching, (A2) an efficient and robust caching pol-
icy (PreSC), and (A3) an efficient implementation of GPU-
based graph sampling. More details can be found in §7.3.

(2) Compared with TSOTA, GNNLab benefits from (A1) and
(A2). Indeed, TSOTA suffers from GPU memory contention
and its inefficient degree-based caching policy. Specifically,
TSOTA needs to load graph topological data into each GPU,
leaving only limited memory for feature cache. As shown
in Figure 11, PreSC is more efficient than the degree-based
policy, especially when the cache ratio is small. Note that
TSOTA performs slightly better than GNNLab on PR. This is
because all topological and feature data of PR can be loaded
into a single GPU. Therefore, (A1) and (A2) cannot improve
that case, while our factored design introduces little over-
head in the Sample stage (see §7.3 for details). Note that
TSOTA is built upon the same codebase of GNNLab.

(3) The performance gain of GNNLab over DGL comes from
(A1)∼(A3). DGL stores all feature data in the host memory

and has no GPU-based caching mechanism. Thus, it trans-
fers much more data to GPUs than TSOTA and GNNLab. In
addition, DGL only uses CPUs to extract features of sampled
vertices, which also incurs a large number of random mem-
ory accesses. Therefore, apart from the more severe GPU
memory contention problem, the limited memory access
bandwidth shared by CPUs is another major bottleneck.

7.3 Performance Breakdown

We next conducted a stage-level time breakdown analysis
for the SET model on DGL, TSOTA, and GNNLab with two
GPUs (1S1T for GNNLab). The results are reported in Ta-
ble 5. We mainly find the following.

(1) For the Sample stage (S), GNNLab and TSOTA beat DGL
on three models. We find that DGL adopts the Reservoir al-
gorithm [50] for k-hop random neighborhood sampling on
GPUs. The sampling complexity of each vertex is positively
correlated with its in-degree, resulting in an unbalanced
workload on GPU threads. Instead, GNNLab and TSOTA im-
plement a variant of the Fisher–Yates algorithm [18], which
is GPU-friendly since the workload is more balanced for
each vertex. Note that the performance gain of GNNLab and
TSOTA over DGL are larger on PinSAGE than on GCN and
GraphSAGE. After profiling, we find that invoking CUDA
code from Python code in DGL incurs considerable runtime
overheads. Meanwhile, comparedwith k-hop randomneigh-
borhood sampling, random walks has more complex vertex
access patterns, making the runtime overheads more signif-
icant. Furthermore, compared to TSOTA, GNNLab incurs ad-
ditional overheads (less than 0.1ms on average) for copying
samples to a global queue in the host memory (see §5.2).

(2) For the Extract stage (S), the performance largely de-
pends on cache size and caching policy. The former deter-
mines the cache ratio of features (R%), and the latter de-
termines the cache hit rate (H%). Without caching, DGL
must transfer all features of sampled vertices from host
memory to GPU memory, which accounts for up to 85.0%
(from 38.8%) of end-to-end time. By enabling GPU-based
caching and the degree-based policy, TSOTA performs much
better, especially for small datasets (e.g., PR). However, the
time sharing design greatly limits the available memory
capacity for the feature cache, resulting in relatively low
cache ratios for large graphs (e.g., only 1% for GCN on
TW). Further, the degree-based caching policy is still far
from efficient for many graphs and sampling algorithms.
For example, the cache hit rate for GCN on PA is only 37%,
when caching 7% of features. In contrast, GNNLab never
gets bogged down by extracting features in all experiments,
thanks to our space sharing design and pre-sampling based
caching policy (PreSC). First, the cache ratio is significantly
improved in GNNLab, e.g., from 1% to 25% for GCN on TW.
Second, PreSC demonstrates surprising efficiency. For ex-
ample, on PA, caching less than 25% of features reduces

427

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

Table 5. The runtime breakdown (in seconds) of one epoch for DGL, TSOTA and GNNLab. S, E, and T represent sample, extract, and train

stages. G, M, and C represent graph sampling, marking cached vertices, and copying samples to the host memory in the Sample stage,

respectively. R% and H% represent the cache ratio of features and the cache hit rate. GSG and PSG are short for GraphSAGE and PinSAGE.

