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a b s t r a c t 

Self-driving vehicles, combining automobiles with autopilot systems, enable intelligent and safe driving. Self- 
driving vehicles can achieve accurate automatic navigation, trajectory tracking, and automatic overtaking by 
using GPS, radars, and inertial measurement unit (IMU). Among them, overtaking is essential in order to avoid 
excessive waiting time and improve the traffic efficiency. When following a large truck or bus, the self-driving 
vehicle cannot ensure the safe overtaking because the line-of-sight (LOS) range detected by the radar and camera 
is blocked, thus unable to perceive the surrounding environment accurately. A commonly adopted mitigation 
is to follow the truck or bus at a reduced speed, at the cost of reduced traffic efficiency and more traffic jams. 
To mitigate this deficiency, this paper develops an auxiliary sensing system using edge computing to locate 
nearby vehicles for self-driving vehicles, called ECASS. Specially, infrastructure deployed along the road like 
servers are utilized to accurately locate vehicles according to GPS and wireless information such as WiFi or DSRC. 
Subsequently, the server will transmit the localization information of nearby vehicles to the self-driving vehicle, 
based on which it can determine the driving state for the next moment despite of the obstruction. Extensive 
simulations verify that ECASS based trajectory is much closer to the real trajectory than GPS. Especially when 
GPS error is set within 10 m, ECASS can reduce the mean absolute localization error from more than 7 m to about 
3 m. 
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. Introduction 

In recent years, self-driving vehicles have attracted extensive atten-
ion from both industry and academia because of its safety and trav-
lling efficiency [1–3] . In particular, with the increase in the number
f vehicles, the injured persons and deaths in traffic accidents are also
ncreasing. As a critical technique in future vehicles, autopilot can sub-
tantially decrease the traffic accidents induced by human factors and
hus enhance the travelling safety. The traffic sharing based on the au-
omatic driving technique can effectively alleviate the traffic congestion
nd pollution problems [4,5] . 

Researchers have designed various detection algorithms based on
he image and signal processing, to accurately sense the environments
round the self-driving vehicle [6–8] . The self-driving vehicle will then
etermine the driving state for the next moment, such as overtaking,
cceleration/deceleration, or travelling at the original speed based on
he acquired environmental information. 

Compared to acceleration/deceleration, or travel at the original
peed, the execution of overtaking for self-driving vehicles becomes
uch more complicated. It mainly consists of three steps. Firstly, the
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elf-driving vehicle changes the lane according to the planned trajec-
ory. Secondly, it drives along the overtaken vehicle at a prescribed lat-
ral distance. Finally, it will return to the original lane in front of the
vertaken vehicle [9,10] . Majority of research work on this problem
as focused on the planning or prediction of the overtaking trajectory
9,11,12] . 

Available literature has planned their overtaking trajectories under
he premise that the radar or camera integrated in the self-driving vehi-
le can detect and track obstacles without buses or trucks around when
vertaking. However, under some special circumstances, the camera and
adar may be blocked by the truck or bus in front or behind, rendering
he self-driving vehicle partially or even completely unknown about the
urroundings. Therefore, it has to follow the truck or bus at a reduced
peed [13] . Obviously, this approach incurs increased time consumption
nd traffic congestion. 

However, GPS based localization errors can reach up to 10 m, and
ven localization errors in map-matching based GPS suffer from 5 m
14,15] . Such a large localization error may cause the wrong driving
tate adoption for self-driving vehicles, risking the traffic safety. In re-
ult, the auxiliary sensing system named ECASS is developed to provide
ccurate vehicle localization information in the proximity of the self-
ebruary 2019 
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Fig. 1. The scenario when the self-driving vehicle is blocked. 
riving vehicle based on edge computing, when it cannot accurately
ocate nearby vehicles only using the camera and radar. 

In particular, when the self-driving vehicle cannot accurately sense
he surrounding environments due to obstruction, it will send a request
o nearby servers, so as to inform these servers of obtaining the cur-
ent vehicle localization near the self-driving vehicle. In these servers,
n information fusion algorithm with regard to the wireless signal and
PS is designed to estimate the position of nearby vehicles. Finally, the

ocation of each vehicle near the self-driving vehicle will be transmit-
ed to the self-driving vehicle. The self-driving vehicle determines the
riving state for the next moment based on the acquired localization
nformation, despite of the obstruction. In this paper, the driving state
ncludes overtaking, changing lanes, acceleration, deceleration, braking,
nd travelling at the original speed. 

The contributions of this paper are listed as below: 

• We propose an edge computing based framework to assist self-
driving vehicles to achieve accurate nearby vehicle localization and
tracking when self-driving vehicles cannot accurately sense the sur-
rounding environment. 

• In roadside servers, an fusion algorithm related to GPS and wireless
signal information is developed to measure the location of vehicles
near the self-driving vehicle. According to these acquired localiza-
tion information, the self-driving vehicle can determine the driv-
ing state for the next moment even when partially or completely
blocked. 

• Extensive simulations are carried out to demonstrate ECASS’s high
efficiency. Compared to GPS, ECASS based localization is much
closer to the real vehicle position, especially when the GPS based
localization error becomes larger. 

The paper is organized as follows: Section 2 presents the related
iterature on self-driving vehicles. The preliminaries are introduced in
ection 3 , including the motivation and problem statement. Then, the
ystem overview, algorithm design, and the selection strategy of servers
re presented in Section 4 , and we present the performance evaluation
n Section 5 . Finally, we conclude this paper in Section 6 . 

