
A Differentially Private Selective Aggregation

Scheme for Online User Behavior Analysis

Jianwei Qian∗, Fudong Qiu∗, Fan Wu∗, Na Ruan∗, Guihai Chen∗, Shaojie Tang†

∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
†Department of Information Systems, University of Texas at Dallas, USA

qianjavier@gmail.com, fdqiu@sjtu.edu.cn, {fwu, naruan, gchen}@cs.sjtu.edu.cn, tangshaojie@gmail.com

Abstract—Online user behavior analysis is becoming increa-
singly important, and offers valuable information to analysts
for developing better e-commerce strategies. However, it also
raises significant privacy concerns. Recently, growing efforts have
been devoted to protecting the privacy of individuals while data
aggregation is performed, which is a critical operation in behavior
analysis. Unfortunately, existing methods allow very limited
aggregation over user data, such as allowing only summation,
which hardly satisfies the need of behavior analysis. In this paper,
we propose a scheme PPSA, which encrypts users’ sensitive
data to prevent privacy leakage from both analysts and the
aggregation service provider, and fully supports selective aggre-
gate functions for differentially private data analysis. We have
implemented our design and evaluated its performance using
a trace-driven evaluation based on an online behavior dataset.
Evaluation results show that our scheme effectively supports
various selective aggregate queries with acceptable computation
and communication overheads.

I. INTRODUCTION

Online user behavior analysis studies how and why users

of e-commerce platforms and web applications behave. It has

been widely applied in practice, especially in commercial

environments, political campaigns, and web application de-

velopments [1]. Data aggregation is one of the most critical

operations in behavior analysis. Nowadays, the aggregation

tasks for user data are outsourced to third-party data aggre-

gators including Google Analytics, comScore, Quantcast, and

StatCounter. While this tracking scheme brings great benefits

to analysts and aggregators, it also raises serious concerns on

disclosure of users’ privacy [2]. Aggregators hold detailed data

of users’ online behaviors, from which demographics can be

easily inferred [3]. To protect users’ privacy, government and

industry regulations were established, e.g., W3C Do-Not-Track

[4], which significantly restricts the analysis of users’ online

behaviors [2].

To address the conflict between the utility of analysis results

and users’ privacy, much effort has been devoted to designing

protocols that allow operations on user data while still protect-

ing users’ privacy (e.g., [2], [5]–[11]). Unfortunately, existing

schemes guarantee strong privacy at the expense of limitations

on analysis. Most of them can only compute summation

and mean of data over all users without filter or selection,

i.e., overall aggregation. Some previous methods allow more

complex computations, such as polynomial evaluation [10],

[11], yet still do not support selection. However, selective

aggregation is one of the most important operations for queries

on databases. It can be used to tell the difference among

Clients Intermediary Analyst

Query

Result

Data

Data

Data

Quer

Resu

ata

ata

ata

Fig. 1: System overview

different user groups in a certain aspect. For instance, “select
avg(income) from database group by gender”.

As shown in Fig. 1, a typical privacy-preserving data

aggregation system is composed of three parts: clients, inter-

mediary (i.e., aggregation service provider) and analyst. The

intermediary collects data from clients (users’ devices), does

some calculations and evaluates aggregate queries issued by

the analyst. A common assumption made in many existing

systems is that the intermediary is not trusted.

The main goal of this paper is to design a practical protocol

that is able to compute selective aggregation of user data,

while still preserving users’ privacy. There are mainly three

challenges. First, the untrusted intermediary need to evaluate

selective aggregation obliviously. It cannot access user data for

privacy concerns, but we hope it do computations to achieve

selection and aggregation on user data. We exploit homo-

morphic cryptosystem to address this challenge, but so far it

does not directly support data selection. Second, PPSA needs

to achieve differential privacy in homomorphic cryptosystem.

To protect individuals’ privacy, we need to obliviously add

noise to aggregate results in addition to encrypting user data.