GNN Dataset
DGL TSOTA GNNLab

S E T S = G + M E (R%, H%) T S = G + M + C E (R%, H%) T

GCN

PR 0.35 2.81 1.22 0.30 = 0.29 + 0.01 0.04 (100, 100) 1.18 0.39 = 0.29 + 0.01 + 0.09 0.15 (100, 100) 1.18

TW 0.74 9.44 1.48 0.29 = 0.26 + 0.03 3.68 (1, 29) 1.53 0.37 = 0.26 + 0.03 + 0.08 0.76 (25, 89) 1.51

PA 1.20 10.70 4.00 0.79 = 0.70 + 0.10 3.64 (7, 38) 4.00 0.96 = 0.68 + 0.10 + 0.18 0.49 (21, 99) 3.82

UK OOM OOM OOM OOM OOM OOM 0.56 = 0.39 + 0.03 + 0.14 3.06 (14, 70) 3.09

GSG

PR 0.13 1.92 0.23 0.16 = 0.15 + 0.01 0.03 (100, 100) 0.25 0.20 = 0.15 + 0.01 + 0.04 0.08 (100, 100) 0.24

TW 0.38 4.65 0.44 0.12 = 0.11 + 0.01 0.62 (15, 77) 0.44 0.16 = 0.11 + 0.01 + 0.03 0.41 (32, 89) 0.43

PA 0.56 6.06 1.25 0.38 = 0.33 + 0.06 1.42 (11, 56) 1.18 0.46 = 0.31 + 0.06 + 0.08 0.28 (25, 99) 1.15

UK OOM OOM OOM 0.19 = 0.19 + 0.00 4.49 (0, 0) 1.08 0.26 = 0.18 + 0.02 + 0.06 1.39 (18, 72) 1.01

PSG

PR 0.40 1.64 1.75 0.16 = 0.16 + 0.01 0.03 (100, 100) 1.74 0.20 = 0.15 + 0.01 + 0.04 0.08 (100, 100) 1.72

TW 0.72 5.22 2.59 0.23 = 0.22 + 0.02 1.12 (4, 60) 2.60 0.28 = 0.21 + 0.02 + 0.05 0.51 (26, 86) 2.52

PA 1.86 4.85 5.78 0.54 = 0.49 + 0.05 1.68 (6, 37) 6.09 0.61 = 0.47 + 0.04 + 0.09 0.33 (22, 97) 6.01

UK OOM OOM OOM OOM OOM OOM 0.65 = 0.49 + 0.03 + 0.13 3.37 (13, 57) 7.00

 0

 2

 4

 6

 8

TW PA UK TW PA UK TW PA UK TW PA

R
u

n
ti
m

e
 (

s
e

c
)

Random Degree PreSC#1

GCN GraphSAGE PinSAGE GCN (W.)

Figure 12. The runtime of the Extract stage on 1 GPU. GCN (W.)

stands for GCN with 3-hop weighted neighborhood sampling.

data movement by more than 97%. However, compared
to TSOTA, GNNLab incurs additional overheads (less than
0.1ms on average) for loading samples into GPU memory
from the global queue (see §5.2). Overall, GNNLab outper-
forms TSOTA by 4.2× on average in the Extract stage (except
for PR), due to fetching over 84% of required features di-
rectly from the GPU cache.

(3) For the Train stage (T), GNNLab, TSOTA and DGL have
similar performance, as all three systems employ the same
GNN execution runtime (i.e., DGL) in this stage. For flexible
scheduling (see §5.3), in most cases, the training time is used
to calculate the number of GPUs allocated to Sampler (Ns).
For GCN and GraphSAGE on UK, the extracting time domi-
nates the processing time of Trainer (Tt), so that it replaces
the training time to calculate Ns .

7.4 Impact of Caching Policy

Wenext explored how the caching policy impacts extracting
time (including extracting features in CPUs/GPUs and trans-
ferring data to GPUs) and the end-to-end time of one epoch.
We implemented the degree-based policy (Degree) [35] and
the randompolicy (Random) (i.e., randomly select and cache

 0

 1

 2

 3

 4

TW PA UK TW PA UK TW PA UK TW PA

R
u

n
ti
m

e
 (

s
e

c
)

Random Degree PreSC#1

GCN GraphSAGE PinSAGE GCN (W.)

Figure 13. The runtime of one epoch in GNNLab using different

caching policies. The GPU allocation scheme follows Table 4.

vertices) in GNNLab, and compared them with our pre-
sampling based policy (PreSC#1). Figure 12 reports extract-
ing time of one epoch for four GNN models and three
datasets. Note that we omit the results of PR dataset since
all of its feature data can be loaded into GPU memory. As
we can see, the degree-based policy only works well for TW
dataset but not on other datasets. Conversely, PreSC#1 al-
ways beats its competitors, which further confirms our find-
ings in §6. Compared to Degree and Random, PreSC#1 re-
duces extracting time by 39% and 73% on average, up to 87%.
We also investigated the impact of various caching poli-

cies on the end-to-end time of one training epoch. We find
that the improvement of end-to-end time varies frommodel
to model. For GNN models with low training complexity
(e.g., GCN and GraphSAGE), the end-to-end time is largely
reduced since model training only accounts for a small frac-
tion. As shown in Figure 13, for GCN and GraphSAGE,
PreSC#1 helps reduce up to 45% (from 5%) and 76% (from
50%) of end-to-end time compared to Degree and Random,
respectively. Whereas for GNN models with high training
complexity (e.g., PinSAGE), the improvement is relatively
limited (1%–40% for PinSAGE), as the Train stage accounts

428

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

 0

 4

 8

 12

 16

 1 2 3 4 5 6 7 8

E
p

o
c
h

 T
im

e
 (

s
e

c
)

Number of GPUs

DGL

TSOTA

GNNLab/1S

GNNLab/2S

GNNLab/3S

 0

 4

 8

 12

 16

 1 2 3 4 5 6 7 8

E
p

o
c
h

 T
im

e
 (

s
e

c
)

Number of GPUs

DGL

TSOTA

GNNLab/1S

GNNLab/2S

GNNLab/3S

Figure 14. The scalability of DGL, TSOTA and GNNLab for

training GCN on (a) PA and (b) TW w.r.t. the number of GPUs.