. Related work 

Up to now, there exists substantial research work related to the au-
opilot technique, including the hardware design such as detection radar
nd camera, algorithm design in terms of information fusion from these
ardware, and the trajectory plan in the travelling process [16–18] . 

Hardware Hardware is the fundamental part for autopilot. High-
uality hardware is able to perceive nearby information more accurately
19,20] . For example, Mercedes-Benz equip S-Class S 500 INTELLIGENT
RIVE with close-to-production sensor hardware. In particular, vision
nd radar sensors combined with digital maps are employed to sense
earby traffic conditions [21] , and this system has been tested in an au-
onomous manner from Mannheim to Pforzheim, Germany. As a promis-
ng technique, lidar can also perceive the environment in the same way
s radar. Due to much shorter wavelength, the high resolution and relia-
ility render it a necessity for driverless cars in the future [2] . However,
he size, complexity, and cost of the current generation of lidar sen-
ors hinder its commercialization. Therefore, extensive academic and
ndustry research has attempted to make lidar sensors smaller, easier to
anufacture, and cheaper [6,22] . 

Information fusion algorithm After obtaining the information
bout nearby environments, how to deal with these massive information
ecomes crucial for self-driving vehicles [23,24] . Based on the stereo
amera system, Franke et al. [25] present the vision algorithms for ob-
ect recognition and tracking, free-space analysis, traffic light recogni-
ion, lane recognition, as well as self-localization. Further, in order to
ealize an accurate visual understanding of complex urban street scenes,
 benchmark suite and large-scale dataset named Cityscapes is intro-
uced to train and test pixel-level and instance-level semantic labeling.
259 
oth detailed analysis and performance evaluation have been carried
ut based on the proposed benchmark. Unlike camera based detection,
 signal processing algorithm based on radar is designed to estimate the
peed and size of vehicles in [26] . Finally, some research work proposes
o build a vehicle detection system fusing radar and vision data [27] . 

Trajectory plan algorithm According to the accurate understanding
f surrounding environments, self-driving vehicles can determine the
riving state for the next moment [28,29] , such as braking, acceleration,
hanging the lane, or overtaking. Among them, overtaking is the most
omplicated process. To achieve safe overtaking, Milanes et al. [30] de-
elop a fuzzy-logic based controller to control the lateral movement and
ongitudinal movement of vehicles. Meanwhile, a stereo vision system
s applied to detect any preceding vehicle and trigger the autonomous
vertaking manoeuvre. Furthermore, a mathematical model and adap-
ive controller for autonomous overtaking maneuver is presented in [9] .
specially, an adaptive control scheme is designed to allow tracking
he desired trajectories with unknown velocity of the overtaken vehicle
ompared to previous work. The authors of [31] proposed an path plan-
ing scheme for the self-driving car under the complex environments.
t mainly consists of three parts, respectively as the novel path repre-
entation, the collision detection and the path modification. Finally, a
ultiple-goal reinforcement learning framework is constructed to tackle
ultiple criteria for overtaking in [12] . Simulation results demonstrate

he high efficiency of the proposed strategy. 

. Preliminaries 

In this section, we present the motivation behind ECASS and the
roblem statement. 

.1. Motivation 

Nowadays, the traffic condition becomes increasingly complicated in
etropolises. Therefore, there exist several critical challenges for self-
riving vehicles to deal with various kinds of traffic scenarios. For exam-
le, the self-driving vehicle can be easily blocked by the truck or bus in
ront or behind, as shown in Fig. 1 , in which case the self-driving vehi-
le is travelling behind the truck. Then, the radar or camera mounted on
he top of the self-driving vehicle cannot detect and locate any obstacle
n region 1, due to be blocked by the truck in front. 
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Fig. 2. The framework of ECASS. 

Fig. 3. The workflow of ECASS. 
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Consequently, the self-driving vehicle cannot determine the travel-
ing state for the next moment because it cannot accurately perceive the
urrounding environment. The traditional strategy that self-driving ve-
icles adopt is to follow the truck or bus in front at a reduced speed.
herefore, this mechanism will incur much more time consumption and
raffic congestion, thus resulting in more pollution. 

.2. Problem statement 

In recent years, edge computing has been proposed to provide faster
etwork response and more safety guarantee using the open platform
ntegrated with networking, computing, storage and application close
o objects or data sources, compared to data center based computing
32] . In this paper, we combine self-driving vehicles with edge comput-
ng to accurately locate vehicles near the self-driving vehicle in case of
bstruction. 

In self-driving vehicles, one second is divided into n time slots. For
ach slot, the self-driving vehicle will execute instructions from vehi-
le controllers, to ensure the travelling safety. Assuming at time t , the
elf-driving vehicle waits for the driving state instruction for the next
oment–𝑡 + 1∕ 𝑛 . Then, the vehicle controller will determine the trav-

lling state for the next moment according to the acquired localization
nformation. 

As in Fig. 1 , the self-driving vehicle, referred to as vehicle a , is
locked by the truck in front. Although equipped with the camera and
adar, the self-driving vehicle still cannot detect and locate vehicles b
nd c on the left side of the truck. The roadside infrastructure like servers
re proposed to assist vehicle a to detect and locate vehicles b and c
hrough information interaction. According to these acquired informa-
ion, the self-driving vehicle a can determine the driving state for the
ext moment. 

