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ABSTRACT
Graph databases play a pivotal role in the FinTech industry. How-
ever, existing graph benchmarks fail to capture the unique char-
acteristics of financial datasets and workloads, rendering them
inadequate for evaluating graph databases in financial scenarios.
This paper presents the LDBC Financial Benchmark (FinBench)
Transaction Workload, a novel benchmark that adopts a choke
point-driven design methodology, emphasizing performance bottle-
necks, and incorporates distinct features such as dataset skewness,
edge multiplicity, temporal window filtering, recursive path fil-
tering, read-write query patterns, and truncation on hub vertices.
Key contributions include a scalable data generator that synthe-
sizes datasets with financial-specific features, a parameter genera-
tor that leverages bucketed data statistics for runtime consistency
across queries, and a scalable benchmark driver that biases query
execution by time windows. Experimental evaluations on graph
databases demonstrate the benchmark’s capability to reveal novel
choke points and provide insights into system performance in fi-
nancial scenarios.
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1 INTRODUCTION
With the rapid growth of graph scenarios, many graph technolo-
gies have emerged, drawing more and more attention from both
academia and industry [49]. Graph technologies have become criti-
cal for modern enterprises across nearly every sector [19], including
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e-commerce, social networks, and financial applications. In the fi-
nancial industry, graph technologies enhance various applications
such as fraud detection, anti-money laundering (AML), and know-
your-customer (KYC). Top banks, rating agencies, and financial
companies worldwide adopt graph technology to offer financial
services [37], such as J.P. Morgan [50], PayPal [48], and Alipay [23].
Explicitly, the labeled property graph model is a natural way to
reflect activities in financial systems, with vertices representing
financial entities such as persons, companies, accounts, and assets,
while edges representing the activities among them. Graph data
allows queries to effectively retrieve system activities by matching
patterns and paths, typically consisting of cycles and chains, which
may involve multiple hops across the graph to uncover hidden
connections. The global payments industry handled over 3 trillion
transactions in 2023 [35], posing challenges in storing and process-
ing financial data in graph databases. These challenges highlight
the importance of robust performance evaluation to ensure the
reliability and efficiency of graph database solutions.
Limitation of Existing Benchmarks. Benchmarks are the best
way to make different database systems comparable. A good bench-
mark should be relevant, portable, scalable, reproducible, and fair
[20, 25]. The growth in the prevalence and scale of graphs in the fi-
nancial industry necessitates benchmarks tailored to data and work-
load characteristics and industry performance requirements. Most
existing graph database benchmarks are primarily designed with so-
cial network scenarios, focusing on the dataset and query patterns
prevalent in social graphs. This overlooks the unique character-
istics and requirements of financial data and workloads, limiting
their applicability and effectiveness in evaluating graph databases
for financial scenarios. We found that in the financial dataset (see
Section 2), there are multiple transfer records between the account
pairs, resulting in multiple transfer edges existing between the same
source and destination account vertex, which requires special de-
sign in the storage engine and aggregation operations in the query
engine. We also found that in the financial workload (see Section 3),
queries are always combined with time-window filtering, as well
as queries matching subgraph patterns and recursive path filtering,
posing unique challenges to the graph databases. Therefore, we pro-
pose the Financial Benchmark (FinBench) to fairly evaluate graph
databases targeting financial scenarios through Linked Data Bench-
mark Council [3, 45], which is dedicated to providing standardized
benchmarks for measuring graph processing performance.
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Table 1: Comparison of SNB Interactive workload, SNB Business Intelligence workload, FinBench
Transaction workload, and Graphalytics. Notation: ⊗: yes, #: no

LDBC benchmarks FinBench Transaction SNB Interactive v1* LinkBench SNB BI Graphalytics
labelled property graph ⊗ ⊗ ⊗ ⊗ #
temporal property graph ⊗ ⊗ # ⊗ #
edge multiplicity ⊗ # # # #
insert operations ⊗ ⊗ ⊗ ⊗ #
delete operations ⊗ # ⊗ ⊗ #
query footprint small small small large all data
inter-query parallelism required required required optional not applicable
path finding ⊗ # # ⊗ ⊗
time-window queries ⊗ # # # #
recursive path filtering ⊗ # # # #
truncated traversal ⊗ # # # #
read-write queries ⊗ # # # #
workload type OLTP OLTP OLTP OLAP graph algorithms
query mix ⊗ ⊗ ⊗ ⊗ not applicable
time-biased query mix ⊗ # # # not applicable
* Note: SNB Interactive v2 has not been officially released yet, so we compare it with v1.

Comparison of Benchmarks. There are already some bench-
marks for graph databases and systems, including SNB Interac-
tive [11], LinkBench [4], SNB BI [44], and Graphalytics [27]. In
Table 1, we compare the similarities and differences of these bench-
marks in identified characteristics in financial scenarios, respec-
tively in the dataset, the choke points embedded in the queries,
and the workload. SNB and LinkBench, inspired by social network
scenarios, do not emphasize temporal features within datasets and
workloads or the execution of path finding queries. In contrast,
FinBench is distinguished by focusing on path finding queries, read-
write operations, temporal features such as temporal graphs in
data schema, time-based filters, and time-based query mix. More
comparisons with other benchmarks can be found in Section 6.

Figure 1 provides an overview of FinBench’s software compo-
nents and the workflow for generating necessary data artifacts
inherited from the LDBC benchmark framework [2]. The scalable
data generator is a core component that ensures the generation of
large-scale datasets while maintaining high fidelity to real-world
financial data. It creates three data products: (1) the dataset for bulk-
loading, which serves as the initial state of the system under test;
(2) the update dataset, which simulates dynamic changes during
benchmarking by providing a stream of write operations; and (3)
the factor tables, which are specialized data structures designed
to capture and summarize key statistical properties of the gener-
ated dataset. These factor tables play a crucial role in ensuring that
query parameters are derived from realistic distributions, thereby
enhancing the benchmark’s realism and relevance. The parame-
ter generator is designed to ensure stable runtime across different
query variants [44]. It generates the query parameters according to
the query cost estimation based on statistical information stored in
the factor tables to avoids scenarios where queries become either
trivially simple or excessively complex. These parameters are then
passed to the benchmark driver for read queries generation.

The benchmark design is derived from a comprehensive analysis
of over 20 business clusters spanning diverse financial domains,
including fund transaction graphs, anti-fraud graphs, insurance

claim graphs, device relationship networks, and composite ana-
lytical graphs. Following the choke point-driven methodology [6],
which emphasizes the performance bottleneck embedded in appli-
cations to ensure the benchmark’s coverage of challenging data
management features, we designed FinBench based on features
and identified choke points profiled in real financial datasets and
queries across multiple business clusters. In this paper, we describe
our main contributions in the following sections. Section 2 presents
the data characteristics, such as power-law degree distribution and
edge multiplicity, profiled in real financial datasets. It also discusses
the scalable event-based data generator used to create datasets with
these characteristics and the parameter generator to ensure stable
runtime across different query variants. Section 3 illustrates the
typical query patterns we found, such as temporal filtering, recursive
path, and read-write queries, as well as the new identified choke
points. Section 4 describes the query categories, their interrelation-
ship, and the method to orchestrate the workload. Section 5 shows
the experiments results on choke points and end-to-end evaluation.
Section 6 provides the review of related benchmarks.We present the
conclusions in Section 7 and future research directions in Section 8.