GNNLab/kS indicates that k GPUs is allocated to Samplers.

 0

 1

 2

 3

 4

 5

â��

1
S

 1
T

1
S

 2
T

1
S

 3
T

1
S

 4
T

1
S

 5
T

1
S

 6
T

1
S

 7
T

â��

2
S

 1
T

2
S

 2
T

2
S

 3
T

2
S

 4
T

2
S

 5
T

2
S

 6
T

â��

3
S

 1
T

3
S

 2
T

3
S

 3
T

3
S

 4
T

3
S

 5
T

â��

R
u

n
ti
m

e
 (

s
e

c
)

GNNLab

Sample

Extract

Train

Figure 15. The runtime breakdown of an epoch in GNNLab for

training GCN on PAw.r.t. the number of GPUs.mS and nT indicate

m Samplers and n Trainers, respectively.

for a large fraction of the end-to-end time, especially when
pipelining is enabled.

7.5 Scalability

We next evaluated the scalability of GNNLabw.r.t. the num-
ber of GPUs. Fixing the number of GPUs for Samplers as 1, 2
and 3, Figure 14 reports the end-to-end time of one epoch of
GCN on PA and TW datasets. We can see that as the num-
ber of Trainers increases, the epoch time first decreases al-
most linearly, i.e., at this moment the capacity of consum-
ing samples by Trainers is the major bottleneck. When the
number of Trainers further increases, the epoch time de-
creases relatively slower, indicating that Trainers gradually
catch up with the sample generating speed. Compared to
GNNLab, both DGL and TSOTA have longer epoch times,
and the epoch time decreases more slowly as the number of
GPUs increases. This is because DGL and TSOTA need to ex-
tract and transfer more feature data from the host memory
in parallel, which consumes CPU resources and PCIe band-
width. However, neither of them increase with the number
of GPUs. Further, both DGL and TSOTA follow a time shar-
ing design, so that more GPUs are involved in extracting
features, leading to more resource contention.
To demonstrate the efficacy of flexible scheduling in

depth, we further plotted the execution time in stages of
GNNLab for GCN on PA. As shown in Figure 15, fixing the
number of Samplers (m) to 1, 2, and 3, the end-to-end time
of one epoch (the black line) keep dropping as the number
of Trainers (n) increases from 1 to 5, 6, and 5, respectively. In
the case of one Sampler (1S), the overall performance stops
improving when n reaches 5 because the Sampler becomes

Table 6. The preprocessing time (in seconds) for training GCN in

GNNLab. Here G: graph topo. data, F: feature data, $: cache data.

Preprocessing Time PR TW PA UK

Disk to DRAM (G & F) 1.19 30.56 48.62 58.24

DRAM to GPU-mem (G & $) 1.13 11.85 14.33 14.65

Load graph topological data 0.27 2.65 3.21 5.32

Load feature cache 0.85 9.15 10.73 9.24

Pre-sampling for PreSC#1 0.42 0.70 1.81 1.14

the new bottleneck. Instead, for the case of three Samplers
(3S), although the overall perfromance continues to drop, it
is always slower than the case of two Samplers (2S) due
to fewer Trainers when using the same number of GPUs
(e.g., 1.5s for 2S3T vs. 2.1s for 3S2T). Our flexible scheduling
scheme can find the optimal GPU allocation, i.e., 2 Samplers
for GCN on PA (see Table 4).
Finally, we also explored the scalability of the conver-

gence time in GNNLab. Observe that, as the number of
GPUs increases, the epoch time decreases but the number of
epochs required to converge also increases. Overall, when
using more GPUs, the convergence time still drops, but
slightly slower than the epoch time. More details on con-
vergence time can be found in §7.7.

7.6 Preprocessing Cost

We next estimated the preprocessing cost in GNNLab. Ta-
ble 6 reports the results for training GCN on four datasets.
The results for other GNN models are similar (not shown
here for brevity). Note that the preprocessing time includes
(P1) loading graph topological and feature data (G and F)
from disk to host memory (DRAM), (P2) loading G and fea-
ture cache ($) from DRAM to the GPUmemory (GPU-mem),
and (P3) pre-sampling graph data, i.e., a round of GPU-based
sampling, and constructing the hotness map.
As shown in Table 6, (P1) accounts for a major part of the

overall preprocessing time, and (P2) and (P3) are relatively
trivial. Note that optimizing (P1) is quite easy but not the
focus of ourwork. On average, (P2) takes 13.9× of one epoch
time (see Table 4), 3.5× for loadingG and 10.3× for loading
$. (P3) is very fast, only taking about 1.4× of one epoch time.
GNNLab only needs to perform (P2) and (P3) once for one
GNN training task that usually takes hundreds of epochs.
Therefore, the overhead of (P2) and (P3) can be amortized.