To accurately locate vehicles near the self-driving vehicle, GPS lo-
alization information and wireless signals from vehicles will be deliv-
red to nearby servers. According to the wireless signal information,
he server can obtain the angle of arrival (AOA) relative to the vehicle
33] . In the presence of obstruction, an accurate vehicle localization al-
orithm for self-driving vehicles can be developed based on the fusion of
PS localization and AOA information. Assuming the true location for
ehicle b is b t,x and b t,y , the measured position b m,x and b m,y based on
he designed vehicle localization algorithm should satisfy the formula
s below. 

in 
( √ 

( 𝑏 𝑡,𝑥 − 𝑏 𝑚,𝑥 ) 2 + ( 𝑏 𝑡,𝑦 − 𝑏 𝑚,𝑦 ) 2 
) 

. (1)

. System design 

The framework of ECASS is shown in Fig. 2 . In this section, the work-
ow of ECASS is presented, followed by the introduction of vehicle lo-
alization algorithm. Finally, we present the selection scheme of servers
ear the self-driving vehicle. 

.1. System overview 

In the proposed system, every self-driving vehicle is integrated with
PS and one wireless antenna such as WiFi antenna or DSRC antenna.
he GPS localization information of vehicles is delivered to nearby
ervers through wireless communication. The wireless antenna in ve-
icle a is referred to as An a . An a will select two nearby servers to com-
unicate with, so as to accurately locate vehicle a . The workflow of
CASS is presented as follows, as shown in Fig. 3 . 

If the self-driving vehicle can accurately sense the surrounding en-
ironment according to the traffic condition obtained from the camera,
adar, and IMU, then it plans the driving state based on the decision
lgorithm. Otherwise, it will send a request to roadside severs for ob-
aining nearby vehicle location. Subsequently, these nearby servers will
stimate the vehicle’s location near the self-driving vehicle using the
260 
esigned information fusion algorithm. The self-driving vehicle will re-
eive nearby vehicles’ location information from these servers. Finally,
t can determine whether to overtake, decelerate, or accelerate based on
he obtained localization information. 

We focus on the location measurement of vehicles on the server side,
hich is based on the fusion of GPS and wireless signal information

ransmitted from vehicles. Therefore, the time overhead can also be cut
own since the vehicle location estimation is executed on the server
ide. In this paper, we call it the vehicle localization algorithm. 

.2. Design of the vehicle detection algorithm 

To accurately locate vehicles in the blocked area for the self-driving
ehicle, edge computing based on the roadside infrastructure is utilized.
s shown in Fig. 4 (a), the wireless antenna An b on vehicle b communi-
ates with two nearby servers B and C simultaneously. Vehicle b delivers
ts own GPS localization information to nearby servers B and C . Specif-
cally, servers can harness the incoming wireless signals to derive the



X. Wang, T. Wei and L. Kong et al. Journal of Systems Architecture 97 (2019) 258–268 

(a) (b)

Fig. 4. Communication between the vehicle and servers. 

A  

f  

d  

o  

r
 

I  

w  

p  

B  

t  

G  

a  

s
 

w  

i  

△  

f  

w

𝑑  

w  

l

 

c

 

l  

o

 

a  

G  

A  

b  

s  

l  

t

 

E  

l  

l  

p

𝑠

2
√

(√

0

𝜋

0

𝑑

0

w  

b  

e  

v  

c  

d

4

 

a  

a  

t  

t  

v  

s
 

t  

i  

t  

t  

A  

w  

w  

t

OA [34] . On the server side, the location and AOA information can be
used to improve the localization accuracy of vehicle b according to the
esigned localization algorithm. Meanwhile, servers will transmit their
wn location information and IDs to vehicle b , based on which it can
ealize the selection of nearby servers. 

For ease of understanding, Fig. 4 (a) can be abstracted into Fig. 4 (b).
n Fig. 4 (b), points B and C represent server B and C , respectively. The
ireless antenna An b is placed at point D . The connection line between
oints B and C is set as the Y axis. And the line perpendicular to the line
C is set as the X axis. b x and b y represent the abscissa and ordinate of
he antenna An b . These localization information can be obtained from
PS embedded in the vehicle. Meanwhile, the coordinates of server B
re denoted as b B,x and b B,y , while b C,x and b C,y are the coordinates of
erver C . The distance between two servers is set to d . 

We consider the scenario that the wireless antenna communicates
ith two nearby servers. Specifically, An b transmits the GPS localization

nformation b x and b y to servers B and C . Therefore, a geometric triangle
BCD can be established, as shown in Fig. 4 (b). Assuming that the AOA

rom D to B is 𝛼 and the AOA from D to C is 𝜃 according to the received
ireless signals, then the following equation can be established. 

 𝐵𝐷 × sin ( 𝜋 − 𝛼) = 𝑑 𝐶𝐷 × sin ( 𝜃) , (2)

here d BD represent the length of line segment BD , and d CD denote the
ength of line segment CD . This equation can be formulated as below. √ 

( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 × sin ( 𝜋 − 𝛼) 

= 

√ 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 × sin ( 𝜃) . 
(3) 

In the meantime, the following equation can also be established ac-
ording to the law of cosines. 

2 × cos ( 𝛼 − 𝜃) ×
√ 

( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 ×√ 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 = ( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 + 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 − 𝑑 2 . 