Data Generator

Dataset Factor Tables (Statistics)Updates

Query Parameters

Parameter Generator

Benchmark Driver

System Under Test
bulk load

Figure 1: A high-level overview of LDBC benchmarks’ frame-
work. Yellow boxes are software components, and gray boxes
are data artifacts. [2]



2 FINANCIAL DATASET
Through systematic abstraction across multiple business clusters,
we identified common entity types (e.g., accounts and media de-
vices) and relationship patterns that form the foundation of bench-
mark schema presented in Section 2.1. The statistical characteristics
presented in Section 2.2 reflect key distribution patterns observed
in these real-world datasets. In Section 2.3, we present the data
generator implemented to generate the benchmark dataset of the
data schema and approximate the dataset characteristics.

2.1 Financial Data Schema
Modeling financial data as graphs enables the representation of
activities like money transfers among accounts and investments
among companies, facilitating analysis. Financial data is often mod-
eled as a directed graph, where vertices represent entities (e.g.,
persons, companies, accounts) and edges represent interactions
(e.g., owning, transferring, guaranteeing). By investigating the data
schema across different financial business production environments
from Ant Group [23] and clients served by the task force members
[8], we found that each vertex and edge type is associated with rich
properties, such as creation timestamp, transfer amounts, and vari-
ous annotations. We selected a typical fund exchange scenario in
financial business operations to design the schema. Online schema
often include various subtypes of the same entity to reflect real-
world distinctions. For example, corporate accounts and individual
accounts, both derived from the broader concept of accounts, are
differentiated based on specific applications. To avoid unnecessary
complexity, we abstract the schema by merging the similar vertex
and edge subtypes (see Figure 2) derived from real financial graphs.

Online schemas often include various subtypes of the same entity
to reflect real-world distinctions. For example, Corporate Accounts
and Individual Accounts, both derived from the broader concept of
"accounts," are differentiated based on their specific applications.

id: ID
name: String
isBlocked: Boolean
createTime: DateTime
gender: String
birthday: Date
country: String
city: String

Person

id: ID
name: String
isBlocked: Boolean
createTime: DateTime
country: String
city: String
business: String
description: String
url: String

Company

id: ID
createTime: DateTime
isBlocked: Boolean
type: String
nickname: String
phoneNumber: String
email: Long String
freqLoginType: String
lastLoginTime: DateTime
accountLevel: String

Account

id: ID
type: String
createTime: DateTime
isBlocked: Boolean
lastLoginTime: DateTime
riskLevel: String

Medium

own

signIn

id: ID
loanAmount: 64-bit Float
balance: 64-bit Float
usage: String
interestRate: 32-bit Float

Loan

apply

apply

deposit

invest

repay

transfer

invest

own

withdraw

guarantee

guarantee

Single edges

Multiple edges

Figure 2: The schema of FinBench dataset. Edge properties
are omitted.

The data schema (Figure 2) comprises five vertex types and
nine edge types. It consists of accounts owned by persons and
companies, signed in via media, which repay loans after receiving

the deposited amounts. Persons can guarantee one another and
invest in companies; companies can guarantee and invest in one
another; and accounts can transfer funds to and withdraw funds
from each other. Edge multiplicity, where multiple edges can exist
between the same pair of source and destination vertices, was
observed during our analysis of real-world graphs. This observation,
absent in existing benchmarks, motivated the design of our schema
to address the resulting new requirements for systems (e.g., in the
storage model). In Figure 2, solid arrows represent edge types that
allow edge multiplicity, such as “signIn”, “transfer”, “withdraw”,
“deposit”, and “repay” while other edge types represented by dashed
arrows do not allow edge multiplicity.

2.2 Financial Dataset Characteristics
In typical financial applications, skewness and temporality are two
key features frequently observed. Skewness refers to the asymme-
try in the distributions of financial activities, such as the uneven
number of transfers across the accounts influenced by the market
structure. Temporality refers to the periodical fluctuations of finan-
cial activities over time, like transfer peaks during busy hours. In
financial graphs, skewness is reflected in skewed degree distribu-
tions, while temporality manifests as the periodical patterns in the
timestamps of vertices or edges. To illustrate these features in a
real-world context, we conducted empirical profiling experiments
on a financial graph from Ant Group. Specifically, we randomly
sampled three subgraphs from the online production environment
by uniformly selecting vertices to ensure representative profiling.
Degree distribution. Figure 3 illustrates the in- and out-degree
distributions of transfer edges within the three sampled subgraphs.
Although degree values scale with the subgraph size, all distri-
butions follow the power law, which means the probability of a
vertex’s in- or out-degree being 𝑥 is inversely proportional to 𝑥

raised to a negative exponent: Pr(𝑥 ) = 𝑐 · 𝑥𝛼 , where 𝛼 is the power
law exponent and 𝑐 is a normalization constant. The power law
degree distributions demonstrate the skewness phenomenon, with
most accounts having fewer than ten transfers while a few accounts
have millions of transfers. Table 2 lists the power law exponents
and normalization constants derived from the distribution regres-
sion analysis. Power law distribution is also observed in social
networks and applied in existing benchmarks, such as SNB [11, 44]
and LinkBench [4]. SNB dataset model is derived from Facebook’s
social graph [55], which enforces a strict degree cap of 5,000 due
to platform constraints (user friendship limits) [12]. This results in
bounded skewness and a power-law distribution with a shallower
tail. LinkBench models a broader Facebook graph, including ob-
jects like posts and albums, but its maximum degree, 1 million, still
reflects social interactions rather than financial transactions. The
power-law parameters differ from the financial graph we profiled
in Table 2 and Figure 3. We observed unbounded degree scaling
(e.g., up to 150 million) and scale-sensitive degree growth (degrees
increase organically with graph size).

Edge multiplicity distribution. Edge multiplicity is a common
feature in real-world financial graphs, where multiple edges may
exist in the same vertex pair, representing repeated transactions
over time. For instance, a company account might transfer salaries
to the same employees periodically, resulting in multiple edges. We



Table 2: Power law exponents & normalization constants of
degree distributions.

Subgraph 1 Subgraph 2 Subgraph 3

In-degree, 𝛼 -2.319 -2.319 -2.085
In-degree, 𝑐 109,539,041.821 78,379,700.038 133,908,623.887
Out-degree, 𝛼 -1.720 -1.719 -1.720
Out-degree, 𝑐 20,186,572.914 14,153,912.686 20,194,472.855

(a) Subgraph 1, in-degree (b) Subgraph 1, out-degree

Figure 3: Degree distribution of the real financial graph. The
X-axis is the degree, and the Y-axis is the number of vertices.

(a) In-edge multiplicity (b) Out-edge multiplicity

Figure 4: Edge multiplicity distribution of the top-1 hub ver-
tex. The X-axis is the edge multiplicity, and the Y-axis is the
number of vertices.

concisely refer to the number of edges between a vertex pair as
multiplicity. Skewness is evident in the edge multiplicity distribu-
tions of hub vertices with high in or out degrees. Most neighbors
of a hub vertex have low multiplicity, while a few exhibit very high
multiplicity. Based on transfer edges, the edge multiplicity distri-
butions of the top hub vertices (ranked by degree) are observed to
follow a power-law distribution. Figure 4 presents in- and out-edge
multiplicity distributions of the top-1 hub vertex.
Edge timestamp distribution. The distribution of edge times-
tamps in a financial graph demonstrates pronounced temporal
patterns, as the creation of new vertices and edges fluctuates peri-
odically. Figure 5 displays the distribution of transfer edges’ times-
tamps throughout the day, where 𝑥 on the x-axis represents each
one-hour interval starting from 𝑥 o’clock. The distribution is no-
tably uneven. The most prominent peak occurs from 8:00-9:00,
aligning with the opening time of banks and financial markets.
Smaller peaks occur around mealtimes, while few transfers occur
from midnight to early morning.