7.7 Training Convergence

For training a GNN model, readers may be more concerned
with the time to converge to the expected accuracy, rather
than just the execution time of one epoch. In addition, we
also need to verify the correctness of our implementation.
To this end, given the accuracy target, we train GraphSAGE
on PA dataset using DGL, TSOTA and GNNLab. As shown
in Figure 16(a), all three systems can converge to the same

429

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40

A
c
c
u

ra
c
y
 (

%
)

Time (sec)

DGL

TSOTA

GNNLab/2S

33s

 50 200 350

56%

117s 335s

 0

 1

 2

 3

 4

 0 25 50 75 100 125 150

N
u

m
b

e
r

o
f

U
p

d
a

te
s
 (

K
)

Epochs

DGL

TSOTA

GNNLab/2S

+[1
06, 2

756]

+

[131, 2
489]

Figure 16. A comparison of (a) the end-to-end time and (b) the

number of gradient updates using DGL, TSOTA and GNNLab for

training GraphSAGE on PA until convergence.

accuracy targets (i.e., about 56%), and GNNLab converges
much faster than DGL and TSOTA. The reasons are two-fold.
First, for training one epoch, DGL outperforms DGL and
TSOTA by 8.2× and 2.8×, respectively, as shown in Table 4.
Second, given a mini-batch size, the more GPUs allocated
for model training, the fewer gradient updates per training
epoch; therefore, more epochs are required to achieve the
same expected accuracy. Compared with DGL and TSOTA,
GNNLab allocates fewer GPUs (i.e., 6 vs. 8) for model train-
ing due to our factored design. Thus, GNNLab achieves the
expected accuracy in fewer epochs (i.e., 106 vs. 131) but
more gradient updates (i.e., 2, 756 vs. 2, 489) than TSOTA and
DGL, as shown in Figure 16(b). Eventually, training Graph-
SAGE on PA to reach the same accuracy, GNNLab out-
performs DGL and TSOTA by 10.2× and 3.5×, respectively,
thanks to the above two advantages.

7.8 Dynamic Switching

As mentioned previously (see §5.3), dynamic switching in
GNNLab will greatly improve performance, if the number
of GPUs are limited (e.g., two or even one) and/or the work-
load is highly skewed (e.g., Trainers consume samples much
faster than Samplers produce samples). To show the benefits
of dynamic switching, we train PinSAGE on PA and allocate
only one GPU to Sampler. As shown in Table 5, the ratio of
training time to sampling time (K) reaches 9.9, whichmeans
that if the number of GPUs allocated to Trainers less than
10. the only GPU allocated to Sampler will still be idle. As
shown in Figure 17(a), for fewer Trainers (e.g., less than 3),
the improvement achieved by enabling dynamic switching
is significant. As Trainers increase, the workload tend to be
balanced, and the improvements become limited. Note that
asynchronous gradient updates are used in this experiment.

7.9 Performance on a Single GPU

The dynamic switching mechanism also allows GNNLab to
work on a single GPU.GNNLab first stores all samples of an
epoch in the host memory; after that the standby Trainer is
launched to conductmodel training.We comparedGNNLab
with TSOTA and DGL on a single GPU. As shown in Fig-
ure 17(b), GNNLab outperforms DGL by up to 7.7× (from
1.9×) due to enabling GPU-based cache. Thanks to our
caching policy (PreSC), even though transferring samples

 0

 2

 4

 6

 8

1
S

 1
T

1
S

 2
T

1
S

 3
T

1
S

 4
T

1
S

 5
T

1
S

 6
T

1
S

 7
T

E
p

o
c
h

 T
im

e
 (

s
e

c
)

w/o DS

w/ DS

 0

 5

 10

 15

 20

PR TW PA PR TW PA PR TW PA

E
p

o
c
h

 T
im

e
 (

s
e

c
)

DGL

TSOTA

GNNLab

GCN GraphSAGE PinSAGE

Figure 17. (a) The runtime of one epoch in GNNLab w/ and w/o

dynamic switching (DS) for training PinSAGE on PAw.r.t. the num-

ber of GPUs. (b) The runtime of one epoch over a single GPU.

through a global queue in host memory incurs some over-
head (less than 0.1ms), GNNLab still outperforms TSOTA by
up to 2.0× (from 1.2×), except for PR where all graph topo-
logical and feature data can be loaded into a single GPU.

8 Discussion

We next discuss a design alternative for sample-based GNN
training over multiple GPUs and some factors which may
affect the efficiency of GNNLab.

Partitioning-based approach. Readers might be inter-
ested in an alternative that splits graph topological and fea-
ture data into multiple partitions and then loads them into
different GPUs. We note that partitioning-based approach
is orthogonal to our work and can benefit if applied to
GNNLab. However, both two intuitive solutions suffer from
severe problems, and we leave it as future work. One so-
lution is to adopt cross-GPU memory access during graph
sampling, which would incur considerable latency, as cross-
GPU memory access is significantly slower than local mem-
ory access (e.g., 74× slower in our testbed). Another solu-
tion [35] is to ensure that each partition is self-reliant so
that sampling on a partition can be done independently.
However, it would inevitably introduce significant redun-
dancy among partitions. Indeed, for a GNN model with L

layers, a self-reliant partition is required to extend with
the L-hops neighbors and edges. The redundancy largely
reduces the GPU memory capacity for feature cache, es-
pecially for power-law graphs. For example, to run the 3-
hop randomneighborhoodsampling on Twitter [34] dataset,
each of eight partitions requires to include over 95% of total
vertices to be self-reliant.