(4) 

Finally, we can also get another equation: The sum of the length of
ine segment BE and the length of line segment CE is equal to the length
f line segment BC , which can be formulated as: √ 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝑏 𝐶,𝑦 
) 2 × cos ( 𝜃)+ √ 

( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 × cos ( 𝜋 − 𝛼) = 𝑑. 
(5) 

These equations hold when the GPS based localization and AOAs
re accurate. However, as mentioned above, even map-matching based
PS localization suffers from meters of errors. The error of measured
OAs are at a level of several degrees. Therefore, there exists a gap
etween the length of line segment BC and the sum of the length of line
egment BE and the length of line segment CE . The aim of the designed
ocalization algorithm in ECASS is to minimize the gap between these
wo values, which can be formulated as: 

min 
(√ 

( 𝑏 𝑥 − 𝑏 𝑏 𝐶,𝑥 
) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 × cos ( 𝜃) 

+ 

√ 

( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 × cos ( 𝜋 − 𝛼) − 𝑑 

)
. 

(6) 
261 
There exist some constraints on the optimization problem. Firstly,
qs. 3 and 4 should be satisfied at the same time. Secondly, 𝜃 should be
arger than 0, yet smaller than 𝜋/2. In conclusion, the optimization is re-
ated to the antenna An b mounted on the vehicle b , and the optimization
roblem can be converted into: 

min 
( √ 

( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 × 𝑐𝑜𝑠 ( 𝜋 − 𝛼)+ 

√ 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 × 𝑐𝑜𝑠 ( 𝜃) − 𝑑 

) 

, 

.𝑡. 

 × 𝑐𝑜𝑠 ( 𝛼 − 𝜃) ×
√ 

( 𝑏 𝑥 − 𝑏 𝑏 𝐵,𝑥 
) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 ×

 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 = ( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 + 

 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 − 𝑑 2 , 
 

( 𝑏 𝑥 − 𝑏 𝐵,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐵,𝑦 ) 2 × 𝑠𝑖𝑛 ( 𝜋 − 𝛼) 

= 

√ 

( 𝑏 𝑥 − 𝑏 𝐶,𝑥 ) 2 + ( 𝑏 𝑦 − 𝑏 𝐶,𝑦 ) 2 × 𝑠𝑖𝑛 ( 𝜃) , 

 ≤ 𝛼 − 𝜃 ≤ 𝜋, 

∕2 ≤ 𝛼 ≤ 𝜋, 

 ≤ 𝜃 ≤ 𝜋∕2 , 

 𝐿,𝑆 ≤ 𝑏 𝑥 ≤ 𝑑 𝐿,𝑠 + 𝐵 𝑤 , 

 ≤ 𝑏 𝑦 , 

here B w represents the width of the road, d L,S denotes the distance
etween the server and the road. For each request, the optimization op-
ration is executed on the server side once, and then send the estimated
ehicle location to the self-driving vehicle. Through collecting these lo-
alization information from nearby servers, the self-driving vehicle can
etermine its driving state based on the decision strategy. 

.3. The selection of nearby servers 

The proposed system assumes that nearby servers are employed to
ssist the self-driving vehicle realize vehicle detection and localization,
nd they can communicate with each other. As designed in Section 4.2 ,
wo nearest servers on the same side are selected as the assistant infras-
ructure to locate the vehicle accurately. This is because the closer to the
ehicle, the stronger wireless signal from the vehicle can be received by
ervers. Further, it contributes to more accurate AOA estimation. 

As demonstrated in the framework, servers, within the communica-
ion coverage of self-driving vehicles, will send their information includ-
ng their ID and localization to the self-driving vehicle. Subsequently,
he self-driving vehicle will select two nearest servers on the same side
o assist accurate vehicle localization. As shown in Fig. 5 , the antenna
n a will select servers B and C since they are the two nearest servers
hen the self-driving vehicle is at position 1. After a period of time,
hen at position 2, servers C and D are selected. Detailed algorithm for

he server selection are demonstrated in Algorithm 1 . 
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Fig. 5. The travelling process when passing through one server. 

Algorithm 1: The server selection algorithm. 

input : ( 𝑥 𝑣,𝑎 , 𝑦 𝑣,𝑎 ) : the position of vehicle 𝑎 ; 𝑆: the set of servers 
that are in the communication range of the vehicle 𝑎 ; 𝑁 : 
The number of servers in set 𝑆; 𝑆 𝑖 : server 𝑖 ; ( 𝑥 𝑠,𝑖 , 𝑦 𝑠,𝑖 ) : the 
position of server 𝑖 

output : 𝑆 𝑝𝑟𝑒 : the set of communication base stations 

1 𝑑 min ← 

√ 

( 𝑥 𝑣,𝑎 − 𝑥 ( 𝑠, 1)) 2 + ( 𝑦 𝑣,𝑎 − 𝑦 ( 𝑠, 1)) 2 ; 
2 𝑆 𝑝𝑟𝑒 ← ∅; 
3 𝑚 ← 0 ; 
4 𝑘 ← 0 ; 
5 while ( 𝑗 < 𝑁) do 

6 𝑑 ← 

√ 

( 𝑥 𝑣,𝑎 − 𝑥 ( 𝑠, 𝑗)) 2 + ( 𝑦 𝑣,𝑎 − 𝑦 ( 𝑠, 𝑗)) 2 ; 
7 if ( 𝑑 < 𝑑 min ) then 

8 𝑑 min ← 𝑑; 
9 𝑘 ← 𝑚 ; 

10 𝑚 ← 𝑗; 

11 𝑗 ← 𝑗 + 1 ; 

12 𝑆 𝑝𝑟𝑒 ← 𝑆 𝑝𝑟𝑒 ∪ 𝑆 𝑚 ; 
13 𝑆 𝑝𝑟𝑒 ← 𝑆 𝑝𝑟𝑒 ∪ 𝑆 𝑘 ; 
14 return 𝑆 𝑝𝑟𝑒 ; 
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Fig. 6. The settings in the simulations. 
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. Performance evaluation 

Extensive simulations are conducted to verify the high efficiency of
CASS. 