Financial graphs exhibit skewness and temporal features in their
vertex degree, edge multiplicity, and timestamp distributions, as
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Figure 5: Edge timestamp distribution.

shown by real financial graph datasets’ profiling results. These
features set financial graphs apart from other types of graphs. For
instance, social networks are typically less skewed than financial
graphs due to little or no edge multiplicity, and their timestamp
distribution’ peaks do not significantly correlate with busy hours.
Inherent skewness causes biased performance in the data dimen-
sion, while temporality leads to biased performance in the time
dimension. Both aspects challenge resource allocation and load-
balancing in systems design targeting financial scenarios.

2.3 Benchmark Dataset Generation
The data generator is designed to generate data of schema illus-
trated in Section 2.1, inspired by SNB generator [43]. It integrates
the degree and timestamp distribution profiled in Section 2.2. The
generator operates in two phases: simulation and segmentation.
The simulation generates raw data over a configurable period (de-
fault: 3 years). The segmentation splits the raw data into snapshot
data and incremental data. Snapshot data is loaded as the initial
graph state, while the incremental data is used by the benchmark
driver to simulate the write queries, as described in Section 4.1.
Scale factors (SF) determine the size of the generated datasets. For
example, SF1 generates a graph of 1 GiB on disk. The data statistics
of the datasets with different SF are shown in Table 7 in Appendix B.
Simulation process. The data generator uses an event-based
framework to simulate financial activities. According to the data
schema, the data generator first creates persons and companies,
then simulates the account registration, media sign-ins, invest-
ments, loans applications, and fund transfers. In each event, ver-
tices and edges are recorded and will be written to the disk upon
completion. Entity counts are scaled proportionally to the target
dataset size. The event-based framework is implemented with Spark
to ensure scalability. The degree distribution, edge multiplicity, and
edge timestamp distributions presented in Section 2.2 are set as pa-
rameters to approximate the real financial graphs. For example, the
data generator parses the specified degree distribution and assigns
the target degree to each account vertex before the fund transfer
event. Then, the transfer edges are created, targeting the assigned
degree. When the target degree exceeds a predefined threshold, the
account is labeled as a hub vertex whose edge multiplicity with
neighbors is determined by the edge multiplicity distribution. The
timestamps of edges are generated based on the edge timestamp dis-
tribution. With the event-by-event simulation, the data generator
creates the raw data aligning with the specified distributions and



scale. All parameters, including simulation duration, distributions
(degree, edge multiplicity, timestamp), and timeline breakpoints, are
configurable to users, which supports tailored dataset generation
for diverse benchmarking scenarios.
Segmentation process. The raw data generated by the simula-
tion is partitioned into snapshot data and incremental data at a
configurable breakpoint on the simulation timeline. The default
breakpoint is the 97th percentile of the total period in the simula-
tion process. This allows the snapshot to represent a stable initial
state while incremental data drives dynamic write workloads. The
incremental data will be transformed to write queries (TW, see
Section 4.3) in terms of adding a vertex or adding an edge.

With the two step dataset simulation process and segmentation
process, the data generator outputs the snapshot dataset as the
initial state of system under test and the write queries applied as
the data updates during benchmarking.

3 FINANCIAL QUERIES
We adopt the choke point-driven methodology [6], a strategy in-
tegral to developing the LDBC benchmark, particularly in inves-
tigating and formulating queries. Choke points are technological
challenges embedded in the key aspects of query execution, opti-
mization, and storage when designing and building systems. Focus-
ing on these choke points identified in real applications challenges
systems and provides potential optimization opportunities driving
system advancement [10]. This approach highlights nuanced per-
formance differences across systems, providing insight into their
capabilities and limitations in handling complex scenarios.

This work rigorously evaluates graph database systems by intro-
ducing choke points derived from real-world financial scenarios.
In storage optimization, the temporal window filtering queries
described in Section 3.1 necessitate optimizations in the storage
layer design to address temporal locality in graph traversal opera-
tions. The recursive path filtering patterns in Section 3.2 and native
truncation mechanisms in Section 3.4 challenge the graph query
language to express complex relationships concisely while main-
taining computational efficiency by developing intelligent pruning
strategies to eliminate redundant intermediate results. The read-
write queries in Section 3.3 pose challenges in efficiently managing
high-concurrency read-write operations. Due to space constraints,
we highlight the most crucial choke points here and refer readers
to Appendix A for details.

3.1 Queries with Time-window Filtering
Time is integral to financial systems, influencing various busi-
ness operations ranging from transaction processing to strategic
decision-making. Recent data is typically accessed with signifi-
cantly higher frequency, which poses challenges for systems in
improving data access locality in storage and optimizing tempo-
ral performance (e.g., temporal indexing) in query optimization.
It aligns with the Five-Minute Rule [21], which is a cost-benefit
principle suggesting that data accessed within short time inter-
vals (e.g., five minutes) should reside in faster storage mediums.
Potential optimization opportunities are separating the hot/cold
data and storing hot data in caches. For example, GeaBase [18]
incorporates a Time-to-Live property to mark the data lifetime for

regular compaction to prune the cold data, leading to query perfor-
mance improvement. Moreover, temporal access patterns are often
represented as time-window filters within queries.

We design queries with temporal filters to address these chal-
lenges. These queries test a system’s efficiency in processing time-
critical data across financial activities, focusing on optimizing data
access based on temporal parameters. As shown in Figure 6, com-
plex read query 4 (TCR4) identifies transfer cycles, a pattern in-
dicative of potential risks, using a time window filter defined by
parameters startTime and endTime.

src : Account

src.id = ${id1}

edge1 : transfer
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

RESULT
other.id, COUNT(edge2), SUM(edge2.amount), MAX(edge2.amount), COUNT(edge3), SUM(edge3.amount),
MAX(edge3.amount)

dst : Account

dst.id = ${id2}

edge2 : transfer
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

other1 : Account

edge3 : transfer
edge3.timestamp > ${startTime}
edge3.timestamp < ${endTime}

otherN : Account

…

Figure 6: The pattern of complex read query 4 (TCR 4) in
transaction workload.
Query description: Given two accounts src and dst, and a specified time
window between startTime and endTime, (1) check whether src transferred
money to dst in the given time window (edge1). If edge1 does not exist,
return with empty results (the result size is 0). (2) find all other accounts
(other1, . . .) which received money from dst (edge3) and transferred money
to src (edge2) in a specific time. For each of these other accounts, return
the account ID, the count of transfer edges, the sum, and the max of the
transfer amount (edge2 and edge3).