Mini-batch size. The mini-batch size will not affect the ef-
ficacy of our PreSC caching policy, since one epoch needs to
process all training vertices, and the cached vertices are se-
lected based on visited vertices of all training vertices. How-
ever, the mini-batch size will affect the end-to-end time of a
training epoch and the time of converging to the expected
accuracy. Based on our experience and recent literature [44],
using a larger mini-batch can reduce the end-to-end time of
one epoch, while the time to converge to the expected accu-
racy decreases first and then increases gradually.

430

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

Training set. The size of training set also affects the perfor-
mance of GNNLab. The time of an epoch increases as the
size of training set grows since more sampling and model
training computations are needed. The Extract stage is more
sensitive to the training set size. This is because, with a
larger size, more feature data is transferred to GPUmemory,
exacerbating the GPUmemory contention problem (see also
§3). Thanks to the factor design that effectively eliminates
resource contention and the PreSC caching policy with high
cache hit rates, GNNLab can achieve more speed-ups over
its competitors with a larger size of training set.

Other sampling algorithms. In addition to k-hop neigh-
borhood sampling [25, 28, 64] and random walks [23, 43,
58], subgraph-based sampling algorithms [15, 60, 61] have
recently gained more attention. Such algorithms become
more lightweight and lead to highly skewed workloads, so
that our dynamic switching scheme will be more helpful
(see also §5.3). Further, some sampling algorithms may not
follow the similarity of access footprint between epochs,
which would limit the contribution of our PreSC caching
policy. For example, ClusterGCN [15] samples all training
vertices uniformly once in each epoch. However,GNNLab’s
factored design leaves a larger GPU-memory capacity for
feature cache, which can still bring a substantial advantage.

9 Related Work

Recently, how to efficiently support GNN training at scale
has attracted increasing attention [10, 31, 48, 62, 66]. Exist-
ing solutions can be roughly divided into two categories,
namely whole-graph training and sample-based training.

Whole-graph GNN training. To retain scalability, whole-
graph GNN training divides a large graph into multiple
partitions, and trains GNN models simultaneously on all
vertices/edges with multiple machines/GPUs. Typical GNN
systems that fall into this category include NeuGraph [37],
ROC [31], FlexGraph [51] and Dorylus [48]. In whole-graph
training, each vertex needs to consider its all neighbors
while different vertices may have different neighbor sizes.
Thus, it is hard to use dense tensor operations to express
neighborhood feature aggregation since dense tensor oper-
ations require a regular input form. To address this problem,
existing systems proposed different techniques, e.g., kernel
fusion in DGL [52], sparse tensor operations in PyG [17] and
hybrid aggregation in FlexGraph [51], to efficiently perform
neighborhood feature aggregation operations.

Sample-based GNN training. Sample-based training fol-
lows the SET model, and adopts various graph sampling al-
gorithms to select certain neighbors for each training ver-
tex. Then the training process deals with all training vertices
in a mini-batch fashion. Apart from GNNLab, typical GNN
systems belonging to this category include AliGraph [67],
DistDGL [66], PaGraph [35] and P3 [20]. After the Sample

stage, each vertex has a fixed size of neighbors, and thus
neighborhood feature aggregation can be conducted effi-
ciently by using dense tensor operations in existing tensor-
based deep learning frameworks. However, most sample-
based GNN systems perform the Sample and Extract stages
on CPUs, and they suffer from underutilization of GPU re-
sources. Thus, how to improve the GPU utilization has be-
come a hot research topic in the recent past [6, 30, 40].

GPU acceleration in GNN training. GPUs have been
adopted to improve both whole-graph GNN training and
sample-based training. For whole-graph training, GPUs
have mostly been applied to accelerate the NN and graph-
related operations [31, 37, 48, 53]. For sample-based training,
GPUs have been adopted to improve different stages of the
SET model, i.e., Sample, Extract and Train. For the Sample
stage, GPUs are applied to accelerate graph sampling due
to their much higher parallelism and memory access band-
width than CPUs. Typical work includes NextDoor [30],
C-SAW [40] and DGL [6]. While PaGraph [35] adopts a
degree-based caching policy to accelerate feature extraction,
DGL [6] uses GPUs in the Extract stage only if all feature
data can be loaded in GPUs. For the Train stage, PyG [17]
and DGL [6] implement highly optimized GNN runtimes
on GPUs. GNNLab differs from them in the following. (i)
GNNLab is the first system that adopts a factored design
and various optimizations to enable GPU acceleration for all
three stages. (ii) GNNLab employs an efficient GPU-based
feature caching policy to improve the Extract stage, which
is also more robust than PaGraph.