Existing differential privacy mechanism generates noise from

real numbers, but homomorphic cryptosystem requires plain-

texts to be integers. Simply scaling real numbers to integers

would cause inaccuracy and inconvenience. Thus, we need to

resolve this conflict. Third, PPSA should resist client churn,

the situation where clients switch between online and offline

frequently. When an analyst issues a query, there could be

few users connected, which means few data can be collected

to evaluate the query. But the analyst wants the intermediary

to respond to her as soon as possible. Thus, our protocol needs

to tolerate client churn, and evaluate the query both timely and

accurately.

To address these challenges, we design a scheme PPSA

(Privacy-Preserving Selective Aggregation). In general, our

contributions can be summarized as follows:

• We present the first scheme PPSA that allows privacy-

preserving selective aggregation on user data, which plays

a critical role in online user behavior analysis.

• We combine homomorphic encryption and differential

privacy mechanism to protect users’ sensitive information

from both analysts and aggregation service providers, and

protect individuals’ privacy from being inferred.

• We extend PPSA to support aggregation selected by

multiple boolean attributes, which makes it more useful

in online user behavior analysis.

• We implement PPSA and do a trace-driven evaluation

based on an online behavior dataset. Evaluation results

show that our scheme effectively supports various selec-

tive aggregate queries with high accuracy and acceptable

computation and communication overheads.

The rest of this paper is organized as follows. Section

II presents an overview of PPSA and related background

knowledge. Section III gives details on our protocol. Then

Section IV presents an extension of PPSA. Section V analyzes

simulation results, followed by related work in Section VI.

Finally, Section VII concludes this paper.

II. PRELIMINARIES

We first present PPSA model, then we introduce differential

privacy and a useful homomorphic cryptosystem.

A. System Model

In behavior analytics, overall aggregation and selective

aggregation are two basic types used to query over data from

a group of users.

Overall aggregation means computing the sum or mean of

a certain value of all users, e.g., “the total amount of time

online of all the users yesterday”.

Selective aggregation literally refers to selecting the users

who satisfy some conditions before aggregating their values,

e.g., “the average amount of time online of all the male users”.

Herein, “male” is a condition to pick out target users.

We suppose there is a centralized table T that contains

attributes and collects users’ answers to them. Attributes

(denoted by att) can only be numeric, because non-numeric

attributes cannot be directly aggregated.

Boolean attributes are a special type of numeric attributes,

to which users’ answers are boolean values (0 or 1), e.g.,

“gender is male”. A male user’s answer would be 1. Most

categorical attributes can be easily transformed into boolean

attributes. For example, education level can be decomposed

into several boolean attributes: “education level is bachelor”,

“education level is master”, etc.

Numeric attributes. Since boolean attributes are very im-

portant in PPSA, we are referring to non-boolean numeric

attributes when we use “numeric attributes”. Users’ answers

to numeric attributes are non-negative integers, e.g., “age=25”.

To formulize, the relation schema of T is

T (id, a1, a2, . . . , ai, b1, b2, . . . , bj).

id is user ID, a represents numeric attribute, and b represents

boolean attribute. The set of attributes is denoted by A.

Fig. 1 gives an overview of PPSA, which is comprised of

a set of n users, the intermediary and an analyst.

Clients are installed on user side. They can be bundled with

users’ softwares that require private analytics. Thus, it is rea-

sonable to assume clients are trusted. A client collects a user’s

data, detects and removes outliers. Once the user gets online,

the client sends encrypted data to the intermediary. Clients are

not involved in the process of statistical aggregation. The set

of users is denoted as U = {1, 2, . . . , n}, the plaintext answer

of user u to attribute att is xu
att, and the ciphertext of xu

att is

cuatt, for ∀att ∈ A, ∀u ∈ U.

Analysts are individuals or institutions that want to query on

user data. An analyst sends a query Q to the intermediary, and

then receives a noisy answer from it. Analysts are assumed to

be semi-honest, trying to learn individual users’ privacy. An

analyst may collude with other analysts or make one single

query multiple times.