3.2 Queries with Recursive Path Filtering
A critical task in financial risk control involves detecting suspicious
accounts by analyzing their transactional linkages to blocked ac-
counts, particularly through preplanned fund flows. As illustrated
in Figure 7, complex read query 1 finds the paths (fund flow) to
blocked accounts filtered by monotonically ascending timestamp
order (see timestamps in Figure 7). The fund flow analysis becomes
computationally intensive when traversing multiple interconnected
accounts, highlighting the challenge of efficient multi-hop recursive
filtering. These recursive path filtering queries assess a system’s
ability to navigate and filter intricate fund transfer paths, where
each hop is filtered based on the previous hop’s match. Pruning
the traversal with such filter conditions is challenging, as it aims
to minimize unnecessary computation and intermediate results,
which involves managing complex path constraints from query
language expression ability to query optimization. Optimization
opportunity exists in designing appropriate path-level filter pred-
icates to reduce the search space and efficient traversal pruning
strategy to minimize computational overhead during query execu-
tion. These queries involving path filtering focus on the system’s
ability to perform complex graph traversals efficiently, and also
pose challenges to concise query language expression, which both
are key requirements for tracking and analyzing financial graphs.



edge2 : signIn
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

edge1 : transfer *1..3
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

other11 : Account

RESULT
other.id, medium.type, medium.id, accountDistance

other21 : Account

other3 : Account

…

account : Account

account.id = ${id}

medium1 : Medium

medium1.isBlocked = True

medium2 : Medium

medium2.isBlocked = True

medium3 : Medium

medium3.isBlocked = True

*1..3

other12 : Account other13 : Account

other22 : Account

timestamp:
2020/01/01

timestamp:
2020/02/01

timestamp:
2020/03/01

Figure 7: The pattern of complex read query 1 (TCR 1) in
transaction workload.
Query description: Given an Account and a specified time window between
startTime and endTime, find all the Account that are signed in by a blocked
Medium and have funds transferred via edge1 by at most 3 steps. Note that
all timestamps in the transfer trace must be in ascending order (only greater
than). Return the account ID, the distance from the account to the given
one, the ID, and the type of the related medium.

Txn Begin

Txn Abort

Txn Commit

Txn Abort
src: Account

id = ${srcId}

transfer

timestamp <- ${time}
amount <- ${amount}

dst: Account

id = ${dstId}

src: Account

id = ${srcId}

dst: Account

id = ${dstId}

src : Account

id = ${srcId}
edge1 : transfer
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

dst : Account

id = ${dstId}

edge2 : transfer
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

edge3 : transfer
edge3.timestamp > ${startTime}
edge3.timestamp < ${endTime}

otherN : Account

New Txn Begin

Txn Commit

src: Account

id = ${srcId}
isBlocked <- True

dst: Account

id = ${dstId}
isBlocked <- True

Blocked

Detected

Not detected

Figure 8: The pattern of read-write query 1 (TRW 1) in trans-
action workload.
Query description: The workflow of this read-write query contains at least
one transaction. It works as:
(1) Read the blocked status of related accounts with given IDs of the src

and dst accounts. The transaction aborts if one of them is blocked. Go
to the next step if none is blocked.

(2) Add a transfer edge from src to dst inside a transaction. Given a specified
time window between startTime and endTime, find the other accounts
that received money from dst and transferred money to src. The trans-
action aborts and go to the next step if a new transfer cycle is formed.
Otherwise, the transaction is committed.

(3) Mark the src and dst accounts as blocked in a new transaction.

3.3 Read-Write Queries
In risk control applications, a critical process involves recording
users or transactions flagged by risk control mechanisms, leading
to a significant volume of operations involving reading and writing
data. The challenge for systems in such scenarios lies in efficiently
managing high-concurrency read-write operations. This requires

optimization for concurrent processing and careful management of
potential read-write conflicts in high-throughput environments. Fin-
Bench’s read-write queries rigorously test the system’s capability
to manage dynamic data flows, where rapid and precise read-write
operations are crucial. This capability is crucial for maintaining
the integrity and security of financial transactions, thereby mak-
ing system performance on these queries essential. TRW 1 (Figure
8) exemplifies the pattern of read-write queries, where the Write
Query execution depends on the result of the Complex Read Query.
It encompasses multiple read and write queries in an intricate trans-
actional procedure. Efficient concurrent transaction processing is
vital because the read result, which influences the execution path,
may depend on another query’s write. For example, an account
whose information is written in the third step of a TRW1 query
may be read during the first step of another TRW1 query. Therefore,
a blockage in the former query can delay the latter’s execution.

3.4 Truncation on Hub Vertices
Hub vertices, often with more than hundreds of thousands or even
more adjacent edges, represent hotspots in business activities, such
as an account handling salary transfers for numerous employees.
Traversing all adjacent edges of hub vertices can lead to exponen-
tial growth in the computational load. In real time financial query
processing, introducing constraints to prune the traversal on hub
vertices is a common solution. FinBench addresses this issue by
introducing a truncation mechanism, which ensures result consis-
tency across benchmark runs. It specifies the order of the edge
sorting and the maximum number of edges to traverse from each
vertex, acting as a sampling mechanism to balance load. Each query
involving truncation specifies truncation order and limit as pa-
rameters. For example, in complex read query 1 (TCR1) shown in
Figure 7), if the truncation order is set to descending by transfer
timestamps and the limit is 1000, only the latest 1000 edges will
be traversed, even if there are more than 1000 outgoing transfer
edges from the start account vertex. It is noteworthy that to ensure
result consistency, truncation needs to be explicitly specified at a
particular hop in the graph traversal process, and this requirement
will be prioritized in future benchmark optimizations.

The truncationmechanism introduces challenges in several areas.
From the language perspective, current widely used declarative
graph query languages, such as ISO GQL [16], Cypher [22], and
SPARQL [40] lack native support for truncation. In terms of query
execution, truncation impacts intra-query parallelization (e.g., load
balance) on hub vertices. From the storage perspective, organizing
hub vertices’ adjacent edges in truncation order can provide better
data access locality and expedite query processing.

4 TRANSACTIONWORKLOAD
The business clusters exhibit significant variations in user scale and
business complexity, which makes unified modeling of workload
and performance metrics impractical. To balance between the cov-
erage of all kinds of queries and realism of test scenario, we distilled
the most challenging query types and the workload organizations
by abstracting business-specific queries and analyzing them purely
from graph query patterns. In this section, we describe the organi-
zation of the workload. Section 4.1 describes the query classes in



transaction workload including Complex Read Queries, Simple Read
Queries,Write Queries, and Read-Write Queries. Section 4.2 describes
the parameter curation for Complex Read Queries and Section 4.3
describes the method to mix the queries.

4.1 Queries Classes in Transaction Workload
Aligning with actual business workflows, complex multi-hop
queries presented in Section 3 mirror investigative patterns where
analysts trace transaction chains, followed by single entity queries
(simple reads) for detailed entity inspection. Write operations rep-
resent the new data inserted or updated. This abstraction decouples
business semantics from computational patterns while preserving
essential workload challenges embedded in applications observed
across clusters. The workload consists of four query classes: Com-
plex Read Queries (TCR), Simple Read Queries (TSR), Write Queries
(TW), and Read-Write Queries (TRW).
ComplexReadQueries (TCR). This category includes 12 complex
read-only queries designed to address various financial activities
over a specific period. Most queries involve at least three hops and
include complex aggregate queries, such as identifying the shortest
transfer paths or detecting money laundering activities involving
loans. In real financial scenarios, near real-time computation is
expected, even though these queries involve a certain level of com-
plexity. Query on-time compliance is required in the benchmark to
meet the real-time processing demands. The query-on-time timeout
for each query is set to 1 second, an empirical and practical value.
The benchmark driver calculates the on-time query rate and fails
the test when it is less than 95%.
Simple Read Queries (TSR). This category comprises 6 simple
read-only queries involving no more than 2 hops, such as inquiries
about account details or transaction messages related to transfers
to or from an account (e.g., TSR 4 and TSR 5), which are straight-
forward and require immediate results.
Write Queries (TW). This category includes 17 insert/delete
queries required by the benchmark driver to insert data focus-
ing on inserting new data and deleting existing data and another
2 in-place update queries for entity state marking purpose (e.g.,
marking an account as blocked). Insert queries create a vertex/edge
with properties, while delete queries remove a vertex and all its
adjacent edges from the graph. Update queries locate a vertex by
its ID and modify the value of one of its properties.
Read-Write Queries (TRW). This category introduces a unique
design called the read-write query, which incorporates both read
and write operations within transactions. There are 3 read-write
queries, where the success of the entire transaction depends on each
operation. Failure in any part results in the transaction being un-
successful. This approach is commonly used in financial scenarios
to assess the potential risks of a write operation, such as a transfer,
before committing it. It allows for matching a newly formed risky
pattern without actually writing them to storage.
Real Workload in Financial Systems. The workload is designed
closely to represent real-world scenarios by reflecting the ratio of
different query classes and the pattern in which they are orches-
trated. We profiled queries in a real financial graph production
environment, focusing on the read-to-write query ratio (20:1). We