.1. Simulation settings 

The simulations are developed by MATLAB. As shown in Fig. 6 , there
re two lanes in the same direction. Each lane width is set as 3 m. The
istance between two adjacent servers along the road is set as 200m.
he distance from the server to the nearest lane is set as 10 m. Vehicles
ravel along the X axis. Therefore, the coordinates of the first server can
e set as (0,0), and the coordinates of the second server can be set as
200,0). 
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.2. Simulation results 

In the simulation part, we evaluate ECASS with various velocities,
ifferent GPS errors, and different number of vehicles. 

.2.1. Simulation with various velocities 

First of all, we mimic the scenario of only one vehicle travelling at
 constant speed of 10 m/s. The vehicle moves in a straight line of lane
. The GPS localization error is set within 2 m, and the angle estimation
rror based on wireless signals is set within 5°. According to the velocity,
eal AOA values of the antenna related to two nearby servers are equal to
rctan (11.5/10 t ) and 𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 (11 . 5∕(200 − 10 𝑡 )) , as shown in Fig. 7 (a)
nd (b), respectively. 

The simulation results about the trajectory tracking are shown in
ig. 8 (a). Obviously, ECASS based trajectory tracking is closer to the
ehicle real trajectory than GPS based trajectory. 

The absolute error between ECASS based position and real posi-

ion is equal to 
√ 

( 𝑏 𝑡,𝑥 − 𝑏 𝑚,𝑥 ) 2 + ( 𝑏 𝑡,𝑦 − 𝑏 𝑚,𝑦 ) 2 for vehicle b , and the
bsolute error between GPS position and real position is equal to
 

( 𝑏 𝑡,𝑥 − 𝑏 𝑥 ) 2 + ( 𝑏 𝑡,𝑦 − 𝑏 𝑦 ) 2 . These two kind of absolute errors are referred
o as 𝐸 𝐸𝐶𝐴𝑆 𝑆 − 𝑅𝑒𝑎𝑙 and 𝐸 𝐺𝑃𝑆− 𝑅𝑒𝑎𝑙 , respectively. 

The CDF of 𝐸 𝐸𝐶𝐴𝑆 𝑆 − 𝑅𝑒𝑎𝑙 and 𝐸 𝐺𝑃𝑆− 𝑅𝑒𝑎𝑙 along the trajectory is plot-
ed in Fig. 8 (b). From this figure, it can be observed that the absolute
ocalization errors based on ECASS are smaller than that based on GPS.

hen the GPS localization errors are set within 2 m, the mean abso-
ute error between ECASS based position and real position is about 1 m,
hich is 0.4 m less than that between GPS based position and real po-

ition. Consequently, it verifies the high localization accuracy of the
roposed algorithm. 

With regard to the angle estimation, the simulation results are plot-
ed in Fig. 9 (a) and (b), for the AOA between the vehicle with the server
ehind, and the AOA between the vehicle and the front server, respec-
ively. Both figures verify that ECASS based angles are much closer to
he real angles and remain much stabler than the estimated angles based
n wireless signals. 

In the meantime, we also investigate the angle values based on
he server selection scheme when passing through one server in the
ravelling process. The simulation results are shown in Fig. 10 (a) and
b). It clearly demonstrates that the measured angles based on ECASS
an track the real angle much more accurately compared to wireless
ignal based angles along the trajectory. Even when the vehicle passes
hrough one server, ECASS based angle estimation is still much more
ccurate. 

Above simulations are based on the constant velocity, which cannot
e satisfied in most actual scenarios. Therefore, we investigate the sce-
ario that the vehicle velocity changes over time. The set velocities are
hown in Fig. 11 (a) and (b), respectively, in which the highest speed of
he vehicle is limited to 20 m/s. As shown in the left figure, the vehicle
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Fig. 7. The angle values when the vehicle follows the 
uniform motion in a straight line. 
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Fig. 8. The trajectory tracking results when the vehicle fol- 
lows the uniform motion in a straight line. 
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Fig. 9. The angle values when the vehicle fol- 
lows the uniform motion in a straight line. 
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Fig. 10. The angle values when passing 
through one server. 
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Fig. 11. The set velocity. 
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Fig. 12. The trajectory tracking when travelling with the uni- 
form acceleration motion. 
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Fig. 13. The angle values when travelling 
with the uniform acceleration motion. 
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ollows the uniform acceleration motion, and the velocity in the right
gure is irregular, which is closer to realistic scenarios. 

The simulation results are plotted in Fig. 12 (a) and (b). ECASS based
ehicle trajectory shows a superior performance in terms of both the
rajectory tracking and absolute error compared to those based on GPS
nformation. In the meantime, the mean absolute error based on ECASS
emains about 0.4 m less than that based on GPS. 

The angle estimation is shown in Fig. 13 (a) and (b). We can observe
hat ECASS based angle measurements nearly match with the real an-
les, while angles estimated based on wireless signals fluctuate in a large
ange. 

Finally, we carry out simulations based on the velocity set in
ig. 11 (b). The simulation results shown in Fig. 14 (a) and (b) verify
hat ECASS based trajectory is more accurate than GPS based trajectory
ven when the vehicle velocity is irregular. 

Therefore, it can be concluded that when the GPS localization error
s set within 2 m, ECASS based trajectory tracking shows a superior per-
 A  

264 
ormance compared to GPS based trajectory despite of various vehicle
peeds. 