Intermediary, comprised of an aggregator and an authority,

bridges clients and analysts. They are in charge of aggregating

user data from clients and responding to queries of analyst.

Encrypted data is stored in the aggregator, but the key is

managed by the authority. They need to cooperate to provide

both functionality and security. We assume they are both semi-

honest, i.e., they faithfully run the specified protocol, but may

try to learn additional information. And they do not collude

with each other. These assumptions are appropriate in realistic

scenarios [7].

Our privacy goal is to prevent user data leakage to analysts,

the aggregator or the authority.

B. Differential Privacy

Differential privacy et al.([12]–[14]) is a privacy mecha-

nism that protects any individual’s privacy by making it very

hard to determine whether or not her record is in the queried

table. Privacy is preserved by adding noise Z to the result of

a given query Q. We prove Z can be generated according to

the geometric distribution, which is on natural numbers.

Theorem 1. Given a query Q, let two independent variables

Z1, Z2 ∼ Geo(1−p) and Z = Z1−Z2, adding Z to the result

of Q achieves ǫ-differential privacy, where p = exp(−ǫ/∆Q).

Please see details and proofs in the technical report [15].

PPSA utilizes this method to obliviously add noise to the

real result. Z can be decomposed into two half-noises. If the

aggregator generates Z1 and the authority generates Z2, we

can obtain the noise by subtracting Z2 from Z1. Neither of

them knows the whole noise. The blind noise addition prevents

the system from determining the noise-free result when the

noisy result is publicly released.

C. Boneh-Goh-Nissim Cryptosystem

The Boneh-Goh-Nissim Cryptosystem (BGN) [16] is a kind

of homomorphic cryptosystem which allows the computation

of an unlimited number of homomorphic additions and a single

homomorphic multiplication of two ciphertexts. Below are

functions in BGN cryptosystem.

KeyGen(τ): Given a security parameter τ ∈ Z+, generate

the public key pk = (n, g, h,G,G1, e), and the private key

sk = p. Here, e is a bilinear map, and hp = 1. (More details

are in [16].)

Encrypt(pk,m): Given a plaintext m ∈ P and a public key

pk, it chooses a random r ∈ Zn and calculate the ciphertext

c = gmhrmod n ∈ G (1)

We use E() or c to refer to ciphertext hereinafter.

Decrypt(sk, c): Given a ciphertext c ∈ C and a private key

sk, it calculates

c′ = cp = (gp)mmod n (2)

and uses Pollard’s lambda method [17] to take the discrete

logarithm of c′ in base gp, and then get the plaintext m in

time O(
√
T). We actually can precompute a (polynomial-

sized) table of powers of gp so that decryption can occur in

constant time.

Then, we show the homomorphic properties of BGN cryp-

tosystem. Given c1 = E(m1), c2 = E(m2), then

c1c2 = E(m1 +m2), (3)

c1g
k = E(m1 + k), (4)

ck1 = E(km1), (5)

c1c
−1

2 = E(m1 −m2), (6)

c1g
−k = E(m1 − k), (7)

e(c1, c2) = E(m1m2) ∈ G1. (8)

Equation 8, i.e., homomorphic multiplication, can be used only

once. Details can be seen in our technical report [15].

III. SYSTEM DESIGN

In this section, we first discuss about the design rationale of

PPSA, and then present the protocol for selective aggregation.

A. Design Rationale

In this subsection, we introduce three important decisions

on the system design.

1) Storing data on aggregator: Most of recent proposals

are distributed systems, where each client stores its private

data locally. Such systems provide privacy but are susceptible

to client churn. To avoid this weakness, PPSA chooses to

store all the user data in a server, the aggregator. Clients are

only required to send their data when they are online. The

aggregator can evaluate queries without their participation so

the system operates well even if no client is online. In this

case, each client encrypts its data before sending them to

the aggregator, which can only do calculations obliviously on

these encrypted data and output the results.