adjusted the frequency parameters for each query in the configura-
tion to reproduce this ratio in the generated workload. Profiling the
query mix is challenging because it requires uncovering unknown
correlations in a long sequence of queries, which has not been ex-
tensively studied in previous research. Therefore, we design the
query mix mechanism based on empirical observations tailored to
the financial scenario, which will be introduced in Section 4.3.

4.2 Parameters Generation for Complex Read
Queries

Parameter curation ensures benchmarking reliability in financial
graphs characterized by power-law distributions and temporal de-
pendencies. Random parameter selection in such skewed distribu-
tions causes significant variations in intermediate result sizes and
query execution times, leading to unreliable benchmarks [11, 44].
Performance-sensitive parameters like truncationOrder and trun-
cationLimit require specialized handling beyond conventional au-
tomation. Traditional methods relying on entity-level statistics may
still yield high runtime variance due to hub vertices with numerous
edges. To mitigate this, we combine factor tables with iterative
processing that incorporates edge-level statistics.
Factor Table Generation. Factor tables capture statistical relation-
ships between entities. For example, in TCR 12 (see Figure 9), the
tables include data such as each person’s account list (Table 3), trans-
fer out-edges per account, and bucketed statistics on edge times-
tamps and transaction amounts. We record the number of trans-
fer edges per account across exponentially growing transaction
amount ranges, ensuring even distribution of high and low-amount
transactions. These bucketed statistics improve the accuracy of
intermediate result size estimation during parameter curation.

person : Person

person.id = ${id}

edge2 : transfer
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

RESULT
compAccountId,
SUM(edge2.amount)

pAcc1 : Account compAcc1 : Account com1 : Company

pAcc2 : Account compAcc3 : Account com3 : Company

…

edge1 : own edge3 : ownedge2

compAcc2 : Account com2 : Company

…

Figure 9: The pattern of complex read query 12 (TCR 12) in
transaction workload.
Query description: Given a Person and a specified time window between
startTime and endTime, find all the companies’ accounts that s/he has trans-
ferred to. Return the IDs of the companies’ accounts and the sum of their
transfer amount.

Hybrid parameter curation. We use a multi-hop iteration mech-
anism to apply truncation filters at each traversal step using factor
tables. As shown in Figure 9, iterating over each person’s account
list and linked accounts generates second-hop account entities as
intermediate results. Truncation is applied at each hop to narrow
down edges iteratively. For example, when retaining the top 100
edges by transaction amount for a hub vertex, we select edges



Table 3: Person ID and Account List Table

person_id account_list

1048 [4748482857108769042, 4896538694858574097, 4671358713490049299]
1049 [4819977501193275668]
1052 [4865294972443691290, 4915116043321477401, 4675862313117419803]
1057 [4766778730594961703, 4670514288559917350]

from buckets with the highest amounts until the cutoff is reached.
A greedy algorithm minimizes variance by selecting parameters
that yield balanced results [24]. This iterative approach ensures
consistent query execution times and enhances benchmark repro-
ducibility and reliability.

4.3 Mixing the Queries
In real-world applications, workloads include a broad spectrum of
scenarios, including simple read operations, complex read opera-
tions, insert operations, delete operations, and read-write opera-
tions. Incorporating mixed queries into benchmarking processes
enables a more precise evaluation of system performance and effi-
ciency under realistic conditions. We accurately simulate real-world
mixed queries based on the observations from real-world applica-
tions and scenarios.
Complex Read Queries. An observed fact is that users frequently
rely on complex queries to extract valuable insights from large
datasets in business operations. These queries consume significant
resources, substantially impacting system performance and often
revealing system bottlenecks. Complex read queries are central
to system processing and form a key focus of our evaluation. To
construct a representative benchmark, we derive complex queries
frommultiple business scenarios, including fund transaction graphs,
media asset graphs, anti-fraud graphs, reimbursement graphs, in-
surance graphs, and media device graphs. Through cross-scenario
normalization, we calibrate query frequencies to avoid workload
dominance by any single query pattern, which is a common pitfall
in benchmarks. This ensures balanced testing across query cate-
gories while maintaining reproducibility. Notably, the benchmark
supports configurable query frequencies and selective activation
to enable domain-specific customization that prioritizes business-
critical patterns based on their specific characteristics.
Simple Read Queries. Another observed fact is that simple read
queries serve as low-cost instant data inspections and business in-
vestigations alongside complex read queries. In most cases, complex
queries involve broader datasets or longer time windows, producing
more results. The results can subsequently trigger simple queries,
using them as input parameters for further analysis. For instance,
when analyzing total funds from accounts applying for loans, longer
complex queries can lead to simpler read queries to investigate spe-
cific accounts related to the applications and the transactions.

To address the dynamic interaction between simple and complex
read-only queries, we designed a time window-biased simple read
query generator that connects the two query types. This generator
ensures that the complex query outputs are inputs for subsequent
simple read-only queries. This interconnected approach enhances

data retrieval efficiency and relevance, ensuring that the comprehen-
sive analysis informs each simple read query of preceding complex
read queries. As the number of simple read queries is influenced by
the time window of complex read queries but remains variable, we
aimed to simulate this distribution while preserving real-world un-
certainty. We achieved this with a biased randomwalk strategy [39],
employing an exponential distribution to adjust the randomness
based on the time window’s length. Longer durations increase the
likelihood of generating simpler queries. The probability formula
for the time-based exponential distribution is as follows:

𝑃𝑟𝑜𝑏(𝑥 ) = 1 −𝑈 𝑘 ·𝑡

where:
• 𝑈 is a random variable uniformly distributed in the interval [0, 1).
• 𝑡 is the time window length for the complex read query.
• 𝑘 is a coefficient that adjusts the time window.

This approach enables computation of the cumulative probability
value associated with the exponentially distributed random variable
𝑈 , which effectively maps 𝑈 to a value within the interval [0, 1).
This transformation aligns with the need to generate a ratio of
simple read queries based on the scaled time window of complex
read queries. The probability value is used to determine the count
of simple read queries.
Write and Read-Write Queries. The generation of parameters for
write and read-write queries ensures that insert operations always
involve new data. There is a necessary sequence among different
types of write and read-write queries. For example, account cre-
ation must precede actions such as setting up transfer relationships.
This order reflects natural dependencies, ensuring that each query
executes only after completing the prerequisite steps. The data
generator (See Section 2.3) assigns a creation timestamp to each
vertex and edge during the simulation, mapping these to the rel-
ative timestamp for each write query. During benchmarking, the
driver reads the load size parameter, defined as a time compression
coefficient relative to the simulation, and dynamically calculates
actual request times based on these relative timestamps.