.2.2. Simulation with different GPS errors 

Above simulations are carried out with the GPS localization error set
ithin 2 m. In this subsection, we will explore the simulation scenario
ith different GPS localization errors since the GPS localization accu-

acy can be influenced by different factors, such as the refraction effect
aused by ionosphere and multipath effect. 

Firstly, we set the GPS localization error within 6 m. Fig. 15 (a) and
b) demonstrate the simulation results in terms of the localization accu-
acy. ECASS based trajectory is much closer to the real trajectory com-
ared to that based on GPS. The mean absolute error is 2 m less than
hat based on GPS. 

The angle measurements are shown in Fig. 16 (a) and (b). Both two
OAs based on ECASS show an accurate estimation and stable perfor-
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Fig. 14. The trajectory tracking when travelling with irregular 
velocities. 
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Fig. 15. The trajectory tracking when the GPS error is set 
within 6 m. 
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Fig. 16. The angle values when the GPS error 
is set within 6 m. 
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ance compared to the estimated AOAs based on wireless signals during
he simulation time. 

Finally, Fig. 17 (a) and (b) plot the tracked trajectory when the GPS
ocalization error is set within 10 m. The vehicle trajectory based on
CASS shows a much better performance than the trajectory based on
PS. The mean absolute error based on the designed algorithm is about
 m, which is 4.1 m less than that based on GPS. 

Finally, it is observed that the accuracy improvement based on
CASS can be enhanced with larger GPS localization errors. Although
he mean absolute error based on the designed algorithm is about 3 m
hen the GPS error is set within 10 m. We can see that this relatively

arge error is mainly caused by the localization error in X axis. In con-
ention, there should exist a large safety distance between two nearby
ehicles. Therefore, these much smaller errors in comparison with the
afety distance have a small influence on the driving state determina-
ion. Yet, the large GPS localization error will lead to wrong determina-
ions. We can conclude that ECASS can work more efficiently when the
PS errors become larger. 
265 
.2.3. Simulation with two vehicles 

In the subsection, we will deploy two vehicles to demonstrate the
igh efficiency and robustness of ECASS. The velocities set for these
wo vehicles are shown in Fig. 11 (a) and (b). In order to simulate more
omplex scenarios, vehicle 1 will change the lane in the 10 second with
he initial location set in lane 2, while vehicle 2 will change the lane
n the 4 second. The initial position of vehicle 1 is set as (0,0), and the
nitial position of vehicle 2 is set as (20,0). 

The simulation results for vehicle 1 are plotted in Fig. 18 (a) and
b). It clearly demonstrates that the trajectory based on ECASS performs
uch better than GPS based trajectory. It can be seen that the trajec-

ory can also accurately track the real trajectory even when the vehicle
hanges its lane in the travelling process. 

The simulation results of the estimated angle values under the sce-
ario of two vehicles are shown in Fig. 19 (a) and (b). It verifies that
CASS can achieve a high accuracy of AOA estimation even when the
ehicle changes its lane. 
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Fig. 17. The trajectory tracking when the GPS error is set 
within 10 m. 
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Fig. 18. The trajectory tracking when setting two vehicles. 
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Fig. 19. The angle values when deploying two 
vehicles. 
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to test the designed scheme in actual scenarios. 
. Conclusion and future work 

With the rapid development of the autopilot technique, self-driving
ehicles has attracted substantial attention from both industry and
cademia. Majority of available literature has focused on the hardware
esign such as vehicle borne radar and camera, algorithm design re-
ated to the information fusion, and vehicle trajectory planning. How-
ver, most trajectory planning algorithms are based on the assumption
hat radar, camera, and IMU can perceive the environment around the
elf-driving vehicle. Nevertheless, in real traffic scenes the vehicle may
e blocked by the truck or bus ahead or behind, the radar or camera in-
egrated within the vehicle cannot sense the surrounding environments
ccurately. In addition, GPS based localization accuracy cannot ensure
he safety for automatic driving. 

Therefore, we combine self-driving vehicles with edge computing to
ealize nearby vehicle detection and localization when self-driving vehi-
les are partially or even completely blocked by trucks or buses. Lever-
ging the roadside infrastructure, accurate vehicle localization near the
266 
elf-driving vehicle can be achieved. These information will be delivered
o the self-driving vehicle, based on which it can determine the driving
tate for the next moment. Extensive simulation results have verified the
igh efficiency of the proposed system. 

Although we have proposed a novel framework using the roadside
nfrastructure to locate vehicles in the proximity of the self-driving ve-
icle, there exist some deficiencies, which are listed as below. 

• Efficient communication strategies are necessary to cut down the
transmission time consumption since the time cost plays a vital role
in the reaction of autopilot system. 

• In the future work, the vehicle localization algorithm should be de-
signed in combination with the trajectory plan, in order to deal with
various kinds of traffic conditions. 

• Instead of simulations, real trace experiments should be carried out



X. Wang, T. Wei and L. Kong et al. Journal of Systems Architecture 97 (2019) 258–268 

A

 

m  

6

S

 

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

[
 

[  

 

[  

 

[
[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cknowledgments 

This work is partly supported by National Key Research and Develop-
ent Program grant 2016YFE0100600 and NSFC 61672349 , 61672353 ,
1472252 . 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.sysarc.2019.02.014 . 

eferences 

[1] G.H. Lee , F. Faundorfer , M. Pollefeys , Motion estimation for self-driving cars with a
generalized camera, in: in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 2746–2753 . 

[2] E. Ackerman , Lidar that will make self-driving cars affordable [news], IEEE Spectr.
53 (10) (2016) 14 . 