2) Introducing authority: Due to using encryption in PPSA,

there must be a component to manage keys. Firstly, the

aggregator cannot take this responsibility, because it holds

all the private data. Secondly, if clients manage keys, they

have to participate in the process of evaluating queries to

decrypt the results. At last, analysts cannot manage keys either

because any analyst can be an adversary. As a result, we have

to introduce the authority into the system to generate keys

and keep the private key. The aggregator and the authority

constitute the intermediary of PPSA model.

Fig. 2: Basic protocol for Query Evaluation

3) Using homomorphic cryptosystem and differential pri-

vacy mechanism: First, the aggregator needs to do calculations

obliviously on encrypted data. Homomorphic cryptosystems

support such operations. Second, when an analyst obtains

aggregate results from the system, she can infer individual

privacy with computational power and auxiliary information.

To prevent such privacy disclosure, we exploit differential

privacy mechanism. It guarantees stronger security of PPSA.

B. Basic Protocol

The selective aggregation protocol comprises 3 phases.

Phase 1: Setup

The authority first decides a set of attribute:

A = {a1, a2, . . . , ai, b1, b2, . . . , bj}.
Then it runs KeyGen(τ) and gets sk and pk. Also, the

authority decides the parameter ǫ in differential privacy. And

it sets a minimum sample size min for too small a sample

makes a query meaningless and prone to privacy leak. Finally,

it publishes the tuple: 〈A, pk,min〉.
Based on A, the aggregator creates a table

T (id, a1, a2, . . . , ai, b1, b2, . . . , bj),

with values of all cells set to null.

Phase 2: Data Collection

After setup, the system begins to collect user data. Every

client refers to A, and collects user’s answer to each of the

given attributes. (How the client gets user data is outside the

scope of this paper.) Once client u obtains an answer xu
att to

an attribute att, it encrypts the answer with pk published by

the authority and get the ciphertext cuatt. Then it sends the

tuple to the aggregator: 〈u, att, cuatt〉, ∀att ∈ A.
After receiving the tuple from client u, the aggregator sets

the corresponding entry in table T : T (u, att) = cuatt.
The client still fulfills data collection when disconnected

and would send obtained data to the aggregator shortly after

getting online. We do not need any other interactions between

clients and servers. Thus, PPSA is resistant to client churn.

Phase 3: Query Evaluation

Query evaluation can be executed before data collection

is finished, because evaluating a query does not involve all

the data in table T . The key to achieve selective aggregation

is counting in data items of target users by multiplying

them by 1 and skipping the rest by multiplying them by 0.

These calculations are done in ciphertext, and thus no privacy

disclosure would occur. It consists of four steps (Fig. 2).

Step 1. An analyst sends the authority a query Q =
〈s, att, b〉, where s is sample size the analyst wants, att is

any attribute in A, b is any boolean attribute for selection.

Step 2. The authority does sanity check once it receives Q.

If s < min, att /∈ A, or b is not a boolean attribute, it returns

an error to the analyst. Otherwise, it goes on as follows. It

computes the parameter p as described in Section II-B: Then

it generates two Geo(1 − p) random variable Z1, Z2 as half-

noises and encrypts them with pk: At last, the authority sends

the tuple to the aggregator:

〈Q, p,E(Z1), E(Z2)〉.
Step 3. The aggregator runs Algorithm 1 (PPSAA). It first

counts the tuples that have valid values for the requested

attribute. If the number m is less than requested sample size,

it returns an error which indicates data deficiency. Otherwise

it goes on to randomly choose a sample S from valid tuples.

PPSAA computes two sums:

E(Sb) =
∏

u∈S

cub = E(
∑

u∈S

xu
b), (9)

E(Sb
att) =

∏

u∈S

e(cuatt, c
u
b) = E(

∑

u∈S

xu
attx

u
b), (10)

where Sb represents sum over attribute b, Sb
att represents sum

over att on users who are selected by b. If user u meets the

predicate of b, i.e., xu
b = 1, then his answer xu

att is added to

the sum. Otherwise, it is skipped since it is multiplied by a 0.