5 EVALUATION
While domain-specific metrics like fraud detection accuracy are
critical for financial applications, they depend on higher-level busi-
ness logistics beyond the benchmark scope. By distilling finan-
cial scenarios into workload and dataset characteristics, we focus
on infrastructure-level performance metrics of the foundational
queries, including throughput and query latency, reflecting the
system’s capacity to accelerate downstream financial tasks. Since
the testing of ACID properties in modern databases has been well-
established, FinBench introduces a standardized tool [14], which
evaluates ACID compliance and isolation levels by simulating di-
verse concurrency scenarios and injecting faults.

FinBench has been used to evaluate graph databases such as
TuGraph [46], Galaxybase [51], and gStore [30], and the implemen-
tations1 have been open-sourced [15]. In Section 5.1, we present the

1Note that the experiment results presented here are not official LDBC Financial
Benchmark results as they were not audited.



analysis of experiment results on TuGraph-DB [33, 47] to demon-
strate the identified choke points. In Section 5.2, we conduct bench-
marking experiments on Galaxybase [51] and gStore [30] to demon-
strate benchmark capability and portability [20, 25].

5.1 Choke Points Analysis
As illustrated in Section 2 and Section 3, the new choke points
identified in financial scenarios present challenges to graph systems,
ranging from the language expression ability to the query execution
and storage management.

Figure 10: TuGraph-DB’s graph topology packing [33].

Optimization in Storage for Queries with Temporal Filters. A
common feature of financial datasets and queries is the frequent
usage of timestamps and time windows-based filters, which chal-
lenge systems to improve temporal access locality when filtering
the edges. Designing systems with optimization strategies, such
as sorting edges by timestamp in storage and employing effective
search methods, can enhance performance in such scenarios.

TuGraph-DB [47], an open-source graph database of TuGraph,
adopts an innovative storage design that sorts edges by timestamp
within a graph topology built on key-value storage [33]. As shown
in Figure 10, the vertex’s unique identifier serves as the key, while
the inedges and outedges are packed as the value in the key-value
store. A unique identifier combination of SrcVid (source vertex id),
LabelId (edge type id), TemporalId (timestamp id), DstVid (destina-
tion vertex id), and Eid (edge id) is assigned to each edge, where
Eid is designed to support edge multiplicity, and TemporalId allows
sorting edges in timestamp order. TuGraph-DB provides a temporal
sorting feature that sorts the edges by timestamp. Without this
feature, edges are randomly ordered, requiring iterating over all
edges and then selecting those whose timestamp is in the given
time window during graph traversal. Enabling this feature improves
data access locality to time-window-based queries. Sorting edges in
timestamp order allows the binary search to efficiently find the first
edge after the start time, iterating through subsequent edges until
the first edge beyond the end time. Binary search leverages storage
locality, minimizing unnecessary memory page loads during iter-
ation, particularly with high-degree vertices, thereby enhancing
time window query performance.

To test the effectiveness of the temporal sorting feature, we
conducted experiments on Complex Read Query 1 (see Figure 7),
with an example Cypher query provided in Listing 1, using the
SF100 dataset on TuGraph-DB. After cold starts, TuGraph-DB was
tested in two modes: with and without the enabled temporal sorting
feature. The elapsed times for query execution and edge iteration
were recorded. Table 4 shows the query execution time and edge
iteration time of the two modes. To illustrate the effectiveness of
the optimization strategy, enabling temporal sorting reduces edge
iteration time by 69.5% and query execution time by 40.9%.

MATCH p = (acc:Account {id: $accId})-[e1:transfer *1..3]->(

other:Account)<-[e2:signIn]-(medium)

WHERE isAsc(relationships(e1, 'timestamp'))=true

AND head(relationships(e1, 'timestamp')) > $startTime

AND last(relationships(e1, 'timestamp')) < $endTime

AND e2.timestamp > $startTime

AND e2.timestamp < $endTime

AND medium.isBlocked = true

RETURN DISTINCT other.id as otherId, length(p)-1 AS

accountDistance,

medium.id AS mediumId, medium.type AS mediumType

ORDER BY accountDistance, otherId, mediumId

Listing 1: An example Cypher query of TCR 1

Table 4: The average edge iteration time (ms) and query exe-
cution time (ms) of TCR 1 on TuGraph-DB on SF100 when
the temporal sorting feature is disabled and enabled.

Avg. time (ms) Disabled Enabled Improvement
Edge Iteration Time 102,511 31,265 69.5%

Query Execution Time 196,065 115,817 40.9%

Optimization in Query Execution for Recursive Path Filter-
ing Queries. Pruning traversals using recursive path filters is chal-
lenging because these filters cannot be applied in advance. Cur-
rently, FinBench includes six recursive path filters: isAsc, isDesc,
head, last, minInList, and maxInList. For example, the isAsc filter
requires that the timestamps along a path be in ascending order.
Let 𝑝 be a recursive path filter. A baseline approach to implement
𝑝 is obtaining a path set without applying 𝑝 and then scanning
each path to verify if it satisfies 𝑝 . This approach generates numer-
ous invalid intermediate results, indicating significant potential for
optimization in both memory usage and query efficiency.

We implemented an optimized version of recursive path filter-
ing in TuGraph-DB. Specifically, for a recursive path filter 𝑝 , we
introduce a traversal state, denoted as 𝑠𝑡𝑎𝑡𝑒 , and a new filter 𝑝′.
The 𝑠𝑡𝑎𝑡𝑒 is maintained during path traversal, and each time the
path is expanded, we check if the new filter 𝑝′ applies to the newly
expanded vertex or edge and the current 𝑠𝑡𝑎𝑡𝑒 . For example, for
the recursive path filter isAsc, the 𝑠𝑡𝑎𝑡𝑒 tracks the maximum times-
tamp encountered so far. The new filter 𝑝′ returns true if the new
timestamp exceeds the current 𝑠𝑡𝑎𝑡𝑒; otherwise, it returns false.
Thus, instead of post-processing paths with the filter 𝑝 , we can
push down another filter 𝑝′ to prune invalid traversals in advance,
thereby improving query performance. We experimented on both
the baseline and optimized versions for recursive path filtering and
compared their performance. We selected three query types from
FinBench (TCR 1, TCR 2, and TCR 5) that require recursive path
filtering. Table 5 shows the average execution time. Compared to
the baseline version, our optimized version reduced the execution
time by 70.3%, 87.4%, and 83.3%, for the respective queries, verifying
the effectiveness of our approach.
Optimization in Query Language to Express Truncation and
Recursive Path Filtering. Graph Query Languages, such as ISO
GQL [16] and SQL/PGQ [17], cannot express Truncation and Recur-
sive Path Filtering concisely, limiting their applicability in financial



Table 5: The average execution time (ms) of queries involving
recursive path filter on two methods.

Avg. time (ms) Baseline Optimized Improvement
TCR1 1,339,644 397,078 70.3%
TCR2 1,772,853 222,250 87.4%
TCR5 1,715,553 285,430 83.3%

scenarios. As an example solution, Crowe et al.’s proposal [9] ad-
dresses the Truncation language choke point by extending the GQL
syntax with a TRUNCATING construct. It specifies both the trunca-
tion limit and order, which is compiled into a constraint applied to
graph traversals. Further proposals and discussions are expected to
advance the standard graph query language.