10 Conclusion

In this paper, we present GNNLab, a new factored system
for sample-based GNN training over GPUs. Unlike existing
GNN systems, which adopt the conventional time sharing
design and the degree-based caching policy, GNNLab pro-
poses a new space sharing design to eliminate GPU mem-
ory contention and a new pre-sampling based caching pol-
icy to achieve high efficiency for diverse workloads. Our
experimental results confirm the advantage and efficacy of
GNNLab. The source code of GNNLab is publicly available
at h�ps://github.com/SJTU-IPADS/gnnlab.

Acknowledgment

We sincerely thank our shepherd Thanumalayan Sankara-
narayana Pillai and the anonymous reviewers for their in-
sightful comments and feedback. This work was supported
in part by the National Key Research and Development Pro-
gram of China (No. 2020AAA0108500), the National Natural
Science Foundation of China (No. 61772335), the HighTech
Support Program from Shanghai Committee of Science and
Technology (No. 19511121100), and research grants fromAl-
ibaba Group through Alibaba Innovative Research Program
and Alibaba Research Intern Program.

431

https://github.com/SJTU-IPADS/gnnlab

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

References
[1] 2020. DGL: Deep Graph Library. h�ps://www.dgl.ai/.

[2] 2020. Euler 2.0: A Distributed Graph Deep Learning Framework.

h�ps://github.com/alibaba/euler.

[3] 2021. Open Graph Benchmark: The MAG240M dataset.

h�ps://ogb.stanford.edu/docs/lsc/mag240m/.

[4] 2021. Open Graph Benchmark: The ogbn-papers100M dataset.

h�ps://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M .

[5] 2021. Open Graph Benchmark: The ogbn-products dataset.

h�ps://ogb.stanford.edu/docs/nodeprop/#ogbn-products .

[6] 2021. Using GPU for Neighborhood Sampling in DGL Data Loaders.

h�ps://docs.dgl.ai/guide/minibatch-gpu-sampling.html.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-

ing, Michael Isard, et al. 2016. Tensorflow: A system for large-scale

machine learning. In 12th USENIX symposium on operating systems

design and implementation (OSDI’16). 265–283.

[8] Lada A Adamic and Bernardo A Huberman. 2000. Power-law distri-

bution of the world wide web. science 287, 5461 (2000), 2115–2115.

[9] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework

I: Compression Techniques. In Proceedings of the 13th International

Conference on World Wide Web (WWW’04). 595–601.

[10] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan

Yu. 2021. DGCL: An Efficient Communication Library for Distributed

GNN Training. In Proceedings of the 16th European Conference on Com-

puter Systems (EuroSys’21). 130–144.

[11] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning

withGraph Convolutional Networks via Importance Sampling. In Pro-

ceedings of the 6th International Conference on Learning Representa-

tions (ICLR’18).

[12] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of

Graph Convolutional Networks with Variance Reduction. In Pro-

ceedings of the 35th International Conference on Machine Learning

(ICML’18). 941–949.

[13] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Power-

Lyra: differentiated graph computation and partitioning on skewed

graphs. In Proceedings of the Tenth European Conference on Computer

Systems. 1–15.

[14] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015.

Mxnet: A flexible and efficient machine learning library for heteroge-

neous distributed systems. In Neural Information Processing Systems,

Workshop on Machine Learning Systems.

[15] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and

Cho-Jui Hsieh. 2019. Cluster-gcn: An efficient algorithm for training

deep and large graph convolutional networks. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 257–266.

[16] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zheng-

ping Qian, Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope:

a unified engine for big graph processing. Proceedings of the VLDB

Endowment 14, 12 (2021), 2879–2892.

[17] Matthias Fey and Jan E. Lenssen. 2019. Fast graph representation

learning with PyTorch Geometric. (2019).

[18] Ronald Aylmer Fisher, Frank Yates, et al. 1963. Statistical tables for

biological, agricultural and medical research, edited by ra fisher and f.

yates. Edinburgh: Oliver and Boyd.

[19] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Pro-

tein interface prediction using graph convolutional networks. In Ad-

vances in neural information processing systems. 6530–6539.

[20] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed

Deep Graph Learning at Scale. In Proceedings of the 15th USENIX Con-

ference on Operating Systems Design and Implementation (OSDI’21).

[21] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and

George E Dahl. 2017. Neural message passing for quantum chemistry.

In International conference on machine learning. PMLR, 1263–1272.

[22] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-

los Guestrin. 2012. Powergraph: Distributed graph-parallel computa-

tion on natural graphs. In 10th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI’12). 17–30.

[23] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Fea-

ture Learning for Networks. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining

(KDD’16). 855–864.

[24] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-

mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like

clockwork: Performance predictability from the bottom up. In Pro-

ceedings of the 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’20). 443–462.

[25] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Induc-

tive Representation Learning on Large Graphs. In Proceedings of the

31st International Conference on Neural Information Processing Systems

(NeurIPS’17). 1025–1035.

[26] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,

Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph

Benchmark: Datasets for Machine Learning on Graphs. In Proceedings

of the 34th International Conference on Neural Information Processing

Systems (NeurIPS’20).

[27] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng

Shen. 2021. Understanding and bridging the gaps in current GNN

performance optimizations. In Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming.

[28] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018.