The aggregator also generates two half-noises, and obliviously

adds them together with E(Z1), E(Z2) to the sums:

E(Ŝb) = E(Sb)× E(Z1)× E(Z3)
−1 = E(Sb + Z1 − Z3),

E(Ŝb
att) = E(Sb

att)×E(Z2)×E(Z4)
−1 = E(Sb

att+Z2−Z4).

At last, the algorithm outputs two encrypted noisy aggregate

results E(Ŝb), E(Ŝb
att). Here hat (̂) denotes noisy data. Then

it sends the results to the authority.

Algorithm 1 Privacy-Preserving Selective Aggregation Algo-

rithm (PPSAA)

Require: Table T , attribute set A, query Q, noise parameter p, encrypted
half-noises E(Z1), E(Z2), public key pk.

Ensure: Tuple 〈E(Ŝb), E(Ŝb
att

)〉, or Error.
1: Count and mark users who have valid values in att and b. Let the count

be m.
2: if m < s then
3: return Error.
4: else
5: Let S be a set of s random users that are marked.
6: E(Sb)←

∏

u∈S

cu
b

.

7: E(Sb
att

)←
∏

u∈S

e(cu
att

, cu
b
).

8: Generate two Geo(1− p) random variables Z3, Z4.
9: E(Z3)← Encrypt(pk,Z3).

10: E(Z4)← Encrypt(pk,Z4).
11: E(Ŝb)← E(Sb)× E(Z1)× E(Z3)−1.

12: E(Ŝb
att

)← E(Sb
att

)×E(Z2)×E(Z4)−1.

13: return 〈E(Ŝb), E(Ŝb
att

)〉.
14: end if

Step 4. If the output is Error, the authority sends an error

message to inform the analyst of data deficiency. Otherwise,

it decrypts the encrypted noisy results with its private key sk,

and sends the noisy results Ŝb, Ŝ
b
att to the analyst:

Ŝb = Sb + Z1 − Z3, Ŝ
b
att = Sb

att + Z2 − Z4. (11)

Fig. 3: Extended Protocol for Query Evaluation

The analyst can calculate the noisy mean ξbatt:

ξbatt = Ŝb
att/Ŝb. (12)

Note it also makes sense if att is a boolean attribute. For

instance, att is “education level is master” and b is ”gender is

female”. We can get females’ ratio of holding a master degree.

IV. EXTENSION

In this section, we present steps to evaluate aggregation

selected by multiple different boolean attributes. For example,

the average number of searches made by females who have

master degrees, which involves two boolean attributes: “gender

is female” and “education level is master”. To evaluate such

queries, we present the Query Evaluation phase as described in

Fig. 3. For simplicity, we assume there are only two boolean

attributes restricting the aggregation, from which we can easily

extend to scenarios with more boolean attributes.

Step 1. An analyst sends the authority a query

Q = 〈s, att, b1, b2〉,

where b1, b2 represents two different boolean attributes. (The

aggregation makes sense if att is also a boolean attribute not

equal to b1, b2.)

Step 2. The authority does sanity check and sends the tuple

to the aggregator: 〈Q, p,E(Z1), E(Z2)〉.
Step 3. The aggregator does a calculation:

E(flagu) = cub1c
u
b2

= E(xb1 + xb2). (13)

We use flag as an indicator. The ciphertext E(flagu) is an

encryption of 2 if and only if user u satisfies both b1, b2
conditions. Then the aggregator permutates all these E(flagu)
and sends them to the authority.