[3] J. Carlson, Mapping large, in: Urban Environments with GPS-aided Slam. 
[4] H. Xiong , L.N. Boyle , Drivers’ adaptation to adaptive cruise control: examination

of automatic and manual braking, IEEE Trans. Intell. Transp. Syst. 13 (3) (2012)
1468–1473 . 

[5] J.V. Mierlo , G. Maggetto , E.V. de Burgwal , R. Gense , Driving style and traffic mea-
sures-influence on vehicle emissions and fuel consumption, Proc. Inst. Mech. Eng.
Part D 218 (1) (2004) 43–50 . 

[6] R.W. Wolcott , R.M. Eustice , Visual localization within LIDAR maps for automated
urban driving, in: in: International Conference on Intelligent Robots and Systems,
IEEE, 2014, pp. 176–183 . 

[7] M.A. Brubaker , A. Geiger , R. Urtasun , Lost! leveraging the crowd for probabilistic vi-
sual self-localization, in: in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 3057–3064 . 

[8] J. Xing , H. Dai , Z. Yu , A distributed multi-level model with dynamic replacement
for the storage of smart edge computing, J. Syst. Archit. 83 (2018) 1–11 . 

[9] P. Petrov , F. Nashashibi , Modeling and nonlinear adaptive control for autonomous
vehicle overtaking, IEEE Trans. Intell. Transp. Syst. 15 (4) (2014) 1643–1656 . 

10] C.M. Sosa-Reyna , E. Tello-Leal , D. Lara-Alabazares , Methodology for the model–
driven development of service oriented IoT applications, J. Syst. Archit. 90 (2018)
15–22 . 

11] A. Houenou , P. Bonnifait , V. Cherfaoui , W. Yao , Vehicle trajectory prediction based
on motion model and maneuver recognition, in: in: International Conference on
Intelligent Robots and Systems, IEEE, 2013, pp. 4363–4369 . 

12] D.C.K. Ngai , N.H.C. Yung , A multiple-goal reinforcement learning method for com-
plex vehicle overtaking maneuvers, IEEE Trans. Intell. Transp. Syst. 12 (2) (2011)
509–522 . 

13] E. Coelingh, S. Solyom, All aboard the robotic road train, IEEE Spectr. 49(11). 
14] M.A. Quddus , W.Y. Ochieng , R.B. Noland , Current map-matching algorithms for

transport applications: state-of-the art and future research directions, Transp. Res.
Part C 15 (5) (2007) 312–328 . 

15] N.M. Drawil , H.M. Amar , O.A. Basir , et al. , GPS localization accuracy classification:
a context-based approach, IEEE Trans. Intell. Transp. Syst. 14 (1) (2013) 262–273 . 

[16] A.K.S. Rajan , A. Feucht , L. Gamer , I. Smaili , et al. , Hypervisor for consolidating
real-time automotive control units: its procedure, implications and hidden pitfalls,
J. Syst. Archit. 82 (2018) 37–48 . 

[17] T. Fanni , L. Li , T. Viitanen , C. Sau , R. Xie , F. Palumbo , L. Raffo , H. Huttunen ,
J. Takala , S.S. Bhattacharyya , Hardware design methodology using lightweight
dataflow and its integration with low power techniques, J. Syst. Archit. 78 (2017)
15–29 . 

[18] P. Pelliccione , E. Knauss , R. Heldal , S.M. Ågren , P. Mallozzi , A. Alminger , D. Bor-
gentun , Automotive architecture framework: the experience of volvo cars, J. Syst.
Archit. 77 (2017) 83–100 . 

[19] P. Falcone , F. Borrelli , J. Asgari , H.E. Tseng , D. Hrovat , Predictive active steering
control for autonomous vehicle systems, IEEE Trans. Control Syst. Technol. 15 (3)
(2007) 566–580 . 

[20] Q. Li , N. Zheng , H. Cheng , Springrobot: a prototype autonomous vehicle and its
algorithms for lane detection, IEEE Trans. Intell. Transp. Syst. 5 (4) (2004) 300–308 .

[21] J. Ziegler , P. Bender , M. Schreiber , H. Lategahn , T. Strauss , C. Stiller , T. Dang ,
U. Franke , N. Appenrodt , C.G. Keller , et al. , Making bertha drive-an autonomous
journey on a historic route, IEEE Intell. Transp. Syst. Mag. 6 (2) (2014) 8–20 . 

[22] N. Jeong , H. Hwang , E.T. Matson , Evaluation of low-cost LiDAR sensor for applica-
tion in indoor UAV navigation, in: in: Sensors Applications Symposium, IEEE, 2018,
pp. 1–5 . 

[23] L. Meier , P. Tanskanen , L. Heng , G.H. Lee , F. Fraundorfer , M. Pollefeys , PIXHAWK:
a micro aerial vehicle design for autonomous flight using onboard computer vision,
Auton. Robots 33 (1–2) (2012) 21–39 . 

[24] J. Wei , J.M. Snider , J. Kim , J.M. Dolan , R. Rajkumar , B. Litkouhi , Towards a viable
autonomous driving research platform, in: in: Intelligent Vehicles Symposium, IEEE,
2013, pp. 763–770 . 

[25] U. Franke , D. Pfeiffer , C. Rabe , C. Knoeppel , M. Enzweiler , F. Stein , R. Herrtwich ,
Making bertha see, in: in: Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, 2013, pp. 214–221 . 