Adaptive sampling towards fast graph representation learning. Ad-

vances in neural information processing systems 31 (2018).

[29] Ankit Jain, Isaac Liu, Ankur Sarda, and Piero Molino. 2019. Food Dis-

covery with Uber Eats: Using Graph Learning to Power Recommen-

dations. h�ps://eng.uber.com/uber-eats-graph-learning/.

[30] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini.

2021. Accelerating Graph Sampling for Graph Machine Learning us-

ing GPUs. In Proceedings of the 16th European Conference on Computer

Systems (EuroSys’21). 311–326.

[31] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken.

2020. Improving the Accuracy, Scalability, and Performance of Graph

Neural Networks with ROC. In Proceedings of the 3rd Machine Learn-

ing and Systems (MLSys’20). 187–198.

[32] Taehyun Kim, KyoungSoo Park, Changho Hwang, Peng Cheng,

Youshan Miao, Lingxiao Ma, Zhiqi Lin, and Yongqiang Xiong. 2021.

Accelerating GNN Trainingwith Locality-Aware Partial Execution. In

Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems

(APSys’21).

[33] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifica-

tion with Graph Convolutional Networks. In Proceedings of the 5th

International Conference on Learning Representations (ICLR’17).

[34] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a social network or a news media?. In Proceedings

of the 19th International Conference on World Wide Web (WWW’10).

591–600.

[35] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.

Pagraph: Scaling GNN Training on Large Graphs via Computation-

aware Caching. In Proceedings of the 11th ACM Symposium on Cloud

Computing (SoCC’20). 401–415.

[36] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui

Fan. 2021. Sampling methods for efficient training of graph convolu-

tional networks: A survey. arXiv preprint arXiv:2103.05872 (2021).

[37] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong

Zhou, and Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network

432

https://www.dgl.ai/
https://github.com/alibaba/euler
https://ogb.stanford.edu/docs/lsc/mag240m/
https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
https://docs.dgl.ai/guide/minibatch-gpu-sampling.html
https://eng.uber.com/uber-eats-graph-learning/

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France

Computation on Large Graphs. In Proceedings of 2019 USENIX Annual

Technical Conference (ATC’19). 443–458.

[38] Jason Mohoney, RogerWaleffe, Henry Xu, Theodoros Rekatsinas, and

Shivaram Venkataraman. 2021. Marius: Learning Massive Graph Em-

beddings on a Single Machine. In Proceedings of the 15th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’21).

[39] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Se-

shadri, Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and

Matei Zaharia. 2019. PipeDream: generalized pipeline parallelism for

DNN training. In Proceedings of the 27th ACM Symposium on Operat-

ing Systems Principles (SOSP’19). 1–15.

[40] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu.

2020. C-SAW: A framework for graph sampling and random walk on

GPUs. In SC20: International Conference for High Performance Comput-

ing, Networking, Storage and Analysis. IEEE, 1–15.

[41] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seung-

min Lee, Jaesik Choi, Sam H Noh, and Young-ri Choi. 2020. Hetpipe:

Enabling large DNN training on (whimpy) heterogeneous GPU clus-

ters through integration of pipelined model parallelism and data par-

allelism. In Proceedings of 2020 USENIX Annual Technical Conference

(Usenix ATC’20). 307–321.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,

high-performance deep learning library. Advances in neural informa-

tion processing systems 32 (2019).

[43] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk:

Online Learning of Social Representations. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD’14). 701–710.

[44] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie

Neiswanger, Qirong Ho, Hao Zhang, Gregory R Ganger, and Eric P

Xing. 2021. Pollux: Co-adaptive cluster scheduling for goodput-

optimized deep learning. In 15th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’21).

[45] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Brad-

ski, and Christos Kozyrakis. 2007. Evaluating MapReduce for Multi-

core and Multiprocessor Systems. In Proceedings of the 13th IEEE In-

ternational Symposium on High Performance Computer Architecture

(ISCA’07). 13–24.

[46] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learn-

ing with Graph Neural Networks. In Proceedings of the 6th Interna-

tional Conference on Learning Representations (ICLR’18).

[47] Marco Serafini and Hui Guan. 2021. Scalable Graph Neural Network

Training: The Case for Sampling. ACM SIGOPS Operating Systems

Review 55, 1 (2021), 68–76.

[48] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou

Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung

Kim, et al. 2021. Dorylus: affordable, scalable, and accurate GNN

training with distributed CPU servers and serverless threads. In 15th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI’21). 495–514.

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Net-

works. In Proceedings of the 6th International Conference on Learning

Representations (ICLR’18).

[50] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Trans-

actions on Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[51] Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,

Wenyuan Yu, Zihang Yao, and Jingren Zhou. 2021. FlexGraph: A

Flexible and Efficient Distributed Framework for GNN Training. In

Proceedings of the 16th European Conference on Computer Systems (Eu-

roSys’21). 67–82.

[52] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,

Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,

George Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep Graph Li-

brary: A Graph-Centric, Highly-Performant Package for Graph Neu-

ral Networks. arXiv preprint arXiv:1909.01315 (2019).