Step 4. Now the authority wonders which of the encrypted

flags are E(2). Note decrypting them is unnecessary. She

just computes E(flagu)p (recall p is the private key) and

compared them with (gp)0, (gp)1, (gp)2 (Equation 2). Then

these E(flagu) are set to:

E(flagu) =

{

E(1), if E(flagu)p = (gp)2

E(0), otherwise.
(14)

Then it sends these E(flagu) back to the aggregator.

Step 5. Suppose Sb1b2 represents the number of users who

satisfy both b1, b2, Sb1b2
att represents the sum over att selected

by both b1, b2. The aggregator computes:

E(Sb1b2) =
∏

u∈S

E(flagu) = E(
∑

u∈S

flagu). (15)

E(Sb1b2
att) =

∏

u∈S

e(cuatt, E(flagu)) = E(
∑

u∈S

xu
attflag

u).

(16)

A user is counted in only if she meets both conditions of

b1, b2. The aggregator then adds noise and sends them to the

authority.

Step 6. The analyst decrypts E(Ŝb1b2), E(Ŝb1b2
att), and sends

the noisy results to the analyst.

V. EVALUATION

In this section, we implement PPSA and evaluate its per-

formance.

A. Methodology

We first implemented the BGN cryptosystem using the

Pairing-based Cryptography Library (PBC) [18], a library built

on the GMP library to perform mathematical operations in

pairing-based cryptosystems. The security parameter τ was set

to 80. Then we implemented PPSA based on the cryptosystem.

Then we did a trace-driven simulation on a data set of 1000

nationwide users’ demographics and online behaviors in four

weeks. It is extracted from a data set from China Internet

Network Information Center (CNNIC). The behaviors include

webpages browsed, time spent on each webpage, browsers

used. The demographic profiles include gender, age, education

level, income, occupation, etc.

B. Utility & Accuracy & Client Churn Resistance

We set differential privacy parameter ǫ = 1 in our tests. To

evaluate utility, we consider the following 5 queries. They all

aggregate on a sample of 1000 users in the whole four weeks.

• Q1: Average number of times of using Internet Explorer.

• Q2: Ratio of male users.

• Q3: Average number of webpages browsed by users, who

are grouped by gender.

• Q4: Average number of shopping webpages browsed by

users, who are grouped by gender.

• Q5: Average number of times of using Internet Explore

by users who are female and have a bachelor degree.

After running simulations, we get all the noisy results. The

results of Q1, Q2, Q5 are 1765, 0.773, 1994, respectively. The

results of Q3, Q4 are shown in Fig. 4(a). Analysts can use them

to compare the online intersts of males and females. Relative

errors of the five results are 0.2%, 0.4%, 2.5%, 4.3%, 6.3%,

respectively. Thus, it is shown PPSA supports multiple types of

queries with acceptable accuracy. To prove PPSA is resistant to

client churn, we compare it with a most recent system SplitX

[7] in accuracy. We focus on Q2 because SplitX can only

evaluate such queries. We vary online user ratio and sample

size s, and use average relative error as a metric. As presented

in Fig. 4(b), PPSA has higher accuracy than SplitX, especially

when there are less than 10 percent users online. When few

users are online, SplitX cannot operate at all.

C. Overhead

1) Computation Overhead: We analyze run time by every

phase and step of PPSA. The setup time is constant and less

than 10ms. The data collection time is up to computational

ability of clients and end-to-end time between clients and

the aggregator. And the encryption time is almost negligible

because one BGN encryption costs less than 1.5ms. The

decryption time of the authority is also a small constant. As

for analysts, they only send their queries and do a few simple

further calculations, also not time-consuming. Consequently,

we will not detail them. Fig. 4(c) presents computation over-

heads of algorithm 1 and the extension. PPSAA’s overhead

results mainly from homomorphic multiplication operations,

and it increases linearly as the growth of sample size, i.e., the

number of users whose data are involved in query evaluation.

But they are still very efficient in computation, as the run time

is less than 10s when sample size is 10,000. (The test data is

generated from the real dataset.) In the extension, most of

overheads lie in Steps 3, 4, 5. Their computation overheads

are also in proportion to the sample size. From these tests we

show that PPSA has acceptable computation overhead.