[26] S.J. Park , T.Y. Kim , S.M. Kang , K.H. Koo , A novel signal processing technique for
vehicle detection radar, in: in: MTT-S International Microwave Symposium Digest,
Vol. 1, IEEE, 2003, pp. 607–610 . 
267 
27] G. Alessandretti , A. Broggi , P. Cerri , Vehicle and guard rail detection using radar
and vision data fusion, IEEE Trans. Intell. Transp. Syst. 8 (1) (2007) 95–105 . 

28] S.J. Anderson , S.C. Peters , T.E. Pilutti , K. Iagnemma , An optimal-control-based
framework for trajectory planning, threat assessment, and semi-autonomous con-
trol of passenger vehicles in hazard avoidance scenarios, Int. J. Veh. Auton. Syst. 8
(2–4) (2010) 190–216 . 

29] S. Glaser , B. Vanholme , S. Mammar , D. Gruyer , L. Nouveliere , Maneuver-based tra-
jectory planning for highly autonomous vehicles on real road with traffic and driver
interaction, IEEE Trans. Intell. Transp. Syst. 11 (3) (2010) 589–606 . 

30] V. Milanés , D.F. Llorca , J. Villagrá, J. Pérez , C. Fernández , I. Parra , C. González ,
M.A. Sotelo , Intelligent automatic overtaking system using vision for vehicle detec-
tion, Expert Syst. Appl. 39 (3) (2012) 3362–3373 . 

31] U. Lee , S. Yoon , H. Shim , P. Vasseur , C. Demonceaux , Local path planning in a
complex environment for self-driving car, in: in: IEEE 4th Annual International Con-
ference on Cyber Technology in Automation, Control, and Intelligent Systems, IEEE,
2014, pp. 445–450 . 

32] S. Sardellitti , G. Scutari , S. Barbarossa , Joint optimization of radio and computa-
tional resources for multicell mobile-edge computing, IEEE Trans. Signal Inf. Pro-
cess. Netw. 1 (2) (2015) 89–103 . 

33] C. Yang , H.R. Shao , WiFi-based indoor positioning, IEEE Commun. Mag. 53 (3)
(2015) 150–157 . 

[34] C. Chen , Y. Chen , Y. Han , H.Q. Lai , K.R. Liu , Achieving centimeter-accuracy indoor
localization on wifi platforms: a frequency hopping approach, IEEE Internet Things
J. 4 (1) (2017) 111–121 . 

Xiong Wang received the B.S. degree in electronic informa-
tion engineering from the Wuhan University of Science and
Technology in 2013 and the master’s degree in information
and communication engineering from the Huazhong Univer-
sity of Science and Technology in 2016. He is currently pur-
suing the Ph.D. degree with the Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong University, China.
His research interests include wireless networks and mobile
computing. 

Tianpeng Wei is currently studying in Shanghai Jiao Tong
University as a junior student. He majors in computer science.

Linghe Kong received the B.E. degree from Xidian Univer-
sity in 2005, the Dipl.-Ing. degree from TELECOM SudParis in
2007, and the Ph.D. degree from Shanghai Jiao Tong Univer-
sity in 2012. He was a Post-Doctoral Fellow with Columbia
University and McGill University. He is currently a Research
Professor with Shanghai Jiao Tong University, China. His re-
search interests include wireless communications and mobile
computing. 

Liang He is an assistant professor at University of Colorado
Denver. His research mainly focuses on cyber-physical sys-
tems, IoTs, and mobile computing. Before joining UCD, he
worked as a research fellow at The University of Michigan at
Ann Arbor, MI, USA, with Prof. Kang G. Shin, as a Research
Scientist at Singapore University of Technology and Design,
Singapore, with Dr. Yu (Jason) Gu, and as a research assistant
at University of Victoria, Canada, with Prof. Jianping Pan. He
is a senior member of IEEE and a member of ACM. 

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.sysarc.2019.02.014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30470-3/sbref0032


X. Wang, T. Wei and L. Kong et al. Journal of Systems Architecture 97 (2019) 258–268 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fan Wu is a professor with the Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong University. He re-
ceived the BS degree in Computer Science from Nanjing Uni-
versity, in 2004, and the PhD degree in Computer Science
and Engineering from the State University of New York at
Buffalo, in 2009. He has visited the University of Illinois at
Urbana-Champaign (UIUC) as a Post Doc Research Associate.
His research interests include wireless networking and mobile
computing, algorithmic game theory and its applications, and
privacy preservation. He has published more than 100 peer-
reviewed papers in technical journals and conference proceed-
ings. 
268 
Guihai Chen received the B.S. degree from Nanjing University
in 1984, the M.E. degree from Southeast University in 1987,
and the Ph.D. degree from the University of Hong Kong in
1997. He is a Distinguished Professor with Shanghai Jiaotong
University, China. He had been invited as a Visiting Professor
for many universities, including the Kyushu Institute of Tech-
nology, Japan, in 1998, the University of Queensland, Aus-
tralia, in 2000, and Wayne State University, USA, from 2001
to 2003. He has a wide range of research interests with focus
on sensor network, peer-to-peer computing, and high perfor-
mance computer architecture. 


	ECASS: Edge computing based auxiliary sensing system for self-driving vehicles
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Motivation
	3.2 Problem statement

	4 System design
	4.1 System overview
	4.2 Design of the vehicle detection algorithm
	4.3 The selection of nearby servers

	5 Performance evaluation
	5.1 Simulation settings
	5.2 Simulation results
	5.2.1 Simulation with various velocities
	5.2.2 Simulation with different GPS errors
	5.2.3 Simulation with two vehicles


	6 Conclusion and future work
	Acknowledgments
	Supplementary material
	References