5.2 End-to-end evaluation
In this section, we present the performance results of Galaxybase
[51] using Cypher and gStore [30] using stored procedures to vali-
date FinBench’s capability, portability, and completeness. The ex-
periments were conducted on a machine with 32 cores, powered
by a HiSilicon Kunpeng 920 CPU and 256GB of DDR4 memory,
running the Ubuntu 22.04 LTS.

Galaxybase is a distributed graph database that uses a native
graph storage format specifically designed to handle HTAP (Hy-
brid Transactional & Analytical Processing) query workloads. In
particular, for the queries that require the retrieval of paths with
sequentially increasing property values, Galaxybase implements
a Cypher extension that specifies the property that needs to in-
crease in the respective MATCH clause, effectively addressing the
recursive path filtering language choke point (Choke Point 8 in
Appendix A). Galaxybase ensures data consistency by implement-
ing read-write queries as transactions, which are rolled back if
any condition is not met during the query process. gStore is an
open-source, centralized graph database system. Though gStore
was originally designed for RDF graph data, its extended version
now supports RDF and property graphs simultaneously with the
same underlying native graph storage backend. gStore implements
the FinBench workload queries as stored procedures.

We ran the benchmark on gStore at SF10 and Galaxybase at
SF100 over a continuous 2-hour period. The average execution
times for the workload queries are shown in Table 6. The latencies
of recursive path filtering queries (see Section 3.2), such as TCR
1 and 2, are relatively high compared to the other queries. This
indicates room for optimization at this performance bottleneck.

6 RELATEDWORK
Benchmarks for graph data. Benchmarks for graph technologies
have been proposed to match the ever-increasing graph scenarios,
and most of them are designed for social network data. LinkBench
[4] is inspired by social network data and web service applications
at Meta. BigDataBench [5, 56] is a benchmark suite that provides
a graph analytics workload on the Meta social network dataset
for different big data systems, such as Hadoop, Spark GraphX, and
GraphLab. BG [1] measures a graph database’s capability of process-
ing interactive social network workloads based on the simulation of

individual stateful users. Graph Benchmark [34] provides a micro-
benchmarking framework with a broader spectrum of test queries
and datasets of LDBC, DBpedia, and air routes [29]. TAOBench
[7] captures the social graph workloads by accurately simulating
the production request patterns at Meta. LDBC plays an important
role in benchmarking graph data. The LDBC Semantic Publishing
Benchmark (SPB) [28] is an LDBC benchmark for RDF database
engines inspired by the Media/Publishing industry, assuming that
an RDF database is used to store both the reference knowledge
(mostly static) and the metadata (that grows constantly, to stay in
sync with the inflow of streaming content). For labeled properties
graph systems, the widely-used LDBC SNB [2] targets systems with
graph-processing capabilities from the perspective of social net-
works, and it contains two workloads: Interactive Workload [11]
and Business Intelligence Workload [44].

Regarding the workloads, only LDBC SNB [2] and TAO contain
transactions, and TAO provides read-only and write-only trans-
actions. In particular, FinBench and SNB both involve multi-hop
traversal and property filters on the data graph. They are compared
in Table 1. FinBench introduces several key features unique to the fi-
nancial scenarios but not shown in social networks, including edge
multiplicity, rich properties, and temporal skewness of the data
(see Section 2.2), query choke points such as hub vertex truncation
and transactional read-write queries (See Section 4.1), and a query
mix mechanism that considering the time window of complex read
queries (See Section 4.3).
Benchmarks for relational databases. Some of the most widely
used relational database benchmarks are proposed by the Trans-
action Processing Performance Council (TPC), including TPC-C
[52], TPC-H [54], TPC-DS [53], etc. TPC-C is an online transac-
tion processing (OLTP) benchmark. It tests the OLTP system us-
ing a commodity sales model involving five concurrent transac-
tions of different types and complexity. Both TPC-H and TPC-DS
are decision support benchmarks for online analytical processing
(OLAP)[36, 41, 42]. TPC-H consists of business-oriented ad hoc
queries and concurrent data modifications built with a third Nor-
mal Form (3NF) schema. Compared with TPC-H, TPC-DS has more
difficult queries and implements multiple Snowflake schemas with
shared dimensions to support the evaluation of new emerging
databases. Despite their intricate design and wide adoption, the
TPC benchmarks reflect neither the characteristics of graph data
and queries nor the specific demands of financial scenarios, which
are the focuses of FinBench.

7 CONCLUSION
This paper introduced the LDBC Financial Benchmark (FinBench)
Transaction Workload, which fills a critical gap in the current land-
scape of graph benchmarks and sets a new standard for perfor-
mance evaluation in the FinTech industry. By emphasizing critical
novel performance bottlenecks identified in financial workloads,
FinBench includes a scalable data generator capable of synthesizing
datasets with financial-specific characteristics, a parameter gen-
erator ensuring runtime consistency across queries through the
use of bucketed data statistics, and a scalable benchmark driver
that biases query execution based on time windows. We conduct
two experimental evaluations of FinBench on two graph database



Table 6: Detailed benchmark results for gStore@SF10 and Galaxybase@SF100. Query latencies are reported in milliseconds.

Query TCR1 TCR2 TCR3 TCR4 TCR5 TCR6 TCR7 TCR8 TCR9 TCR10 TCR11 TCR12 TSR1 TSR2 TSR3 TSR4 TSR5 TSR6

gStore, SF10 1.40 1.56 11.42 0.77 0.57 1.44 2.16 0.80 1.47 1.23 1.39 1.74 0.73 0.68 0.73 0.64 0.63 0.80
Galaxybase, SF100 2.52 2.87 0.82 1.01 2.87 0.89 0.91 2.34 1.63 1.23 0.80 0.99 0.50 0.85 1.01 0.65 0.69 3.89

Query TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW9 TW10 TW11 TW12 TW13 TW14 TW15 TW16 TW17 TRW1 TRW2 TRW3

gStore, SF10 3.22 3.83 2.77 10.39 3.81 24.37 3.11 1.06 1.01 4.36 0.51 0.97 1.84 0.64 0.68 1.43 1.07 2.81 1.25 0.62
Galaxybase, SF100 0.54 0.55 0.53 0.67 0.64 0.64 0.64 0.62 0.64 0.63 0.65 0.60 0.60 0.61 0.61 0.60 2.73 1.38 4.81 0.97

management systems to demonstrate its effectiveness in uncover-
ing novel choke points and offering valuable insights into system
performance. The results indicate that FinBench can serve as a
critical tool for researchers and practitioners aiming to enhance the
efficiency and reliability of graph databases in the FinTech industry.