2) Communication Overhead: In PPSA, clients encrypt

their data and send the ciphertexts to the aggregator. Each

ciphertext has a size of 30 bytes. So the communication

overhead for them is up to the number of ciphertexts. For an

analyst, she only sends a query whose size is at most 16 bytes,

which is negligible. Therefore, we only focus on the aggregator

and the authority. Table I summarizes their communication

overheads in bytes. For basic selective aggregation, communi-

cation overhead is very small and constant. For the extension,

it is linearly related to s (sample size). In the evaluation of

query Q5, the overheads of authority and aggregator are both

about 30KB. We can make it clear that PPSA has acceptable

communication overhead.

VI. RELATED WORK

Privacy-preserving aggregation on user data has raised much

attention recently. In general, there are two types of systems

in previous work.

In a centralized system, all the user data are stored in

the server. It is important that users encrypt or encode their

data before sending them to the server. The server holds the

encrypted data, but it can only compute answers to queries

obliviously, e.g., [19]–[21]. However, they do not guarantee

differential privacy. Homomorphic encryption is a common

method to allow aggregation of encrypted data without de-

cryption, e.g., [11], [22], [23]. Chen et al. [24] used an

order-preserving hash-based function to encode both data and

queries instead. But they do not have the same goal as us and

cannot evaluate selective aggregation. Li et al. [25] proposed

a system that processes range queries, which yet does not

compute aggregation and assumes analysts to be trusted.

In a distributed system, clients need to proactively (e.g.,

[5], [7], [9], [26]), or passively (e.g., [2], [8]) send required

data to the aggregator in a private way. But both rely on the

participation of clients. Secure Multi-Party Computation [27]

requires that all participants must be simultaneously online and

interact with each other perodically. Shi et al. [9] proposed

Component Basic PPSA Extension

Authority 87 30s+ 107
Aggregator 60 30s+ 60

TABLE I: Communication overheads (bytes)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

All Shopping

A
ve

ra
ge

 N
um

be
r

of
 W

eb
pa

ge
s

Webpage Type

Males
Females

(a) #webpages browsed by different genders

0.00

0.05

0.10

0.15

0.20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
el

at
iv

e
E

rr
or

Online User Ratio

SplitX s=100
SplitX s=500
SplitX s=1k

PPSA s=100
PPSA s=500
PPSA s=1k

(b) Comparison with SplitX

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2000 4000 6000 8000 10000

R
un

 T
im

e(
s)

Sample Size

PPSAA
E.S5
E.S4
E.S3

(c) Computation overhead

Fig. 4: Evaluation on utility, accuracy and computation overhead

a system that can tolerate some offline clients, but a trusted

dealer and a trusted initial setup phase between all participants

and the aggregator are still needed. Rottondi et al. [28] also

discussed node failures but they addressed a different issue

from this paper.

VII. CONCLUSION

In this paper, we have described the challenges of making

online user data aggregation while preserving users’ privacy.

Based on BGN homomorphic cryptosystem, we have designed

the first system that is able to securely and selectively aggre-

gate user data, making it practical in realistic data analytics.

It guarantees strong privacy preservation by utilizing differ-

ential privacy mechanism to protect individuals’ privacy. We

have presented PPSA to evaluate aggregation selected by one

boolean attribute, and extended it to aggregation selected by

multiple boolean attributes. Extensive experiments have shown

that PPSA supports various selective aggregate queries with

acceptable overhead and high accuracy.

ACKNOWLEDGMENT

This work was supported in part by the State Key Deve-

lopment Program for Basic Research of China (973 project

2012CB316201), in part by China NSF grant 61422208,

61472252, 61272443 and 61133006, in part by CCF-Intel

Young Faculty Researcher Program and CCF-Tencent Open

Fund, in part by the Scientific Research Foundation for

the Returned Overseas Chinese Scholars, and in part by

Jiangsu Future Network Research Project No. BY2013095-1-

10. The opinions, findings, conclusions, and recommendations

expressed in this paper are those of the authors and do not

necessarily reflect the views of the funding agencies or the

government.