[53] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan

Xie, , and Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient

Runtime System for GNN Acceleration on GPUs. In Proceedings of the

15th USENIX Conference on Operating Systems Design and Implemen-

tation (OSDI’21).

[54] David Wentzlaff and Anant Agarwal. 2009. Factored Operating Sys-

tems (fos): The Case for a Scalable Operating System for Multicores.

ACM SIGOPS Operating Systems Review 43, 2 (2009), 76–85.

[55] Wei Wu, Bin Li, Chuan Luo, and Wolfgang Nejdl. 2021. Hashing-

Accelerated Graph Neural Networks for Link Prediction. In Proceed-

ings of the Web Conference 2021. 2910–2920.

[56] YidiWu, KaihaoMa, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang

Zheng, James Cheng, and Fan Yu. 2021. Seastar: Vertex-centric Pro-

gramming for Graph Neural Networks. In Proceedings of the 16th Eu-

ropean Conference on Computer Systems (EuroSys’21). 359–375.

[57] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi

Zhang, and S Yu Philip. 2020. A comprehensive survey on graph neu-

ral networks. IEEE Transactions on Neural Networks and Learning Sys-

tems (2020).

[58] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.

Hamilton, and Jure Leskovec. 2018. Graph Convolutional Neural Net-

works for Web-Scale Recommender Systems. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’18). 974–983.

[59] Zhitao Ying, Jiaxuan You, ChristopherMorris, Xiang Ren,Will Hamil-

ton, and Jure Leskovec. 2018. Hierarchical graph representation learn-

ing with differentiable pooling. Advances in neural information pro-

cessing systems 31 (2018).

[60] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, An-

drey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren

Chen. 2020. Deep graph neural networks with shallow subgraph sam-

plers. arXiv preprint arXiv:2012.01380 (2020).

[61] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,

and Viktor Prasanna. 2020. GraphSAINT: Graph Sampling Based In-

ductive Learning Method. In Proceedings of the 8th International Con-

ference on Learning Representations (ICLR’20).

[62] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xi-

anzheng Song, Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi.

2020. AGL: A Scalable System for Industrial-Purpose Graph Machine

Learning. Proc. VLDB Endow. 13, 12 (2020), 3125–3137.

[63] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph

neural networks. Advances in Neural Information Processing Systems

31 (2018), 5165–5175.

[64] Qingru Zhang, David Wipf, Quan Gan, and Le Song. 2021. A biased

graph neural network sampler with near-optimal regret. Advances in

Neural Information Processing Systems 34 (2021).

[65] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on

graphs: A survey. IEEE Transactions on Knowledge and Data Engineer-

ing (2020).

[66] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang

Song, Quan Gan, Zheng Zhang, and George Karypis. 2020. DistDGL:

Distributed Graph Neural Network Training for Billion-Scale Graphs.

In Proceedings of the 10th IEEE/ACM Workshop on Irregular Applica-

tions: Architectures and Algorithms (IA3’20). 36–44.

[67] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole

Ai, Yong Li, and Jingren Zhou. 2019. AliGraph: A Comprehensive

Graph Neural Network Platform. In Proceedings of the VLDB Endow-

ment. 2094–2105.

433

EuroSys ’22, April 5–8, 2022, RENNES, France J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou

A Artifact Appendix

This artifact provides the source code of GNNLab and
scripts to reproduce the main experimental results from
the EuroSys 2022 paper—“GNNLab: A Factored System for
Sample-basedGNNTraining over GPUs” by J. Yang, D. Tang,
X. Song, L. Wang, Q. Yin, R. Chen, W. Yuan, and J. Zhou.
GNNLab is a sample-based GNN training system in a sin-
gle machine multi-GPU setup. To reproduce the results eas-
ily, we also provide instructions to build the software pack-

age and run all experiments in §7. Our artifact obtained
the “Artifacts Available”, “Artifacts Evaluated & Functional”
and “Results Reproduced” badges from the Artifact Evalu-
ation process of EuroSys 2022. The DOI of our artifact is
h�ps://doi.org/10.5281/zenodo.6347456.

Artifact repository. All the project source code includ-
ing the instructions on how to build and run experiments
on GNNLab and baselines is available in the following git
repository: h�ps://github.com/SJTU-IPADS/fgnn-artifacts.

434

https://doi.org/10.5281/zenodo.6347456
https://github.com/SJTU-IPADS/fgnn-artifacts

	Abstract
	1 Introduction
	2 GNNs and Sample-based Training
	3 Analysis of Sample-based GNN Training
	4 Approach and Overview
	5 GNNLab Architecture
	5.1 Programming Model
	5.2 Hybrid Execution
	5.3 Flexible Scheduling

	6 GPU-based Feature Caching
	6.1 A General Caching Scheme
	6.2 Analysis of Caching Policies
	6.3 A Pre-sampling Based Caching Policy

	7 Evaluation
	7.1 Experimental Setup
	7.2 Overall Performance
	7.3 Performance Breakdown
	7.4 Impact of Caching Policy
	7.5 Scalability
	7.6 Preprocessing Cost
	7.7 Training Convergence
	7.8 Dynamic Switching
	7.9 Performance on a Single GPU

	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Artifact Appendix