8 FUTUREWORK
The future development of this work encompasses system optimiza-
tion and benchmark enhancement.
System optimization opportunities. The choke points high-
lighted in Section 3 are introduced to the benchmark to evaluate
graph databases, which indicate optimization opportunities, such
as TRUNCATION support in existing graph languages. With larger
datasets and more complex queries emerging from the continu-
ous iteration of this work, a broader range of tuning features and
optimization techniques will need to be addressed, including dis-
tributed system configuration, advanced indexing techniques, and
materialized views. These optimizations are critical for maintaining
system performance and scalability as the workload grows.
Benchmark Enhancement. Truncation discussed in Section 3.4
may lead to inconsistencies in query results due to the arbitrary
traversal direction during optimized query execution (e.g., when
finding a path between vertices A and B, the traversal may expand
from A to B or from B to A potentially yielding different results).
To address this issue, a possible solution is to restrict truncation to
a specific traversal direction and hop limit. Beyond this transaction
workload, FinBench also aims to define an OLAP workload. As
an OLAP workload example in financial scenarios, Geaflow [38]
solves complex graph analysis and computation problems in high-
throughput scenarios, such as subgraph matching, stream graph
construction, and full graph analysis.
Automated Benchmarking. In this work, throughput measures
high-frequency query volume. However, real-world applications
require both high throughput and low latency. Maximizing through-
put while adhering to a fixed latency constraint is crucial to accu-
rately assessing system performance. Manually determining this op-
timal throughput is complex and time-consuming due to lengthy sta-
bility tests and variations in hardware performance. To address this,
an automated benchmarking system that utilizing pre-execution pa-
rameter estimation and automatic tuning can efficiently determine
the optimal throughput under varying conditions.
HTAP Systems Benchmarking. To eliminate the ETL process
and facilitate real-time data analysis on transactional data, various
database systems supporting Hybrid Transactional/Analytical Pro-
cessing (HTAP) have emerged [31, 58]. This trend is also observed
in the context of graph databases. Recent studies have begun to

benchmark HTAP systems [57]. However, there currently exists
no benchmark specifically tailored to graph databases with HTAP
metrics. We aim to develop and support benchmarks for HTAP
systems, incorporating features pertinent to graph databases.
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A CHOKE POINTS
Here are some novel choke points found in financial scenarios.

CP 1: Intra-query Parallelization on Hub Vertex
When traversing on the hub vertex, the number of edges is unevenly
distributed beyond estimation based on the degree distribution of
the graph. This choke point tests the query optimizer to automate
the intra-query parallelization when traversing on the hub vertex
to speed up.

CP 2: Write Operation Contention and Conflicts
The read-write query is expected to execute inside a transaction.
The transaction is a potential write after a long read. It means
a long-time write transaction that holds write locks longer than
expected. This may results in contention and conflicts between
write operations to the same datum.



CP 3: Intermediate Result Propagation
When calculating some final share or final ratio values, a common
pattern is to calculate the value in the current hop based on the value
in the last hop, which is similar to propagation. The intermediate
results can be cached for the next hop to ensure query efficiency.

CP 4: Temporal Access Locality and Performance
When filtering edges in a temporal graph, the query performance
with temporal window filters can be improved when the edges are
sorted by timestamp in storage, which optimizes the data access
locality for timestamps.

CP 5: Hub Vertex Storage Balance
Especially in distributed systems, hub vertices mean bigger data
units, e.g., sharding, which may need to split to balance the storage,
load, and inter-shard communication.

CP 6: Multiplicity Support in Graph Model
Edge multiplicity requires that systems support multiple edges
between the same vertex pair. Another dimension is required to
annotate the edge id.

CP 7: Concise Temporal Window Expression
Temporal window filtering is a common expression when filtering
edges in the navigational pattern to bound the query for expected
data. It is verbose to express a temporal window by adding times-
tamp filtering clauses on each vertex and edge. A more concise
expression is desired. A possible solution is adding keywords like
RANGE_SLICE, LEFT_SLICE and RIGHT_SLICE referring to an ex-
tension of Cypher [26].

CP 8: Recursive Path Filtering Pattern
When tracing a fund flow, it is expected to find a path with recursive
filters. For example, filters are expected to assume a path A-[𝑒1]->
B -[𝑒2]-> ... -> X.

• The timestamp order: 𝑒1 < 𝑒2 < . . . < 𝑒𝑖
• The amount order: 𝑒1 > 𝑒2 > . . . > 𝑒𝑖
• The time window: 𝑒𝑖−1 < 𝑒𝑖 < 𝑒𝑖−1 + ®Δ, ®Δ is a given constant.

Such queries that require all timestamps in the transfer trace are
in ascending order or the upstream edge are difficult to explain in
plain Cypher (or GQL [16] or SQL/PGQ [17]) because they require
support for the category of queries regular expression with memory
as described in [32]. Another possible solution is adding keywords
like SEQUENTIAL and DELTA referring to an extension of Cypher.

CP 9: Traversal Limit Pattern
When traversing the hub vertex, the intermediate result may expe-
rience exponential growth. When the performance is not enough to
satisfy the queries on the hub vertex, a language feature is needed
so that the number of edges traversed out from the hub vertex can
be limited.

B DATA STATISTICS
This table presents the vertices and edges count of each type in the
FinBench datasets on each Scale Factor.

Table 7: The number of entities per SF in FinBench datasets.
To derive these numbers, 100% of the network was generated
as an initial bulk data set with no updates. Notation – C:
entity category, V: vertex, E: edge.

C File SF0.1 SF0.3 SF1 SF3 SF10 SF30 SF100
V person 1 000 3 000 10 000 30 000 100 000 300 000 1 000 000
E personOwnAccount 2 201 6 551 21 880 65 900 219 164 658 171 2 195 916
E personApplyLoan 1 330 3 940 13 250 39 714 132 080 396 244 1 322 867
E personGuarantee 799 2 349 7 871 23 884 79 839 239 847 800 162
E personInvest 2 941 8 927 29 998 89 958 300 114 900 439 3 001 011
V company 1 000 3 000 10 000 30 000 100 000 300 000 1 000 000
E companyOwnAccount 2 207 6 596 22 048 66 025 220 007 660 329 2 203 087
E companyApplyLoan 1 336 4 022 13 369 40 039 132 554 396 394 1 321 058
E companyGuarantee 752 2 376 7 906 23 976 79 839 239 714 799 164
E companyInvest 3 034 8 963 30 193 90 041 299 749 900 262 3 001 730
V account 4 408 13 247 43 928 131 925 439 171 1 318 500 4 399 003
E transfer 16 105 49 512 164 433 483 262 1 823 676 5 496 824 18 919 028
E withdraw 33 317 101 144 332 828 996 004 3 331 896 10 005 719 33 360 249
V loan 2 666 7 962 26 619 79 753 264 634 792 638 2 643 925
E loantransfer 8 148 24 144 80 942 242 262 805 802 2 414 134 8 057 740
E deposit 8 516 25 505 85 415 257 081 852 754 2 551 090 8 507 512
E repay 6 018 17 964 60 086 179 995 595 683 1 785 011 5 962 923
V medium 2 000 6 000 20 000 60 000 200 000 600 000 2 000 000
E signIn 9 240 27 222 90 807 361 742 1 491 643 4 562 637 15 455 625

C RELATED REPOSITORIES
The source code of this specification and the benchmark suite are
available on Github:
• LDBC FinBench specification: https://github.com/ldbc/ldbc_

finbench_docs
• LDBC FinBench data generator and parameters generator: https:

//github.com/ldbc/ldbc_finbench_datagen
• LDBC FinBench driver: https://github.com/ldbc/ldbc_finbench_

driver
• Transaction workload reference implementations: https://github.

com/ldbc/ldbc_finbench_transaction_impls

https://github.com/ldbc/ldbc_finbench_docs
https://github.com/ldbc/ldbc_finbench_docs
https://github.com/ldbc/ldbc_finbench_datagen
https://github.com/ldbc/ldbc_finbench_datagen
https://github.com/ldbc/ldbc_finbench_driver
https://github.com/ldbc/ldbc_finbench_driver
https://github.com/ldbc/ldbc_finbench_transaction_impls
https://github.com/ldbc/ldbc_finbench_transaction_impls
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