F. Wu is the corresponding author.

REFERENCES

[1] Behavioral analytics - wikipedia, the free encyclopedia. [Online].
Available: http://en.wikipedia.org/wiki/Behavioral%20analytics

[2] I. E. Akkus, R. Chen, M. Hardt, P. Francis, and J. Gehrke, “Non-tracking
web analytics,” in CCS, 2012, pp. 687–698.

[3] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” in NSDI, 2012.

[4] Web tracking protection. [Online]. Available: http://www.w3.org/
Submission/web-tracking-protection/

[5] V. Rastogi and S. Nath, “Differentially private aggregation of distributed
time-series with transformation and encryption,” in SIGMOD, 2010, pp.
735–746.

[6] B. Applebaum, H. Ringberg, M. J. Freedman, M. Caesar, and J. Rexford,
“Collaborative, privacy-preserving data aggregation at scale,” in PETS,
2010, pp. 56–74.

[7] R. Chen, I. E. Akkus, and P. Francis, “SplitX: high-performance private
analytics,” in SIGCOMM, 2013, pp. 315–326.

[8] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, “Towards statistical
queries over distributed private user data,” in NSDI, 2012.

[9] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song, “Privacy-
preserving aggregation of time-series data,” in NDSS, 2011.

[10] T. Jung, X. Mao, X.-Y. Li, S.-J. Tang, W. Gong, and L. Zhang, “Privacy-
preserving data aggregation without secure channel: multivariate poly-
nomial evaluation,” in INFOCOM, 2013, pp. 2634–2642.

[11] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently verifiable computation
on encrypted data,” in CCS, 2014, pp. 844–855.

[12] C. Dwork, “Differential privacy,” in ICALP, 2006, pp. 1–12.
[13] ——, “Differential privacy: A survey of results,” in TAMC, 2008, pp.

1–19.
[14] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to

sensitivity in private data analysis,” in Theory of Cryptography, 2006,
pp. 265–284.

[15] A differentially private selective aggregation scheme for online
user behavior analysis. [Online]. Available: http://www.cs.sjtu.edu.cn/
%7Efwu/res/Paper/PPSA-TR.pdf

[16] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Theory of Cryptography, 2005, pp. 325–341.

[17] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press, 1996.

[18] Pairing-based cryptography library. [Online]. Available: http://crypto.
stanford.edu/pbc/

[19] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
protecting confidentiality with encrypted query processing,” in SOSP,
2011, pp. 85–100.

[20] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in S&P, 2007, pp. 350–
364.

[21] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in S&P, 2000, pp. 44–55.

[22] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino, “Single-database
private information retrieval from fully homomorphic encryption,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), vol. 25,
no. 5, pp. 1125–1134, 2013.

[23] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in STOC, 2012, pp. 1219–1234.

[24] F. Chen and A. X. Liu, “Privacy and integrity preserving multi-
dimensional range queries for cloud computing,” in IFIP Networking,
2014, pp. 1–9.

[25] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range
query processing with strong privacy protection for cloud computing,”
in PVLDB, vol. 7, no. 14, 2014.

[26] B. Mood, D. Gupta, K. Butler, and J. Feigenbaum, “Reuse it or lose it:
More efficient secure computation through reuse of encrypted values,”
in CCS, 2014, pp. 582–596.

[27] O. Goldreich, Secure multi-party computation. [Online]. Available:
http://www.wisdom.weizmann.ac.il/%7Eoded/PS/prot.ps

[28] C. Rottondi, G. Verticale, and A. Capone, “A security framework for
smart metering with multiple data consumers,” in INFOCOM WKSHPS,
2012, pp. 103–108.

